Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
600 minutes
Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
 | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree
 | More of ('a tree * 'a treeList);

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList)
Mutually Recursive Functions

let rec fringe tree =
 match tree with (TreeLeaf x) -> [x]
 | (TreeNode list) -> list_fringe list

and list_fringe tree_list =
 match tree_list with (Last tree) -> fringe tree
 | (More (tree,list)) ->
 (fringe tree) @ (list_fringe list);

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>
Mutually Recursive Types - Values

```ocaml
# let tree =
TreeNode
  (More (TreeLeaf 5,
       (More (TreeNode
            (More (TreeLeaf 3,
                 Last (TreeLeaf 2))),
            Last (TreeLeaf 7)))));
```

Mutually Recursive Types - Values

A more conventional picture

```
   5
   |
   3
   |
   2
   |
   7
```
Mutually Recursive Functions

fringe tree;;
- : int list = [5; 3; 2; 7]
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size

let rec tree_size t =
 match t with TreeLeaf _ ->
 | TreeNode ts ->
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size
let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size and treeList_size

let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts

and treeList_size ts =
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts

and treeList_size ts =
 match ts with Last t ->
 | More t ts’ ->
Problem

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size and treeList_size

let rec tree_size t =
 match t with TreeLeaf _ -> 1
 | TreeNode ts -> treeList_size ts

and treeList_size ts =
 match ts with Last t -> tree_size t
 | More t ts' -> tree_size t + treeList_size ts'
Problem

```ocaml
# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);

Define tree_size and treeList_size

let rec tree_size t =
  match t with
  TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
  match ts with
  Last t -> tree_size t
| More t ts' -> tree_size t + treeList_size ts'
```
Nested Recursive Types

type 'a labeled_tree =
 TreeNode of ('a * 'a labeled_tree list);

type 'a labeled_tree = TreeNode of ('a * 'a labeled_tree list)
Nested Recursive Type Values

let ltree = TreeNode(5,
 [TreeNode (3, []);
 TreeNode (2, [TreeNode (1, []);
 TreeNode (7, [])]);
 TreeNode (5, [])]);
val ltree : int labeled_tree =
TreeNode
(5,
 [TreeNode (3, []); TreeNode (2, [TreeNode (1, []); TreeNode (7, []))]);
TreeNode (5, [])]})
Nested Recursive Type Values

$Ltree = \text{TreeNode}(5)$

```
[ ]
```

```
TreeNode(3)   TreeNode(2)   TreeNode(5)
[ ]        [ ]        [ ]
```

```
TreeNode(1)  TreeNode(7)
[ ]              [ ]
```

```
[ ]
```

```
[ ]
```
Nested Recursive Type Values

```
       5
      /|
     3 2 5
    /|
   1 7
```
Mutually Recursive Functions

let rec flatten_tree labtree =
match labtree with TreeNode (x,treelist)
 -> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees
 -> flatten_tree labtree
 @ flatten_tree_list labtrees;;
Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a list = <fun>

flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

■ Nested recursive types lead to mutually recursive functions
Why Data Types?

Data types play a key role in:

- *Data abstraction* in the design of programs
- *Type checking* in the analysis of programs
- *Compile-time code generation* in the translation and execution of programs
 - Data layout (how many words; which are data and which are pointers) dictated by type
Terminology

- Type: A type t defines a set of possible data values
 - E.g. `short` in C is \(\{ x | 2^{15} - 1 \geq x \geq -2^{15} \} \)
 - A value in this set is said to have type t

- Type system: rules of a language assigning types to expressions
Types as Specifications

- Types describe properties
- Different type systems describe different properties, e.g.
 - Data is read-write versus read-only
 - Operation has authority to access data
 - Data came from “right” source
 - Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods
Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t

- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not
Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is *strongly typed*
 - Eg: 1 + 2.3;;
- Depends on definition of “type error”
Strongly Typed Language

- C++ claimed to be “strongly typed”, but
 - Union types allow creating a value at one type and using it at another
 - Type coercions may cause unexpected (undesirable) effects
 - No array bounds check (in fact, no runtime checks at all)

- SML, OCAML “strongly typed” but still must do dynamic array bounds checks, runtime type case analysis, and other checks
Static vs Dynamic Types

• **Static type**: type assigned to an expression at compile time

• **Dynamic type**: type assigned to a storage location at run time

• **Statically typed language**: static type assigned to every expression at compile time

• **Dynamically typed language**: type of an expression determined at run time
Type Checking

- When is op(arg1,...,argn) allowed?

Type checking assures that operations are applied to the right number of arguments of the right types

- Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied

- Used to resolve overloaded operations
Type Checking

- Type checking may be done *statically* at compile time or *dynamically* at run time.

- Dynamically typed (aka untyped) languages (e.g., LISP, Prolog) do only dynamic type checking.

- Statically typed languages can do most type checking statically.
Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
 - Same variable may be used at different types
Dynamic Type Checking

- Data object must contain type information
- Errors aren’t detected until violating application is executed (maybe years after the code was written)
Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time
Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can’t check types that depend on dynamically computed values
 - Eg: array bounds
Static Type Checking

- Typically places restrictions on languages
 - Garbage collection
 - References instead of pointers
 - All variables initialized when created
 - Variable only used at one type
 - Union types allow for work-arounds, but effectively introduce dynamic type checks
Type Declarations

- **Type declarations**: explicit assignment of types to variables (signatures to functions) in the code of a program
 - Must be checked in a strongly typed language
 - Often not necessary for strong typing or even static typing (depends on the type system)
Type Inference

Type inference: A program analysis to assign a type to an expression from the program context of the expression

- Fully static type inference first introduced by Robin Miller in ML
- Haskle, OCAML, SML all use type inference
 - Records are a problem for type inference
Format of Type Judgments

A type judgement has the form

\[\Gamma \vdash \text{exp} : \tau \]

- \(\Gamma \) is a typing environment
 - Supplies the types of variables (and function names when function names are not variables)
 - \(\Gamma \) is a set of the form \(\{ x : \sigma, \ldots \} \)
 - For any \(x \) at most one \(\sigma \) such that \((x : \sigma \in \Gamma) \)
- \(\text{exp} \) is a program expression
- \(\tau \) is a type to be assigned to \(\text{exp} \)
- \(\vdash \) pronounced “turnstyle”, or “entails” (or “satisfies” or, informally, “shows”)

9/26/23
Axioms – Constants (Monomorphic)

\[\Gamma \vdash n : \text{int} \quad \text{(assuming } n \text{ is an integer constant)} \]

\[\Gamma \vdash \text{true} : \text{bool} \quad \Gamma \vdash \text{false} : \text{bool} \]

- These rules are true with any typing environment
- \(\Gamma, \ n \) are meta-variables
Notation: Let $\Gamma(x) = \sigma$ if $x : \sigma \in \Gamma$

Note: if such σ exits, its unique

Variable axiom:

$$\Gamma \vdash x : \sigma \quad \text{if} \quad \Gamma(x) = \sigma$$
Primitive Binary operators ($\oplus \in \{+,-,\times,\ldots\}$):

\[
\frac{\Gamma |- e_1: \tau_1 \quad \Gamma |- e_2: \tau_2 \quad (\oplus): \tau_1 \rightarrow \tau_2 \rightarrow \tau_3}{\Gamma |- e_1 \oplus e_2 : \tau_3}
\]

Special case: Relations ($\sim \in \{<,>,=,<=,>=\}$):

\[
\frac{\Gamma |- e_1: \tau \quad \Gamma |- e_2: \tau \quad (\sim): \tau \rightarrow \tau \rightarrow \text{bool}}{\Gamma |- e_1 \sim e_2 : \text{bool}}
\]

For the moment, think τ is int
Example: \{x: \text{int}\} \vdash x + 2 = 3 : \text{bool}

What do we need to show first?

\{x: \text{int}\} \vdash x + 2 = 3 : \text{bool}
Example: \(\{x: \text{int}\} \vdash x + 2 = 3 : \text{bool} \)

What do we need for the left side?

\[
\begin{align*}
\{x : \text{int}\} \vdash x + 2 : \text{int} & \quad \{x: \text{int}\} \vdash 3 : \text{int} \\
\hline
\{x: \text{int}\} \vdash x + 2 = 3 : \text{bool}
\end{align*}
\]
Example: \(\{x: \text{int}\} \vdash x + 2 = 3 : \text{bool} \)

How to finish?

\[
\begin{align*}
\{x: \text{int}\} & \vdash x: \text{int} \quad \{x: \text{int}\} \vdash 2: \text{int} \\
\{x : \text{int}\} & \vdash x + 2 : \text{int} \\
\{x: \text{int}\} & \vdash 3: \text{int} \\
\{x: \text{int}\} & \vdash x + 2 = 3 : \text{bool}
\end{align*}
\]
Example: \(\{x: \text{int}\} \vdash x + 2 = 3 : \text{bool} \)

Complete Proof (type derivation)

\[
\begin{align*}
\{x: \text{int}\} & \vdash x: \text{int} \\
\{x: \text{int}\} & \vdash 2: \text{int} \\
\{x: \text{int}\} & \vdash x + 2: \text{int} \\
\{x: \text{int}\} & \vdash 3: \text{int} \\
\{x: \text{int}\} & \vdash x + 2 = 3: \text{bool}
\end{align*}
\]
Simple Rules - Booleans

Connectives

\[
\begin{align*}
\Gamma |- e_1 : bool & \quad \Gamma |- e_2 : bool \\
\hline
\Gamma |- e_1 \land e_2 : bool
\end{align*}
\]

\[
\begin{align*}
\Gamma |- e_1 : bool & \quad \Gamma |- e_2 : bool \\
\hline
\Gamma |- e_1 \lor e_2 : bool
\end{align*}
\]
Type Variables in Rules

- If_then_else rule:

 \[\Gamma |- e_1 : \text{bool} \quad \Gamma |- e_2 : \tau \quad \Gamma |- e_3 : \tau \]
 \[\Gamma |- (\text{if } e_1 \text{ then } e_2 \text{ else } e_3) : \tau \]

- \(\tau \) is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type
Example derivation: if-then-else-

\[\Gamma = \{ x:\text{int}, \text{int}_\text{of}_\text{float}:\text{float} \rightarrow \text{int}, y:\text{float} \} \]

\[\Gamma |- (\text{fun} \ y \rightarrow \begin{array}{c} y > 3 \end{array}) \ x \quad \Gamma |- x + 2 \quad \Gamma |- \text{int}_\text{of}_\text{float} \ y \]

\[\begin{array}{ccc} \text{bool} & : \text{int} & : \text{int} \\ \hline \end{array} \]

\[\Gamma |- \text{if} (\text{fun} \ y \rightarrow y > 3) \ x \]

then \[x + 2 \]

else \[\text{int}_\text{of}_\text{float} \ y : \text{int} \]
Function Application

Application rule:

\[
\Gamma |- e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma |- e_2 : \tau_1 \\
\Gamma |- (e_1 \ e_2) : \tau_2
\]

If you have a function expression \(e_1 \) of type \(\tau_1 \rightarrow \tau_2 \) applied to an argument \(e_2 \) of type \(\tau_1 \), the resulting expression \(e_1 \ e_2 \) has type \(\tau_2 \)
750 minutes
Example: Application

- $\Gamma = \{x:\text{int}, \text{int_of_float}:\text{float} \rightarrow \text{int}, y:\text{float}\}$

$$
\Gamma |- (\text{fun } y \rightarrow y > 3) : \text{int} \rightarrow \text{bool} \quad \Gamma |- x : \text{int}
$$

$$
\Gamma |- (\text{fun } y \rightarrow y > 3) \ x : \text{bool}
$$
Fun Rule

- Rules describe types, but also how the environment Γ may change
- Can only do what rule allows!
- fun rule:

\[
\{x : \tau_1 \} + \Gamma |- e : \tau_2
\]

\[
\Gamma |- \text{fun } x -> e : \tau_1 \rightarrow \tau_2
\]
Fun Examples

\[
\begin{align*}
\{y : \text{int}\} + \Gamma & \vdash y + 3 : \text{int} \\
\Gamma & \vdash \text{fun} y \rightarrow y + 3 : \text{int} \rightarrow \text{int}
\end{align*}
\]

\[
\begin{align*}
\{f : \text{int} \rightarrow \text{bool}\} + \Gamma & \vdash f \ 2 :: [\text{true}] : \text{bool} \ \text{list} \\
\Gamma & \vdash (\text{fun} \ f \rightarrow (f \ 2) :: [\text{true}]) \\
& : (\text{int} \rightarrow \text{bool}) \rightarrow \text{bool} \ \text{list}
\end{align*}
\]
(Monomorphic) Let and Let Rec

- let rule:
 \[
 \Gamma \vdash e_1 : \tau_1 \quad \{x : \tau_1\} + \Gamma \vdash e_2 : \tau_2 \\
 \Gamma \vdash (\text{let } x = e_1 \text{ in } e_2) : \tau_2
 \]

- let rec rule:
 \[
 \{x : \tau_1\} + \Gamma \vdash e_1 : \tau_1 \quad \{x : \tau_1\} + \Gamma \vdash e_2 : \tau_2 \\
 \Gamma \vdash (\text{let rec } x = e_1 \text{ in } e_2) : \tau_2
 \]
Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens
Curry - Howard Isomorphism

- Modus Ponens

\[A \Rightarrow B \quad A \]

\[\underline{B} \]

- Application

\[\Gamma |- e_1 : \alpha \rightarrow \beta \quad \Gamma |- e_2 : \alpha \]

\[\Gamma |- (e_1 \ e_2) : \beta \]