Programming Languages and Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

9/12/23

Recursion Example

Compute n^{2} recursively using:

$$
n^{2}=(2 * n-1)+(n-1)^{2}
$$

\# let rec nthsq $\mathrm{n}=$ (* rec for recursion *)
match $n \quad$ (* pattern matching for cases *)
with $0->0 \quad$ (* base case *)
| $\mathrm{n}->(2$ * $\mathrm{n}-1) \quad$ (* recursive case *)

+ nthsq ($\mathrm{n}-1$) ${ }^{i} \quad$ ($*$ recursive call $\left.*\right)$
val nthsq : int -> int $=$ <fun>
\# nthsq 3; ;
: int = 9
Structure of recursion similar to inductive proof

Lists

- List can take one of two forms:
- Empty list, written []
- Non-empty list, written x :: xs
- x is head element, xs is tail list, :: called "cons"
- Syntactic sugar: $[\mathrm{x}]==\mathrm{x}$:: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Recursive Functions

\# let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else n * factorial ($\mathrm{n}-1$); ;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120
\# (* rec is needed for recursive function declarations *)

Recursion and Induction

\# let rec nthsq $\mathrm{n}=$ match n with $0->0$

$$
\mid n->(2 * n-1)+n t h s q(n-1) ;
$$

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

9/12/23

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
\# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
\# (8::5::3::2::1::1::[]) = fib5;;

- : bool = true
\# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

Lists are Homogeneous

\＃let bad＿list＝［1；3．2；7］；；
Characters 19－22：
let bad＿list＝［1；3．2；7］；；
ヘヘヘ
This expression has type float but is here used with type int

Answer

－Which one of these lists is invalid？

1．$[2 ; 3 ; 4 ; 6]$
2．$[2,3 ; 4,5 ; 6,7]$
3．$[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4．［［＂hi＂；＂there＂］；［＂wahcha＂］；［ ］；［＂doin＂］］
－ 3 is invalid because of last pair

Functions Over Lists

\＃let silly＝double＿up［＂hi＂；＂there＂］；；
val silly ：string list＝［＂hi＂；＂hi＂；＂there＂；＂there＂］
\＃let rec poor＿rev list＝
match list
with［］－＞［］
| (x::xs) -> poor_rev xs @ [x];;
val poor＿rev ：＇a list－＞＇a list＝＜fun＞
\＃poor＿rev silly；；
－：string list＝［＂there＂；＂there＂；＂hi＂；＂hi＂］

Structural Recursion

－Functions on recursive datatypes（eg lists） tend to be recursive
－Recursion over recursive datatypes generally by structural recursion
－Recursive calls made to components of structure of the same recursive type
－Base cases of recursive types stop the recursion of the function

Question: Length of list

- Problem: write code for the length of the list
- How to start?
let rec length list =

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length list =
match list with

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is empty?
let rec length list =
match list with [] ->
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is empty? let rec length list =
match list with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is not empty?
let rec length list =
match list with [] -> 0
| (a :: bs) ->

Structural Recursion : List Example

\# let rec length list = match list
with []-> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];

- : int = 4
- Nil case [] is base case
- Cons case recurses on component list bs

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

Question: Length of list

- Problem: write code for the length of the list - What result do we give when list is not empty? let rec length list =
match list with [] -> 0
| (a :: bs) -> 1 + length bs

Same Length

- How can we efficiently answer if two lists have the same length?

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list =

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list = match list
with [] ->[]
| x :: xs -> $\left(2{ }^{*} \mathrm{x}\right)::$ doubleList xs

9/12/23
48

Higher-Order Functions Over Lists

\# let rec map f list = match list
with [] -> []
| (h::t) -> (f h) :: (map ft);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x -> x - 1) fib 6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list $=$ <fun>
\# doubleList [2;3;4];;
- : int list = [4; 6; 8]

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list = match list
with [] ->[]

Higher-Order Functions Over Lists

\# let rec map f list = match list
with [] \rightarrow []
I (h: :t) $->(\mathrm{f} \mathrm{h})::($ map t$)$;
val map: ('a-> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x-> x-1) fib;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/12/23

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list $->$ int list $=<$ fun $>$
\# doubleList [2;3;4];;
- : int list = [4; 6; 8]
- Same function, but no explicit recursion

Folding Recursion

Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list $->$ int $=$ <fun>
\# multList [2;4;6];;

- : int = 48
- Computes (2 * (4 * (6 * 1)))

9/12/23

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Forward Recursion: Examples

```
    # let rec double_up list =
    match list
    with []-> []
        | (x :: xs`)
    val double_up : 'a list ->\'a list = < furm>
        Base Case Operator Recursive Call
    # let rec poor_rev list =
    match list
    with [] -> []
        | (x::xs) )-> let r = poor rev xs in r@ @ [x];;
val poor_rev : 'a list -> 'a list = <finm>
            Base Case Operator Recursive Call
9/12/23
```


Folding Recursion : Length Example

\# let rec length list = match list with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case, 0 is the base value
- Cons case recurses on component list bs
- What do multList and length have in common?

Forward Recursion: Examples

```
# let rec double_up list =
    match list
    with []-> []
        | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
# let rec poor_rev list =
    match list
    with [] -> []
        | (x::xs) -> let r = poor_rev xs in r @ [x];;
    val poor_rev : 'a list -> 'a list = <fun>
```

9/12/23
58

Recursing over lists

\# let rec fold_right f list b = match list
with [] -> b
The Primitive
| (x :: xs) -> fx (fold_right f xs b);; Recursion Fairy
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();
therehi- : unit $=()$

Folding Recursion : Length Example

\# let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# let length list =
fold_right (fun a -> fun r-> $1+r$) list $0 ;$;
val length : 'a list -> int $=$ <fun>
\# length [5; 4; 3; 2];;

- : int = 4

Terminology

- Available: A function call that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
- if $(h x)$ then $f x$ else $(x+g x)$
- if (hx) then (fun $x->\mathrm{f} x$) else $(g(x+x)$)

Not available

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function

Folding Recursion

- multList folds to the right
- Same as:
\# let multList list =
List.fold_right
(fun $x->$ fun $p->x$ *)
list 1;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48

9/12/23
62

Terminology

- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of e
- if $(x>3)$ then $x+2$ else $x-4$
- let $x=5$ in $x+4$
- Tail Call: A function call that occurs in tail position
- if $(h x)$ then $f x$ else $(x \pm g x)$

9/12/23

Tail Recursion - length

- How can we write length with tail recursion? let length list =
let rec length_aux list acc_length = match list
with [] -> acc_length
| (x::xs) ->
length_aux xs (1 + acc_length)
in length_aux list 0

Folding

\# let rec fold_left f a list = match list with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left $\mathrm{fa}\left[\mathrm{x}_{1} ; \mathrm{x}_{2} ; \ldots ; \mathrm{x}_{\mathrm{n}}\right]=\mathrm{f}\left(\ldots\left(\mathrm{f}\left(\mathrm{f}\right.\right.\right.$ a $\left.\left.\left.\mathrm{x}_{1}\right) \mathrm{x}_{2}\right) \ldots\right) \mathrm{x}_{\mathrm{n}}$
\# let rec fold_right f list $b=$ match list with [] -> b | (x :: xs) -> fx (fold_right f xs b); ;
val fold_right: ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $f\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

