
CS421 Sample Final
NO SOLUTION GIVEN

Someday, December ?? 20??, sometime

Name:

NetID:

• You have 180 minutes to complete this
exam.

• This is a closed-book exam. You are al-
lowed only this exam and writing materials.
All other materials (e.g., notes, note
cards, calculators and cell phones), are
prohibited.

• Do not share anything with other students.
Do not talk to other students. Do not look
at another students exam. Do not expose
your exam to easy viewing by other students.
Violation of any of these rules will count as
cheating.

• If you believe there is an error, or an am-
biguous question, you may seek clarification
from myself or one of the TAs. You must
use a whisper, or write your question out.
Speaking out aloud is not allowed.

• Including this cover sheet and rules at the
end, there are 27 pages to the exam, each
on a separate sheet. Please verify that you
have all 27 pages.

• There are 160 points on the base part of
this exam, so that one point on this exam
is worth the same as one point on either of
the midterms. There are 20 points of extra
credit.

• Please write your name and NetID in the
spaces above, and also in the provided space
at the top of every sheet.

Question Points Score

1 7

2 16

3 18

4 17

5 12

6 10

7 18

8 12

9 14

10 12

11 12

12 12

Total: 160

Question Extra Credit Score

13 0

14 10

Total: 10

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Problem 1. (7 points)
Write a function is sorted ascend : ’a list -> bool that checks if the input list
is sorted in ascending order. Note, [1;2;2;3;5] is sorted in ascending order. A list is sorted
in ascending order if each element in the list is less than or equal to every element that
comes after it in the list.

let rec is_sorted_ascend l = ...;;

val is_sorted_ascend : ’a list -> bool = <fun>

is_sorted_ascend [1;2;3];;

- : bool = true

Page 2

CS421 Sample Final - NO SOLUTION GIVEN Name:

Problem 2. (16 points)
Consider the following code:

let rec exists p list =

match list with [] -> false

| (x :: xs) -> if p x then true else exists p xs

(a) (2 points) Is the definition of exists forward recursive, tail recursive, both or
neither?

(b) (6 points) Write exists : (’a -> bool) -> ’a list -> bool using List.fold left

: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a, but with no other source of re-
cursion.

(c) (8 points) Write the function

existsk : (’a -> (bool -> ’b) -> ’b) -> ’a list -> (bool -> ’b) -> ’b

that is the complete Continuation Passing Style transformation of the original
code given for exists.

Page 3

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Problem 3. (18 points)

(a) (8 points) Write an bool exp data type in Ocaml that represents boolean expres-
sions. Specifically, the bool exp data type must be able to represent the following:

• a variable with its name given by a string

• the negation of a boolean expression

• the conjunction of two boolean expressions

• the disjunction of two boolean expressions

(b) (10 points) Write a function bool eval:(string -> bool) -> bool exp -> bool

that takes a function giving boolean values for each variable and returns the boolean
value of the boolean expression given using your datatype above.

Page 4

CS421 Sample Final - NO SOLUTION GIVEN Name:

Problem 4. (17 points)
You are asked to implement the case for conditionals (if then else) for the
function:

gather_exp_ty_substitution

: type_env -> exp -> monoTy -> (proof * substitution) option

from MP6. We will call this function gather to reduce the amount of writing needed.

You must add comments indicating how the code you give relates to the
specification given. The comments may be short, but they should be clear.

Background and utility procedures:
Details of the specification of the problem and types and utility functions you may use
follow. You are allowed to use List library functions. Alternately, you may wish to write
auxiliary functions. If you do so, it is acceptable to put their code after the code for
gather.

The code given for MP6 in the Mp6common module includes the following elided data
types to represent the terms and types of PicoML:

type exp =

| VarExp of string (* variables *)

| ConstExp of const (* constants *)

. . .

| IfExp of exp * exp * exp (* if exp1 then exp2 else exp3 *)

. . .

and

type typeVar = int

type monoTy = TyVar of typeVar | TyConst of (string * monoTy list)

type polyTy = typeVar list * monoTy (* the list is for quantified variables *)

When inferring types, you will need to generate fresh type-variable names. For this, you
may use the side-e↵ecting function fresh: unit -> monoTy that returns a fresh type
variable. You may also find it useful to use the term

let bool_ty = TyConst ("bool ",[])

We associate polymorphic types with term variables via a type environment. We represent
type environments with the type:

type ’a env = (string * ’a) list

type type_env = polyTy env

Page 5

CS421 Sample Final - NO SOLUTION GIVEN NetID:

One interacts with environments using the following functions:

val make_env : string -> ’a -> ’a env = <fun> (*create env with single pair*)

val lookup_env : ’a env -> string -> ’a option = <fun> (*look up x in env*)

val sum_env : ’a env -> ’a env -> ’a env = <fun> (*update snd env with first*)

val ins_env : ’a env -> string -> ’a -> ’a env = <fun> (*insert x|->y into env*)

The result returned by the function gather : type env -> exp -> monoTy -> (proof

* substitution) option contains two components, a proof and a substitution. The
type of proof is given by the following:

type proof = Proof of proof list * judgment

where

type judgment =

ExpJudgment of type_env * exp * monoTy

| DecJudgment of type_env * dec * type_env

Substitutions are represented as lists of pairs in much the same way as environments:

type substitution = (typeVar * monoTy) list

To apply a substitution to each of monomoprhic types, polymporphic types and environ-
ments, you are given the following functions:

val monoTy_lift_subst : substitution -> monoTy -> monoTy

val polyTy_lift_subst : substitution -> polyTy -> polyTy

val env_lift_subst : substitution -> env -> env

You also need to be able to create the substitution that represents the composition of
two substitutions. If s1 and s2 are two substitutions, then

val subst_compose : substitution -> substitution -> substitution

can be used to generate their composition.

subst compose s1 s2 = s1 � s2

Main problem statement:
Implement the rule for if then else:

� ` e1 : bool | �1 �1(�) ` e2 : �1(⌧) | �2 �2 � �1(�) ` e3 : �2 � �1(⌧) | �3

� ` if e1 then e2 else e3 : ⌧ | �3 � �2 � �1

To start the function, we have given the code for the constant case. Extend the following
code with the case for conditionals. You must add comments indicating how the
code you give relates to the specification given. The comments may be short,
but they should be clear.

Page 6

CS421 Sample Final - NO SOLUTION GIVEN Name:

open Mp6common

let rec gather gamma exp tau =

let judgment = ExpJudgment(gamma, exp, tau) in

match exp

with ConstExp c ->

let tau’ = const_signature c in

(match unify [(tau, freshInstance tau’)]

with None -> None

| Some sigma -> Some(Proof([],judgment), sigma))

| (* your code here ... *)

Page 7

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Problem 5. (12 points)
In MP7, you were asked to implement a unification algorithm with the function

unify : (monoTy * monoTy) list -> substitution option

In this problem you are asked to implement the Decompose rule for this algorithm.

You must add comments indicating how the code you give relates to the
specification given. The comments may be short, but they should be clear.

Background and utility procedures:
Details of the specification of the problem and types and utility functions you may use
follow. You are allowed to use List library functions. Alternately, you may wish to write
auxiliary functions. If you do so, it is acceptable to put their code after the code for unify.

The code given for MP7 in the Mp7common module includes the following data types to
represent the types of PicoML:

type typeVar = int

type monoTy = TyVar of typeVar | TyConst of (string * monoTy list)

The unification algorithm takes a set of pairs of types that need to be made equal. A
system of constraints looks like the following set

{(s1, t1), (s2, t2), ..., (sn, tn)}

Each pair is called an equation. A (lifted) substitution � solves an equation (s, t) if
�(s) = �(t). It solves a constraint set if �(si) = �(ti) for every (si, ti) in the constraint
set. The unification algorithm will return a substitution that solves the given constraint
set (if a solution exists).

You will remember from lecture that the unification algorithm consists of four trans-
formations. These transformations can be expressed in terms of how an action on an
element of the unification problem a↵ects the remaining elements.

Given a constraint set C

1. If C is empty, return the identity substitution.

2. If C is not empty, pick an equation (s, t) 2 C. Let C 0 be C \ {(s, t)}.
(a) Delete rule: If s and t are are equal, discard the pair, and unify C

0.

(b) Orient rule: If t is a variable, and s is not, then discard (s, t), and unify
{(t, s)} [C

0.

(c) Decompose rule: If s = TyConst(name, [s1; . . . ; sn]) and t = TyConst(name, [t1; . . . ; tn]),
then discard (s, t), and unify C

0 [
Sn

i=1{(si, ti)}.
(d) Eliminate rule: If s is a variable, and s does not occur in t, substitute s with

t in C

0 to get C 00. Let � be the substitution resulting from unifying C

00. Return
� updated with s 7! �(t).

Page 8

CS421 Sample Final - NO SOLUTION GIVEN Name:

(e) If none of the above cases apply, it is a unification error (your unify function
should return the None option in this case).

In our system, function, integer, list, etc. types are the terms; TyVars are the variables.

Main problem statement: Give the case in the unify: (monoTy * monoTy) list

-> (typeVar * monoTy) list option function that implements the Decompose rule.
You may use elisions (. . .) for the omitted cases. You are allowed to use List library
functions. Alternately, you may wish to write auxiliary functions. If you do so, it is
acceptable to put their code after the code for unify.

let rec unify eqlst =

match eqlst with [] -> Some([])

|

Page 9

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Problem 6. (10 points)
In MP10, you were asked to write a function eval exp : (exp * value env) ->

value for evaluating expressions in PicoML based on a family of Natural Semantics rules.
Extend eval exp (exp, m) to handle if constructs.

You must add comments indicating how the code you give relates to the
specification given. The comments may be short, but they should be clear.

Background and utility procedures:

You were given the following (here abbreviated) types and functions:

type exp =

| VarExp of string (* variables *)

| ConstExp of const

| IfExp of exp * exp * exp (* if exp1 then exp2 else exp3 *)

| . . .

type value =

UnitVal

| BoolVal of bool

| IntVal of int

| ...

type ’a env = (string * ’a) list

val empty_env : ’a env = []

val make_env : string -> ’a -> ’a env = <fun>

val lookup_env : ’a env -> string -> ’a option = <fun>

val sum_env : ’a env -> ’a env -> ’a env = <fun>

val ins_env : ’a env -> string -> ’a -> ’a env = <fun>

You must add comments indicating how the code you give relates to the
specification given. The comments may be short, but they should be clear.

Main problem statement:
Extend eval exp (exp, m) to handle if then else constructs.

(e1,m) + true (e2,m) + v

if e1 then e2 else e3 + v

(e1,m) + false (e3,m) + v

if e1 then e2 else e3 + v

A sample test case.

eval_exp (IfExp(ConstExp(BoolConst true),

ConstExp(IntConst 1),

ConstExp(IntConst 0)), []);;

- : Mp10common.value = IntVal 1

Page 10

CS421 Sample Final - NO SOLUTION GIVEN Name:

Extend eval exp (exp, m) to handle if constructs. You may assume all other
clauses for texttteval exp have been given already.

let rec eval_exp (exp, m) =

(* Your code for the if_then_else_ case here.

Use ... for the other cases *)

Page 11

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Problem 7. (18 points)
Give a polymorphic type derivation for the following type judgment:

{ } |- let f = fun x -> (x,x) in f(f 5) : (int * int) * (int * int)

Page 12

CS421 Sample Final - NO SOLUTION GIVEN Name:

Problem 8. (12 points)
Use the unification algorithm described in class and in MP7 to answer which of these
given equations holds for the stated reason, and when it doesn’t, to indicate why not.
Capital letters (A, B, C) denote variables of unification. The lower-case letters (f, n, p)
are constants or term constructors. (f and p have arity 2 - i.e., take 2 arguments, and
n has arity 0 - i.e. it is a constant.) In this problem, we use = as the separator for
constraints. For each problem you are asked to check if the equation is correct for the
stated reason(s), and if not, briefly why not. For a reason why not, you may underline
a portion and write in the given space what it should have been if this will yield an
approrpiate reason.

{f(A, C) = f(A, A); p(B, n) = p(A, B)}

(a) (2 points)

Unify{ f(A, C) = f(A, A); p(B, n) = p(A, B) }
= Unify{ (A, C) = (A, A); p(B, n) = p(A, B) }
by Decompose with f(A, C) = f(A, A)

Select one:

� The step is correct for the stated reason

� The right-hand side does not equal the left-hand side for the stated reason
because

(a)

(b) (2 points)

Unify{ A = A; C = A; p(B, n) = p(A, B) }
= Unify{ C = A; p(B, n) = p(A, B) }
by Delete with A = A

Select one:

� The step is correct for the stated reason

� The right-hand side does not equal the left-hand side for the stated reason
because

(b)

Page 13

CS421 Sample Final - NO SOLUTION GIVEN NetID:

(c) (2 points)
Unify{ C = A; p(B, n) = p(A, B) }

= Unify{ C = A; B = A; B = n }
by Decompose with p(B, n) = p(A, B)

Select one:

� The step is correct for the stated reason

� The right-hand side does not equal the left-hand side for the stated reason
because

(c)

(d) (2 points)

Unify{ C = A; B = A; B = n }
= Unify{ C = A; A = n } � {B 7! A}
by Eliminate with B = A

Select one:

� The step is correct for the stated reason

� The right-hand side does not equal the left-hand side for the stated reason
because

(d)

(e) (2 points)
Unify{ C = A; A = n } � {B 7! A}

= Unify{ C = n; } � {A 7! n;B 7! A}
by Eliminate with A = n

Select one:

� The step is correct for the stated reason

� The right-hand side does not equal the left-hand side for the stated reason
because

(e)

Page 14

CS421 Sample Final - NO SOLUTION GIVEN Name:

(f) (2 points)
Unify{ C = n; } � {A 7! n;B 7! A}

= Unify{ } � {A 7! n;B 7! A;C 7! n}
by Eliminate with C = n

Select one:

� The step is correct for the stated reason

� The right-hand side does not equal the left-hand side for the stated reason
because

(f)

Page 15

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Problem 9. (14 points)
Consider the following grammar over the alphabet {&, ++, x, y, z, (,)}:

< exp > ::= < var > | & < exp > | < exp > ++ | (< exp >)
< var > ::= x | y | z

(a) (2 points) Show that the above grammar is ambiguous by the definition of ambigu-
ous.

Page 16

CS421 Sample Final - NO SOLUTION GIVEN Name:

(b) (9 points) Write a new grammar accepting the same language that is unambigu-
ous, and such that the postfix < exp > ++ has higher precedence than the prefix
& < exp >.

(c) (3 points) Give the parse tree for &x++ using the grammar you gave in the previous
part of this problem.

Page 17

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Problem 10. (12 points)
Put a Y in each box where the relation labeling the column holds between the lambda
term on the left and the lambda term on the right, and an N if it fails to hold

Lambda Term 1 ↵-conv ↵-equiv ↵�-equiv Lambda Term 2

�x. �y. x y x �s. (�t. s t) s

�u. (�v. v (u v)) �g. (�v. v (g v))

�x. �y. x y x �y. �x. y x y

�y. (�z. (�x. x x)(�u. u) z) y �x. x

Problem 11. (12 points)
Reduce the following term as much as possible using eager evaluation. Label each step
of reduction with the rule justifying it. You do not need to label uses of congruence, or
break them out as separate steps, in this problem.

(�x.x(�y.xy))((�u.u)(�w.w))

Page 18

CS421 Sample Final - NO SOLUTION GIVEN Name:

Workspace

Page 19

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Problem 12. (12 points)
Below are a series of partial Floyd-Hoare Logic proofs of program partial correctness
assertions. For each one select whether all steps of the formal proof present are correct,
and if not, circle at least one error with the derivation. There may be more than one
error, but you only need to circle one. Program assertions {P}C{Q} will sometimes be

typeset as
{P}
C

{Q}
to facilitate fitting the derivations on the page.

(a) (4 points)

{ x + y > 0 and x < 5 }
x := (x * x) + 5

{ x + y > 0 and x < 5 }

{ x + y > 0 and (not x < 5) }
y := x + y

{ x + y > 0 and (not x < 5) }
If then else Rule

{ x + y > 0 }
if x < 5 then x := (x * x) + 5 else y := x + y

{ x + y > 0 }

Select one:

� The proof is correct, as much as is shown

� The proof is incorrect and I have circled an error

(b) (4 points)

{ x + y > 0 and x < 5 }
x := (x * x) + 5

{ x + y > 0 }

(x + y > 0 and x < 5)
=) (x + y > 0)

Postcondition Weakening
{ x + y > 0 and x < 5 }

x := (x * x) + 5

{ x + y > 0 and x < 5 }

Select one:

� The proof is correct, as much as is shown

� The proof is incorrect and I have circled an error

(c) (4 points)

Assignment Axiom
{ ((x * x) + 5) + y > 0 }x := (x * x) + 5{ x + y > 0 }

Select one:

� The proof is correct, as much as is shown

� The proof is incorrect and I have circled an error

Page 20

CS421 Sample Final - NO SOLUTION GIVEN Name:

Workspace

Page 21

CS421 Sample Final - NO SOLUTION GIVEN NetID:

Extra Credit

13. Consider the following basic imperative programming language, where the commands are
given by:

C ::= I:=E | skip | C ; C | if B then C else C fi | while B do C od C

where I ranges over program identifiers, E ranges over program arithmetic expressions,
and B ranges over boolean-valued expressions. This language is a subset of the one we
have used as an example for semantics in class and should be assumed to have the same
rules. You may assume that the evaluation of boolean and arithmetic expressions does
not alter the program memory.

Starting from this as our base, we wish to expand our language with a new construct in
the syntactic category C of commands:

for(I, N1, N2) do C od

Informally, the semantics of this construct checks that N2 (where N1 and N2 are integer
constants) is positive. If N2 is not positive, then the evaluation of this construct is
complete with no alteration of the program memory. If N2 is positive, then we assign
I the value N1, evaluate C and then repeat with for(I, M1, M2) do C od where
M1 = N1 + 1 and M2 = N2 � 1. I is a variable that is in scope both during and after the
execution of for(I, N1, N2) do C od.

Page 22

CS421 Sample Final - NO SOLUTION GIVEN Name:

(a) (5 points) Give a complete set of Natural (big step, Structural Operational) Seman-
tics rule(s) for
for(I, N1, N2) do C od.

(b) (5 points) Give a complete set of Transition (little step) Semantics rule(s) for
for(I, N1, N2) do C od

Page 23

CS421 Sample Final - NO SOLUTION GIVEN NetID:

14. (10 points (bonus)) Give a proof in Floyd-Hoare Logic of the following Hoare triple:

{k � 0}
p:= 0; s:= 0; t:= 1; while p < k do s:= s + t; t:= 2 * t; p:= p + 1 od

{s = 2k � 1}

Page 24

CS421 Sample Final - NO SOLUTION GIVEN Name:

Workspace

Page 25

CS421 Sample Final - NO SOLUTION GIVEN NetID:

A Polymoprhic Typing Rules

Polymorphic constant signatures:

sig(n) = int n an integer constant sig(�) = int ! int ! int for � 2 {+,�, ⇤,% . . .}
sig(true) = bool sig(false) = bool

sig(⇠) = 8↵.↵ ! ↵ ! bool for ⇠ 2 {<,>,=,,�}
sig([]) = 8↵.↵list sig((::)) = 8↵.↵ ! ↵ list ! ↵ list

sig((,)) = 8↵�.↵ ! � ! ↵*�

Constants:

� ` c : ⌧

0 Const

where c is a constant listed above, sig(c) = 8↵1 . . .↵n. ⌧ and
there exist �1, . . . , �n such that ⌧ 0 = ⌧ [�1/↵1; . . . ; �n/↵n]

Variables:

� ` x : ⌧ 0
Var

where 8↵1 . . .↵n. ⌧ = �(x) and
there exist �1, . . . , �n such that ⌧ 0 = ⌧ [�1/↵1; . . . ; �n/↵n]

Connectives:

� ` e1 : bool � ` e2 : bool

� ` e1 && e2 : bool
Conn

� ` e1 : bool � ` e2 : bool

� ` e1 || e2 : bool
Conn

If then else rule:

� ` ec : bool � ` et : ⌧ � ` ee : ⌧

� ` if ec then et else ee : ⌧
If

Application rule: Function rule:

� ` e1 : ⌧1 ! ⌧2 � ` e2 : ⌧1

� ` e1 e2 : ⌧2
App

[x : ⌧1] + � ` e : ⌧2

� ` fun x -> e : ⌧1 ! ⌧2

Fun

Let rule:

� ` e1 : ⌧1 [x : Gen(⌧1,�)] + � ` e2 : ⌧2

� ` let x = e1 in e2 : ⌧2
Let

Let Rec rule:

[x : ⌧1] + � ` e1 : ⌧1 [x : Gen(⌧1,�)] + � ` e2 : ⌧2

� ` let rec x = e1 in e2 : ⌧2
Rec

Page 26

CS421 Sample Final - NO SOLUTION GIVEN Name:

B Floyd-Hoare Logic

Simple Imperative Programming Language:

C ::= I:=E | C ; C | if B then C else C fi | while B od C od C

where I ranges over program identifiers, E ranges over program arithmetic expressions, and
B ranges boolean-valued expressions.

Rules:

Assignment Axiom: Sequencing Rule:

{P [e/x]}; x:=e{P}
{P}C1{Q} {Q}C2{R}

{P}C1 ; C2{R}

If then else Rule: While Rule:

{P and B}C1{Q} {P and (not B)}C2{Q}
{P}if B then C1 else C2 fi{Q}

{P and B}C{Q}
{P}while B do C od{P and (not B)}

Precondition Strengthening: Postcondition Weakening

P =) P

0 {P 0}C{Q}
{P}C{Q}

{P}C{Q0} Q

0 =) Q

{P}C{Q}

Page 27

