Programming Languages and Compilers (CS 421)

Elsa L Gunter
 2112 SC, UIUC http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Terminology: Review

- A function is in Direct Style when it returns its result back to the caller.
- A function is in Continuation Passing Style when it, and every function call in it, passes its result to another function.
- A Tail Call occurs when a function returns the result of another function call without any more computations (eg tail recursion)
- Instead of returning the result to the caller, we pass it forward to another function giving the computation after the call.

CPS Transformation

- Step 1: Add continuation argument to any function definition:
- let f arg $=\mathrm{e} \Rightarrow$ let f arg $\mathrm{k}=\mathrm{e}$
- Idea: Every function takes an extra parameter saying where the result goes
- Step 2: A simple expression in tail position should be passed to a continuation instead of returned:
- return a \Rightarrow k a
- Assuming a is a constant or variable.
- "Simple" = "No available function calls."

CPS Transformation

- Step 3: Pass the current continuation to every function call in tail position
- return farg \Rightarrow f arg k
- The function "isn't going to return," so we need to tell it where to put the result.

CPS Transformation

- Step 4: Each function call not in tail position needs to be converted to take a new continuation (containing the old continuation as appropriate)
- return op (f arg) $\Rightarrow \mathrm{f}$ arg (fun r-> k(op r))
- op represents a primitive operation
- return $\mathrm{g}(\mathrm{f} \arg) \Rightarrow \mathrm{f}$ arg (fun r-> g r k)

Example

Before:

let rec add_list Ist = match Ist with
[]-> 0
0 :: xs -> add_list xs | x :: xs -> (+) x
(add_list xs);;

After:

let rec add_listk Ist k = (* rule 1 *)
match Ist with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k (* rule 3 *)
| x :: xs -> add_listk xs (fun r-> k ((+) x r)); ; (* rule 4 *)

Example

Before:

let rec mem $(y, l s t)=$ match Ist with
[] -> false
| x :: xs ->
if $(x=y)$
then true
else mem(y,xs);;

After:

let rec memk (y, lst) $\mathrm{k}=$ (* rule 1 *)

Example

Before:

let rec mem $(y, \mid s t)=$ match Ist with
[] -> false
| x : : xs ->
if $(x=y)$
then true
else mem(y,xs);;

After:

let rec memk (y, lst) $\mathrm{k}=$ (* rule 1 *)
k false (* rule 2 *)
k true (* rule 2 *)

Example

Before:

let rec mem $(\mathrm{y}, \mathrm{lst})=$ match Ist with

> [] -> false
| x : : xs ->
if $(x=y)$
then true
else mem(y,xs);;

After:

let rec memk (y, lst) $\mathrm{k}=$
(* rule 1 *)
k false (* rule 2 *)
k true (* rule 2 *) memk (y, xs) k (* rule 3 *)

Example

Before:

let rec mem $(\mathrm{y}, \mathrm{lst})=$ match Ist with

> [] -> false
| x:: xs ->
if $(x=y)$
then true
else mem(y,xs);;

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=$
(* rule 1 *)
k false (* rule 2 *)
eqk (x, y)
(fun b -> b (* rule 4 *)
k true (* rule 2 *)
memk (y, xs) (* rule 3 *)

Example

Before:

let rec mem $(\mathrm{y}, \mathrm{lst})=$ match Ist with

> [] -> false
|x::xs ->
if $(x=y)$
then true
else mem(y,xs);;

After:

let rec memk $(\mathrm{y}, \mathrm{lst}) \mathrm{k}=$
(* rule 1 *)
k false (* rule 2 *)
eqk (x, y)
(fun b ->if b (* rule 4 *)
then k true ($*$ rule $2{ }^{*}$)
else memk (y, xs) (* rule 3 *)

Example

Before:

let rec mem $(\mathrm{y}, \mathrm{lst})=$ match Ist with

> [] -> false
> $\mid x:: x s->$
> if $(x=y)$
then true
else mem(y,xs);;

After:

let rec memk (y , lst) $\mathrm{k}=$
(* rule 1 *)
match Ist with
| [] -> k false (* rule 2 *)
| x:: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)
then k true (* rule $2 *$)
else memk (y, x xs) k (* rule 3 *)

Example

Before:

let rec mem $(y, l s t)=$ match Ist with
[] -> false
| x :: xs ->
if $(x=y)$
then true
else mem(y,xs);;

After:

let rec memk (y, lst) $\mathrm{k}=$
(* rule 1 *)
match Ist with
| [] -> k false (* rule 2 *)
| x:: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)
then k true (* rule $2{ }^{*}$)
else memk (y, xs) k (* rule 3^{*})

Data type in Ocaml: lists

- Frequently used lists in recursive program
- Matched over two structural cases
- [] - the empty list
- (x :: xs) a non-empty list
- Covers all possible lists
- type `a list = [] | (: :) of `a * `a list
- Not quite legitimate declaration because of special syntax

Variants - Syntax (slightly simplified)

- type name $=C_{1}\left[\begin{array}{ll}\text { of } & t y_{1}\end{array}\right]|\ldots| C_{n}\left[\begin{array}{ll}\left.\text { of } t y_{n}\right]\end{array}\right.$
- Introduce a type called name
- (fun x -> $C_{i} \mathrm{x}$) : ty ${ }_{1}->$ name
- C_{i} is called a constructor, if the optional type argument is omitted, it is called a constant
- Constructors are the basis of almost all pattern matching

Enumeration Types as Variants

An enumeration type is a collection of distinct values

In C and Ocaml they have an order structure; order by order of input

Enumeration Types as Variants

\# type weekday = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday;; type weekday =

Monday
| Tuesday
| Wednesday
| Thursday
Friday
Saturday
| Sunday

Functions over Enumerations

\# let day_after day = match day with
Monday -> Tuesday
Tuesday -> Wednesday
| Wednesday -> Thursday
Thursday -> Friday
Friday -> Saturday
Saturday -> Sunday
| Sunday -> Monday;;
val day_after : weekday -> weekday = <fun>

Functions over Enumerations

\# let rec days_later n day $=$ match n with $0->$ day

$$
\left.\right|_{-}->\text {if } n>0
$$

then day_after (days_later (n-1) day) else days_later ($\mathrm{n}+7$) day;;
val days_later : int -> weekday -> weekday = <fun>

Functions over Enumerations

\# days_later 2 Tuesday;;

- : weekday = Thursday
\# days_later (-1) Wednesday;;
- : weekday = Tuesday
\# days_later (-4) Monday;;
- : weekday = Thursday

Problem:

\# type weekday = Monday | Tuesday |
Wednesday
Thursday | Friday | Saturday | Sunday;;

- Write function is_weekend : weekday -> bool let is_weekend day =

Problem:

\# type weekday = Monday | Tuesday |
Wednesday
Thursday | Friday | Saturday | Sunday;;

- Write function is_weekend : weekday -> bool let is_weekend day =
match day with Saturday -> true
| Sunday -> true
| _ -> false

Example Enumeration Types

\# type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp

\# type mon_op = HdOp | TIOp | FstOp | SndOp

Disjoint Union Types

- Disjoint union of types, with some possibly occurring more than once

t_{1}
 $t y_{2} \quad t y_{1}$

- We can also add in some new singleton elements

Disjoint Union Types

\# type id = DriversLicense of int SocialSecurity of int | Name of string;; type id = DriversLicense of int | SocialSecurity of int | Name of string
\# let check_id id = match id with
DriversLicense num -> not (List.mem num [13570; 99999])
| SocialSecurity num -> num < 900000000 Name str -> not (str = "John Doe");;
val check_id : id -> bool = <fun>

Problem

- Create a type to represent the currencies for US, UK, Europe and Japan

Problem

- Create a type to represent the currencies for US, UK, Europe and Japan
type currency =
Dollar of int
| Pound of int
| Euro of int
| Yen of int

Example Disjoint Union Type

\# type const =
BoolConst of bool
| IntConst of int
| FloatConst of float
| StringConst of string
| NilConst
| UnitConst

Example Disjoint Union Type

\# type const = BoolConst of bool
| IntConst of int | FloatConst of float
| StringConst of string | NilConst | UnitConst
-How to represent 7 as a const? -Answer: IntConst 7

Polymorphism in Variants

- The type 'a option is gives us something to represent non-existence or failure
\# type 'a option = Some of 'a | None;; type 'a option = Some of 'a | None
- Used to encode partial functions - Often can replace the raising of an exception

Functions producing option

\# let rec first p list = match list with [] -> None
| (x::xs) -> if $p x$ then Some x else first p xs;;
val first : ('a -> bool) -> 'a list -> 'a option = <fun> \# first (fun x -> x > 3) [1;3;4;2;5];;

- : int option = Some 4
\# first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

Functions over option

\# let result_ok r = match r with None -> false
| Some _ -> true;;
val result_ok : 'a option -> bool $=$ <fun>
\# result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;

- : bool = true
\# result_ok (first (fun x -> x > 5) [1;3;4;2;5]);,
- : bool = false

Problem

- Write a hd and tl on lists that doesn't raise an exception and works at all types of lists.

Problem

- Write a hd and tl on lists that doesn't raise an exception and works at all types of lists.
- let hd list =
match list with [] -> None
| (x::xs) -> Some x
- let tl list = match list with [] -> None | (x::xs) -> Some xs

Mapping over Variants

\# let optionMap f opt = match opt with None -> None
| Some x -> Some (f x);;
val optionMap : ('a -> 'b) -> 'a option -> 'b option = <fun>
\# optionMap
(fun $x->x-2$)
(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

Folding over Variants

\# let optionFold someFun noneVal opt $=$ match opt with None -> noneVal
Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option -> 'b = <fun>
\# let optionMap fopt = optionFold (fun x -> Some (f x)) None opt;;
val optionMap : ('a -> 'b) -> 'a option -> 'b option = <fun>

Recursive Types

- The type being defined may be a component of itself

Recursive Data Types

\# type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree);;
type int_Bin_Tree = Leaf of int | Node of (int_Bin_Tree * int_Bin_Tree)

Recursive Data Type Values

\# let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;
val bin_tree : int_Bin_Tree = Node (Node (Leaf 3, Leaf 6), Leaf (-7))

Recursive Data Type Values

bin_tree $=$ Node

Leaf 3 Leaf 6

Recursive Functions

\# let rec first_leaf_value tree = match tree with (Leaf n) -> n
| Node (left_tree, right_tree) ->
first_leaf_value left_tree;;
val first_leaf_value : int_Bin_Tree -> int = <fun>
\# let left = first_leaf_value bin_tree;;
val left : int = 3

Recursive Data Types

\# type exp =
VarExp of string
ConstExp of const
MonOpAppExp of mon_op * exp
| BinOpAppExp of bin_op * exp * exp
IfExp of exp* exp * exp
AppExp of exp * exp
FunExp of string * exp

Recursive Data Types

\# type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | ...
\# type const = BoolConst of bool | IntConst of int |
\# type exp $=$ VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ...
-How to represent 6 as an exp?

Recursive Data Types

\# type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | ...
\# type const $=$ BoolConst of bool | IntConst of int |
\# type exp $=$ VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ...
-How to represent 6 as an exp? -Answer: ConstExp (IntConst 6)

Recursive Data Types

\# type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | ...
\# type const = BoolConst of bool | IntConst of int |
\# type exp $=$ VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ...
-How to represent $(6,3)$ as an exp?

Recursive Data Types

\# type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | ...
\# type const = BoolConst of bool | IntConst of int |
\# type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * \exp | ...
-How to represent $(6,3)$ as an exp? -BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3))

Recursive Data Types

\# type bin_op = IntPlusOp | IntMinusOp | EqOp | CommaOp | ConsOp | ...
\# type const = BoolConst of bool | IntConst of int |
\# type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp | ... -How to represent $[(6,3)]$ as an exp? -BinOpAppExp (ConsOp, BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3)), ConstExp NilConst))));;

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;

- Write sum_tree : int_Bin_Tree -> int
- Adds all ints in tree
let rec sum_tree $\mathrm{t}=$

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;

- Write sum_tree : int_Bin_Tree -> int
- Adds all ints in tree
let rec sum_tree $t=$
match t with Leaf $\mathrm{n}->\mathrm{n}$
Node(t1,t2) -> sum_tree t1 + sum_tree t2

Recursion over Recursive Data Types

\# type exp = VarExp of string | ConstExp of const | BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

- How to count the number of variables in an exp?

Recursion over Recursive Data Types

\# type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

- How to count the number of variables in an exp?
\# let rec varCnt exp =
match exp with VarExp x ->
| ConstExp c ->
| BinOpAppExp (b, e1, e2) ->
| FunExp (x,e) ->
| AppExp (e1, e2) ->

Recursion over Recursive Data Types

\# type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

- How to count the number of variables in an exp?
\# let rec varCnt exp =
match exp with VarExp x -> 1
| ConstExp c -> 0
| BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
| FunExp (x,e) -> $1+$ varCnt e
| AppExp (e1, e2) -> varCnt e1 + varCnt e2

Your turn now

Try Problem 3 on MP5

Mapping over Recursive Types

\# let rec ibtreeMap f tree = match tree with (Leaf n) -> Leaf (f n)
Node (left_tree, right_tree) ->
Node (ibtreeMap f left_tree,
ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree -> int_Bin_Tree $=<$ fun>

Mapping over Recursive Types

\# ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf 8), Leaf (-5))

Folding over Recursive Types

\# let rec ibtreeFoldRight leafFun nodeFun tree = match tree with Leaf $n->$ leafFun n
| Node (left_tree, right_tree) -> nodeFun
(ibtreeFoldRight leafFun nodeFun left_tree)
(ibtreeFoldRight leafFun nodeFun right_tree);;
val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree -> 'a = <fun>

Folding over Recursive Types

\# let tree_sum =
ibtreeFoldRight (fun x -> x) (+);; val tree_sum : int_Bin_Tree -> int = <fun> \# tree_sum bin_tree;;

- : int = 2

600 minutes

Mutually Recursive Types

\# type 'a tree = TreeLeaf of 'a
| TreeNode of 'a treeList
and 'a treeList = Last of 'a tree
| More of ('a tree * 'a treeList);;
type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList)

Mutually Recursive Types - Values

\# let tree =
TreeNode
(More (TreeLeaf 5,
(More (TreeNode
(More (TreeLeaf 3,
Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

Mutually Recursive Types - Values

val tree : int tree =
TreeNode
(More
(TreeLeaf 5,
More
(TreeNode (More (TreeLeaf 3, Last (TreeLeaf 2))), Last (TreeLeaf 7))))

Mutually Recursive Types - Values

TreeNode

Mutually Recursive Types - Values

A more conventional picture

Mutually Recursive Functions

\# let rec fringe tree = match tree with (TreeLeaf x) -> [x]
(TreeNode list) -> list_fringe list
and list_fringe tree_list = match tree_list with (Last tree) -> fringe tree
(More (tree,list)) ->
(fringe tree) @ (list_fringe list);;
val fringe : 'a tree -> 'a list = <fun> val list_fringe : 'a treeList -> 'a list = <fun>

Mutually Recursive Functions

\# fringe tree;;
. : int list = [5; 3; 2; 7]

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);; Define tree_size

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);; Define tree_size let rec tree_size t = match t with TreeLeaf _ -> | TreeNode ts ->

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size
let rec tree_size $t=$
match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size and treeList_size let rec tree_size t = match t with TreeLeaf _ -> 1 | TreeNode ts -> treeList_size ts and treeList_size ts =

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size and treeList_size
let rec tree_size t =
match t with TreeLeaf _-> 1
| TreeNode ts -> treeList_size ts
and treeList_size ts =
match ts with Last t->
| More t ts' ->

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size and treeList_size
let rec tree_size t =
match t with TreeLeaf _-> 1
| TreeNode ts -> treeList_size ts
and treeList_size ts =
match ts with Last $t->$ tree_size t
| More t ts' ${ }^{\prime}$-> tree_size t + treeList_size ts'

Problem

\# type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;
Define tree_size and treeList_size
let rec tree_size t =
match t with TreeLeaf _-> 1
| TreeNode ts -> treeList_size ts
and treeList_size ts =
match ts with Last $\mathrm{t}->$ tree_size t
| More t ts' -> tree_size t + treeList_size ts'

Nested Recursive Types

\# type 'a labeled_tree =
TreeNode of ('a * 'a labeled_tree list);;
type 'a labeled_tree = TreeNode of ('a * 'a labeled_tree list)

Nested Recursive Type Values

\# let ltree =
TreeNode(5,
[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []); TreeNode (7, [])]);
TreeNode (5, [])]);;

Nested Recursive Type Values

val Itree : int labeled_tree =

TreeNode

(5,
[TreeNode (3, []); TreeNode (2,
[TreeNode (1, []); TreeNode (7, [])]); TreeNode (5, [])])

Nested Recursive Type Values

Ltree $=$ TreeNode(5)

TreeNode(3) TreeNode(2) TreeNode(5)
[${ }^{1}$

Nested Recursive Type Values

Mutually Recursive Functions

\# let rec flatten_tree labtree = match labtree with TreeNode (x,treelist)
-> x: :flatten_tree_list treelist and flatten_tree_list treelist = match treelist with [] -> []
| labtree::labtrees
-> flatten_tree labtree
@ flatten_tree_list labtrees;;

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>
val flatten_tree_list : 'a labeled_tree list -> 'a list = <fun>
\# flatten_tree Itree;;

- : int list = [5; 3; 2; 1; 7; 5]
- Nested recursive types lead to mutually recursive functions

