

Mutually Recursive Types

\# type 'a tree = TreeLeaf of 'a
| TreeNode of 'a treeList
and 'a treeList = Last of 'a tree
| More of ('a tree * 'a treeList);;
type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Types - Values

\# let tree =
TreeNode
(More (TreeLeaf 5, (More (TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))), Last (TreeLeaf 7)))));;

Mutually Recursive Functions

\# fringe tree;;
: int list = [5; 3; 2; 7]

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size
let rec tree_size t =
match t with TreeLeaf _->
| TreeNode ts ->

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size $\mathrm{t}=$
match t with TreeLeaf _-> 1
| TreeNode ts -> treeList_size ts and treeList_size ts =

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size
let rec tree_size t =
match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size and treeList_size
let rec tree_size $t=$
match t with TreeLeaf _-> 1
| TreeNode ts -> treeList_size ts
and treeList_size ts =
match ts with Last t->
| More t ts' ->

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size and treeList_size
let rec tree_size $t=$
match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts
and treeList_size ts =
match ts with Last $\mathrm{t}->$ tree_size t
| More t ts' -> tree_size t + treeList_size ts'

Nested Recursive Types

\# type 'a labeled_tree =
TreeNode of ('a * 'a labeled_tree list);;
type 'a labeled_tree = TreeNode of ('a * 'a labeled_tree list)

Nested Recursive Type Values

val Itree : int labeled_tree = TreeNode
(5,
[TreeNode (3, []); TreeNode (2,
[TreeNode (1, []); TreeNode (7, [])]);
TreeNode (5, [])])

Nested Recursive Type Values

Ltree $=$ TreeNode(5)

TreeNode(3) TreeNode(2) TreeNode(5)
[${ }^{I}$

9/26/23
22

Nested Recursive Type Values

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>
val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>
\# flatten_tree Itree;;

- : int list = [5; 3; 2; 1; 7; 5]
- Nested recursive types lead to mutually recursive functions

Terminology

- Type: A type t defines a set of possible data values
- E.g. short in C is $\left\{x \mid 2^{15}-1 \geq x \geq-2^{15}\right\}$
- A value in this set is said to have type t
- Type system: rules of a language assigning types to expressions

Mutually Recursive Functions

\# let rec flatten_tree labtree = match labtree with TreeNode (x,treelist) -> x::flatten_tree_list treelist and flatten_tree_list treelist = match treelist with [] -> [] | labtree::labtrees -> flatten_tree labtree @ flatten_tree_list labtrees;;

Why Data Types?

- Data types play a key role in:
- Data abstraction in the design of programs
- Type checking in the analysis of programs
- Compile-time code generation in the translation and execution of programs
- Data layout (how many words; which are data and which are pointers) dictated by type

Types as Specifications

- Types describe properties
- Different type systems describe different properties, eg
- Data is read-write versus read-only
- Operation has authority to access data
- Data came from "right" source
- Operation might or could not raise an exception
- Common type systems focus on types describing same data layout and access methods

Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t
- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not

Strongly Typed Language

- C++ claimed to be "strongly typed", but - Union types allow creating a value at one type and using it at another
- Type coercions may cause unexpected (undesirable) effects
- No array bounds check (in fact, no runtime checks at all)
- SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

Type Checking

- When is op(arg1,...,argn) allowed?
- Type checking assures that operations are applied to the right number of arguments of the right types
- Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations

Strongly Typed Language

- When no application of an operator to arguments can lead to a run-time type error, language is strongly typed
- Eg: 1 + 2.3;;
- Depends on definition of "type error"

Static vs Dynamic Types

- Static type: type assigned to an expression at compile time
- Dynamic type: type assigned to a storage location at run time
- Statically typed language: static type assigned to every expression at compile time
- Dynamically typed language: type of an expression determined at run time

Type Checking

- Type checking may be done statically at compile time or dynamically at run time
- Dynamically typed (aka untyped) languages (eg LISP, Prolog) do only dynamic type checking
- Statically typed languages can do most type checking statically

Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
- Same variable may be used at different types

Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

Static Type Checking

- Typically places restrictions on languages
- Garbage collection
- References instead of pointers
- All variables initialized when created
- Variable only used at one type
- Union types allow for work-arounds, but effectively introduce dynamic type checks

Type Inference

- Type inference: A program analysis to assign a type to an expression from the program context of the expression
- Fully static type inference first introduced by Robin Miller in ML
- Haskle, OCAML, SML all use type inference - Records are a problem for type inference

Axioms - Constants (Monomorphic)

$\Gamma \mid-n$: int (assuming n is an integer constant)
$\overline{\Gamma \mid \text { - true : bool }} \quad \overline{\Gamma \mid- \text { false : bool }}$

- These rules are true with any typing environment
- Γ, n are meta-variables

Simple Rules - Arithmetic (Mono)
Primitive Binary operators $(\oplus \in\{+,-, *, \ldots\})$: $\frac{\Gamma\left|-e_{1}: \tau_{1} \quad \Gamma\right|-e_{2}: \tau_{2}(\oplus): \tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3}}{\Gamma \mid-e_{1} \oplus e_{2}: \tau_{3}}$
Special case: Relations ($\sim_{\in\{<,>,=,<=,>=\}}$):
$\frac{\Gamma\left|-e_{1}: \tau \Gamma\right|-e_{2}: \tau(\sim): \tau \rightarrow \tau \rightarrow \text { bool }}{\Gamma \mid-e_{1} \sim e_{2}: \text { bool }}$
For the moment, think τ is int

Example: $\{x:$ int $\} \mid-x+2=3$:bool

What do we need for the left side?
$\frac{\{x: \text { int }\} \mid-x+2: \text { int } \quad\{x: \text { int }\} \mid-3: \text { int }}{\{x: \text { int }\} \mid-x+2=3: \text { bool }}$

Example: $\{x:$ int $\} \mid-x+2=3$:bool

Complete Proof (type derivation)
$\frac{\frac{\text { Var }}{\frac{\text { Const }}{\{x: \text { int }\} \mid-x: \text { int }} \frac{\text { Const }}{\{x: \text { int }\} \mid-2: \text { int }}}}{\frac{\text { Bin }}{\{x: \text { int }\} \mid-x+2: \text { int }}} \frac{\{x: \text { int }\} \mid-x+2=3: \text { bool }\}}{\{-3: \text { int }}$ Bin

Type Variables in Rules

- If_then_else rule:
$\frac{\Gamma \mid-e_{1}: \text { bool } \Gamma\left|-\mathrm{e}_{2}: \tau \Gamma\right|-\mathrm{e}_{3}: \tau}{\Gamma \mid-\left(\text { if } e_{1} \text { then } \mathrm{e}_{2} \text { else } \mathrm{e}_{3}\right): \tau}$
- τ is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

Example: $\{x:$ int $\} \mid-x+2=3$:bool

How to finish?
$\frac{\frac{\{x: \text { int }\} \mid-x: \text { int }\{x: \text { int }\} \mid-2: \text { int }_{\text {Bin }}}{\{x: \text { int }\} \mid-x+2: \text { int }}}{\{x: \text { int }\} \mid-x+2=3: \text { bool }\} \mid-3: \text { int }}$ Bin

9/26/23
52

Simple Rules - Booleans

Connectives

$$
\begin{aligned}
& \frac{\Gamma \mid-e_{1}: \text { bool } \Gamma \mid-e_{2}: \text { bool }}{\Gamma \mid-e_{1} \& \& e_{2}: \text { bool }} \\
& \frac{\Gamma \mid-e_{1}: \text { bool } \quad \Gamma \mid-e_{2}: \text { bool }}{\Gamma \mid-e_{1} \| e_{2}: \text { bool }}
\end{aligned}
$$

Example derivation: if-then-else-

- $\Gamma=\{x:$ int, int_of_float:float -> int, y :float $\}$

Г |- (fun y ->
$y>3) x \quad Г|-x+2 \quad \Gamma|-$ int_of_float y
: bool :int : int
$\Gamma \mid-$ if (fun $y->y>3) x$
then $x+2$
else int_of_float y : int

Function Application

- Application rule:

$$
\frac{\Gamma\left|-e_{1}: \tau_{1} \rightarrow \tau_{2} \Gamma\right|-e_{2}: \tau_{1}}{\Gamma \mid-\left(e_{1} e_{2}\right): \tau_{2}}
$$

- If you have a function expression e_{1} of type $\tau_{1} \rightarrow \tau_{2}$ applied to an argument e_{2} of type τ_{1}, the resulting expression $e_{1} e_{2}$ has type τ_{2}

Example: Application

- Г = \{x:int, int_of_float:float -> int, y:float\}
$\Gamma \mid-($ fun $y->y>3)$
: int -> bool Г |-x : int
$\Gamma \mid-($ fun $y->y>3) x$: bool

Fun Examples

$$
\frac{\{y: \text { int }\}+\Gamma \mid-y+3: \text { int }}{\Gamma \mid- \text { fun } y->y+3: \text { int } \rightarrow \text { int }}
$$

\{f: int \rightarrow bool $\}+$ Г - f $2::$ [true] : bool list Г |- (fun f-> (f 2) :: [true])
: (int \rightarrow bool) \rightarrow bool list

(Monomorphic) Let and Let Rec

- let rule:

$$
\frac{\Gamma\left|-e_{1}: \tau_{1} \quad\left\{x: \tau_{1}\right\}+\Gamma\right|-e_{2}: \tau_{2}}{\Gamma \mid-\left(\text { let } x=e_{1} \text { in } e_{2}\right): \tau_{2}}
$$

- let rec rule:

$$
\frac{\left\{x: \tau_{1}\right\}+\Gamma\left|-e_{1}: \tau_{1}\left\{x: \tau_{1}\right\}+\Gamma\right|-e_{2}: \tau_{2}}{\Gamma \mid-\left(\text { let rec } x=e_{1} \text { in } e_{2}\right): \tau_{2}}
$$

Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens

Curry - Howard Isomorphism

- Modus Ponens

$$
\frac{A \Rightarrow B \quad A}{B}
$$

- Application

$$
\frac{\Gamma\left|-e_{1}: \alpha \rightarrow \beta \Gamma\right|-e_{2}: \alpha}{\Gamma \mid-\left(e_{1} e_{2}\right): \beta}
$$

