

Functions with more than one argument
\# let add_three x y z = x + y + z; ;
val add_three : int -> int -> int -> int = <fun>

- What is the value of add_three?
- Let $\rho_{\text {add_three }}$ be the environment before the declaration
- Remember:
let add_three $=$
fun $x->($ fun $y->(f u n z->x+y+z)$); ;
Value: <x->fun y -> (fun z->x+y $+z$), $\rho_{\text {add_three }}>$

8/29/23
3

Partial application of functions

let add_three x y z = x + y + z; ;
\# let h = add_three 5 4;;
val h : int -> int = <fun>
\# h 3; ;

- : int = 12
\# h 7; ;
- : int = 16

[^0]Functions with more than one argument
\# let add_three x y $z=x+y+z ;$;
val add_three : int -> int -> int -> int = <fun> \# let t = add_three 63 2;;
val t: int = 11
\# let add_three $=$
fun x-> (fun y -> (fun z -> x + y + z)); ;
val add_three : int -> int -> int -> int = <fun>
Again, first syntactic sugar for second

8/29/23
2

Partial application of functions

let add_three x y $\mathrm{z}=\mathrm{x}+\mathrm{y}+\mathrm{z}$; ;
\# let h = add_three 5 4;;
val h : int -> int = <fun>
\# h 3;;

- : int = 12
\# h 7;
- : int = 16

8/29/23

Functions as arguments

\# let thrice $\mathrm{fx}=\mathrm{f}(\mathrm{f}(\mathrm{fx})$); ;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
\# let $\mathrm{g}=$ thrice plus_two;;
val g : int -> int = <fun>
\# g 4;;

- : int = 10
\# thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"

8/29/23

Tuples as Values

／／$\rho_{7}=\{c \rightarrow 4$ ，test $\rightarrow 3.7$ ， $\mathrm{a} \rightarrow 1, \mathrm{~b} \rightarrow 5\}$
\＃let s＝（5，＂hi＂，3．2）；；

val s ：int＊string＊float $=(5$, ＂hi＂，3．2）

Nested Tuples

\＃（＊Tuples can be nested＊）
let d＝（（1，4，62），（＂bye＂，15），73．95）；；
val d ：（int＊int＊int）＊（string＊int）$*$ float $=$
（（1，4，62），（＂bye＂，15），73．95）
\＃（＊Patterns can be nested＊）
let $\left(p,(s t,)_{\prime}\right)=d_{;} ;\left(^{*}\right.$＿matches all，binds nothing ＊）
val p ：int＊int＊int $=(1,4,62)$
val st ：string＝＂bye＂

8／29／23

Curried vs Uncurried

Recall
val add＿three ：int－＞int－＞int－＞int＝＜fun＞
－How does it differ from
\＃let add＿triple（ $u, v, w)=u+v+w ;$
val add＿triple ：int＊int $*$ int $->$ int $=<$ fun $>$
－add＿three is curried；
－add＿triple is uncurried

Curried vs Uncurried

\＃add＿triple（6，3，2）；；
－：int＝ 11
\＃add＿triple 5 4；；
Characters 0－10：
add＿triple 54；；
ヘヘヘヘヘヘヘヘヘヘ
This function is applied to too many arguments， maybe you forgot a｀；＇
\＃fun x－＞add＿triple（ $5,4, x$ ）；；
：int－＞int＝＜fun＞

Match Expressions

\# let triple_to_pair triple =
match triple
with $(0, x, y)->(x, y)$
$\mid(x, 0, y)->(x, y)$
| (x, y, \ldots) -> (x, y); ;
-Each clause: pattern on left, expression on right
-Each x, y has scope of only its clause

- Use first matching clause
val triple_to_pair : int * int * int -> int * int = <fun>

Closure for plus_pair

- Assume $\rho_{\text {plus_pair }}$ was the environment just before plus_pair defined
- Closure for fun (n, m) -> $\mathrm{n}+\mathrm{m}$:

$$
<(\mathrm{n}, \mathrm{~m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>
$$

- Environment just after plus_pair defined:

$$
\begin{gathered}
\left\{\text { plus_pair } \rightarrow<(\mathrm{n}, \mathrm{~m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>\right\} \\
+\rho_{\text {plus_pair }}
\end{gathered}
$$

Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration let $\mathrm{x}=\mathrm{e}$
- Evaluate expression e in ρ to value v
- Update ρ with $\mathrm{x} \mathrm{v}:\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$
- Update: $\rho_{1}+\rho_{2}$ has all the bindings in ρ_{1} and all those in ρ_{2} that are not rebound in ρ_{1}
$\left\{x \rightarrow 2, y \rightarrow 3, a \rightarrow{ }^{\prime \prime} \mathrm{hi}^{\prime \prime}\right\}+\{y \rightarrow 100, b \rightarrow 6\}$
$=\left\{x \rightarrow 2, y \rightarrow 3, a \rightarrow " h i "^{\prime}, b \rightarrow 6\right\}$

Save the Environment!

- A closure is a pair of an environment and an association of a pattern (e.g. (v1,...,vn) giving the input variables) with an expression (the function body), written:

$$
<(\mathrm{v} 1, \ldots, \mathrm{vn}) \rightarrow \exp , \rho>
$$

- Where ρ is the environment in effect when the function is defined (for a simple function)

Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration let $x=e$
- Evaluate expression e in ρ to value v
- Update ρ with $\mathrm{x} \rightarrow \mathrm{v}:\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$

Evaluating expressions in OCaml

- Evaluation uses an environment ρ
- A constant evaluates to itself, including primitive operators like + and $=$

Evaluating expressions in OCaml

- Evaluation uses an environment ρ
- A constant evaluates to itself, including primitive operators like + and $=$
- To evaluate a variable, look it up in $\rho: \rho(\mathrm{v})$

Evaluating expressions in OCaml

- Evaluation uses an environment ρ
- A constant evaluates to itself, including primitive operators like + and $=$
- To evaluate a variable, look it up in $\rho: \rho(\mathrm{v})$

Evaluating expressions in OCaml

- Evaluation uses an environment ρ
- A constant evaluates to itself, including primitive operators like + and =
- To evaluate a variable, look it up in $\rho: \rho(\mathrm{v})$
- To evaluate a tuple (e_{1}, \ldots, e_{n}),
- Evaluate each e_{i} to v_{i}, right to left for Ocaml
- Then make value $\left(v_{1}, \ldots, v_{n}\right)$

Evaluating expressions in OCaml

- To evaluate uses of +, _ , etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let $x=e 1$ in e2
- Eval e1 to v, then eval e2 using $\{x \rightarrow v\}+\rho$
- To evaluate a conditional expression:
if b then e1 else e2
- Evaluate b to a value v
- If v is True, evaluate e1
- If v is False, evaluate $e 2$

Evaluation of Application with Closures

- Given application expression fe
- In Ocaml, evaluate e to value v
- In environment ρ, evaluate left term to closure, $c=\left\langle\left(x_{1}, \ldots, x_{n}\right) \rightarrow b, \rho^{\prime}\right\rangle$
- ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$) variables in (first) argument
- v must have form ($\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$)
- Update the environment ρ^{\prime} to
$\rho^{\prime \prime}=\left\{x_{1} \rightarrow v_{1}, \ldots, x_{n} \rightarrow v_{n}\right\}+\rho^{\prime}$
- Evaluate body b in environment $\rho^{\prime \prime}$

Recursion Example

$\begin{aligned} & \text { Compute } n^{2} \text { recursively using: } \\ & n^{2}=(2 * n-1)+(n-1)^{2}\end{aligned}$
\# let rec nthsq $\mathrm{n}=\quad$ (* rec for recursion *)
match n (* pattern matching for cases *)
with $0->0$ (* base case ${ }^{*}$)
$\mid n->(2 * n-1) \quad$ (* recursive case *)

+ nthsq ($\mathrm{n}-1$); ; (* recursive call *)
val nthsq : int -> int = <fun>
\# nthsq 3;
: int = 9
Structure of recursion similar to inductive proof

Lists

- List can take one of two forms:
- Empty list, written []
- Non-empty list, written x :: xs
- x is head element, xs is tail list, :: called "cons"
- Syntactic sugar: $[\mathrm{x}]==\mathrm{x}$:: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Recursive Functions

\# let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else n * factorial ($\mathrm{n}-1$); ;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120
\# (* rec is needed for recursive function declarations *)

Recursion and Induction

\# let rec nthsq $\mathrm{n}=$ match n with $0->0$

$$
\mid n->(2 * n-1)+n t h s q(n-1) ;
$$

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are
somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

8/29/23

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
\# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
\# (8::5::3::2::1::1::[]) = fib5;;

- : bool = true
\# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

8/29/23

Lists are Homogeneous

\＃let bad＿list＝［1；3．2；7］；；
Characters 19－22：
let bad＿list＝［1；3．2；7］；；
ヘヘヘ
This expression has type float but is here used with type int

Answer

－Which one of these lists is invalid？

1．$[2 ; 3 ; 4 ; 6]$
2．$[2,3 ; 4,5 ; 6,7]$
3．$[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4．［［＂hi＂；＂there＂］；［＂wahcha＂］；［ ］；［＂doin＂］］
－ 3 is invalid because of last pair

Functions Over Lists

\＃let silly＝double＿up［＂hi＂；＂there＂］；；
val silly ：string list＝［＂hi＂；＂hi＂；＂there＂；＂there＂］
\＃let rec poor＿rev list＝
match list
with［］－＞［］

> | (x::xs) -> poor_rev xs @ [x];;
val poor＿rev ：＇a list－＞＇a list＝＜fun＞
\＃poor＿rev silly；；
－：string list＝［＂there＂；＂there＂；＂hi＂；＂hi＂］

Question

－Which one of these lists is invalid？

1．$[2 ; 3 ; 4 ; 6]$
2．$[2,3 ; 4,5 ; 6,7]$
3．$[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4．［［＂hi＂；＂there＂］；［＂wahcha＂］；［ ］；［＂doin＂］］

Functions Over Lists

\＃let rec double＿up list＝ match list
with［ ］－＞［ ］（＊pattern before－＞，
expression after ${ }^{*}$ ）
｜（x ：：xs）－＞（x ：：x ：：double＿up xs）；；
val double＿up ：＇a list－＞＇a list＝＜fun＞
\＃let fib5＿2＝double＿up fib5；；
val fib5＿2 ：int list＝［8；8；5；5；3；3；2；2；1； 1；1； 1 ］

Structural Recursion

－Functions on recursive datatypes（eg lists） tend to be recursive
－Recursion over recursive datatypes generally by structural recursion
－Recursive calls made to components of structure of the same recursive type
－Base cases of recursive types stop the recursion of the function

Question: Length of list

- Problem: write code for the length of the list
- How to start?
let rec length list =

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length list =
match list with

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is empty?
let rec length list =
match list with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is not empty? let rec length list =
match list with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when list is not empty?
let rec length list =
match list with [] -> 0
| (a :: bs) -> 1 + length bs

Same Length

- How can we efficiently answer if two lists have the same length?

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2 let rec doubleList list =

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 =
match list1 with [] ->
(match list2 with [] -> true
| ($\mathrm{y}:: \mathrm{ys}$) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)
8/29/23

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list =
match list
with [] ->[]
| x :: xs -> (2 * x) :: doubleList xs

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
let rec doubleList list = match list

Higher-Order Functions Over Lists

\# let rec map f list = match list
with [] \rightarrow []
। (h: :t) $->$ (f h) :: (map ft);
val map: ('a-> 'b) -> 'a list -> 'b list = <fun>
\# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
\# doubleList [2;3;4];;
- : int list = [4; 6; 8]
- Same function, but no explicit recursion

Higher-Order Functions Over Lists

\# let rec map flist $=$ match list
with [] -> []
| (h::t) -> (f h) :: (map ft); ;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun> \# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

8/29/23
101

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list = List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun> \# doubleList [2;3;4];;
- : int list = [4; 6; 8]

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;
- : int = 48
- Computes (2 * (4 * (6 * 1)))
\# let rec length list $=$ match list with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;
- : int = 4
- Nil case [] is base case, 0 is the base value
- Cons case recurses on component list bs
- What do multList and length have in common?

8/29/23

[^0]: Partial application also called sectioning

