Some of these questions may be reused for the exam.
There are more questions here tan would be on the actual midterm. They represent the ideas that would be the basis of questions you be asked. The actual midterm will have 5 regular zones and one extra credit one. The balance will attempt to reflect the amount of time spent in lecture on a topic, broadly speaking, and the amount of time for the exam.

1. Write the clause for gather_exp_ty_substitution for a function expression implementing the rule:

$$
\Gamma|-(\mathbf{f u n} x->e): \tau| \underline{\text { unify }\left\{\left(\sigma(\tau), \sigma\left(\tau_{1}->\tau_{2}\right)\right)\right\}{ }_{\mathrm{o}} \sigma}
$$

Refer to MP6 for the details of the types. You should assume that all other clauses for gather_exp_ty_substitution have been provided.
2. Give a (most general) unifier for the following unification instance. Capital letters denote variables of unification. Show your work by listing the operation performed in each step of the unification and the result of that step.

$$
\{\mathrm{X}=\mathrm{f}(\mathrm{~g}(\mathrm{x}), \mathrm{W}) ; \mathrm{h}(\mathrm{y})=\mathrm{Y} ; \mathrm{f}(\mathrm{Z}, \mathrm{x})=\mathrm{f}(\mathrm{Y}, \mathrm{~W})\}
$$

3. Write a function
unify_eliminate : typeVar -> monoTy -> (monoTy * monoTy) list ->
((monoTy * monoty) list $->$ (typeVar * monoTy) list option) -> (typeVar * monoTy) list option
where is unify_eliminate given the arguments ns is a typeVar, \mathbf{t} is a monoTy, rem_constraints is a list of monoTy pairs describing a set of equational constraints on monoTys, and unify_rem is a function capable of returning a substitution capable of solving rem_constraints if a solution exists, but is not necessarily capable of solving any other set of constraints. When fully applied, unify_eliminate then returns a solution to the larger set of constraints: (TyVar ns, \mathbf{t}) ::
rem_constraints. You may assume occurs: typeVar -> monoty $->$ bool, and monoTy_lift_subst : (typeVar * monoty) list $->$ monoTy $->$ monoty.
4. For each of the following descriptions, give a regular expression over the alphabet $\{a, b, c\}$, and a regular grammar that generates the language described.
a. The set of all strings over $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where each string has at most one a

Solution: $(\mathbf{b} \vee \mathbf{c})^{*}(\mathbf{a} \vee \varepsilon)(b \vee c)^{*}$
$<S>::=b<S>|c<S>|a<N A>| \varepsilon$
$<N A>::=b<N A>|c<N A>| \varepsilon$
b. The set of all strings over $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where, in each string, every \mathbf{b} is immediately followed by at least one \mathbf{c}.
Solution: $(\mathbf{a} \vee \mathbf{c})^{*}\left(\mathbf{b c}(\mathbf{a} \vee \mathbf{c})^{*}\right)^{*}$

$$
<S>::=a<S>|c<S>|b<C>| \varepsilon
$$

```
<C> ::= c<S>
```

c. The set of all strings over $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$, where every string has length a multiple of four.

```
Solution: ((a\veeb 
    <S>::= a<TH> | b<TH> | c<TH> | &
    <TH> ::= a<TW> |b<TW> | c<TW>
    <TW> ::=a<O> |b<O> |c<O>
    <O> ::=a<S> |b<S> | c<S>
```

5. This problem is too big to be an exam question, but it can be cut down to a few different problems that would be possible. For example, just having strings is a plausible exam problem. I include the while problem because it poses several difficulties to challenge you, and because the end result is actually useful.

Write an ocamllex file that translate a (simplified) comma separated values (.csv) file into a reversed list of reversed lists of entries, where an entry is an integer, a float, or a string. Entries are represented using the following type:
type csv_entry = INT of int I FLOAT of float I STRING of string
The file will contain newline ended rows of comma separated values, where a value is representation of an integer, float or string. An integer is represented as a nonempty sequence of digits, possibly preceded by a minus sign, where the leading digit is a 0 only if the integer is a 0 and 0 is not preceded by a minus sign. Floats are similar, but with a decimal point. So a float may start with a minus sign but then must have a nonempty sequence of digits, starting with 0 only if the integer part is 0 , followed by a period, follow by a nonempty sequence of digits that does not end in a 0 . (So, 1., $1.0, .9$ and -.5 are some examples of things that are not legal.) There are two representations of strings. Strings only use printable characters, as described in MP8, but including \backslash as an ordinary character. One type of string representation is any (possibly empty) sequence of printable characters not including a double quotes or comma. Its value should be the string that contains that sequence of characters. If the same sequence also represents an integer of a float, it should be translated as the integer or float, not a string. The second type of string representation must begin with and end with a single double quotes. Inside commas may freely be used. Since double quotes end the string, they can't appear inside the string without special support. This time, a double quote inside a string is represents by a pair of double quotes. So """ " represents a string that has one character which is a double quotes. On an exam, you would be given some of the contents described here as starter code. A sample contents for a csv file is
"""",Does,"""""",this ,""", ?","""work"""
\n,4,-0.4,33,0.1,0.2
Be sure to put only ASCII characters into your test file, or use test_csv.csv.
6. Consider the following grammar:

```
<S> ::= <A> | <A> <S>
<A> ::= <Id> | (<B>
<B> ::= <Id> ] | <Id><B> | ( <B>
<Id> ::= 0| 1
```

For each of the following strings, give a parse tree for the following expression as an $<S>$, if one exists, or write "No parse" otherwise:
a. (01 (1) ((10$] 1$
b. 0 (10 (1)
c. (0 (101 1] 0]
7. You are given the following grammar over nonterminal <s>, and <e>, and terminals c, x, l, and eof, with start symbol <s>:

P0: <s> ::= <e>eof
P1: <e> ::=c<e><e>

P2: <e> ::= x
P3: ::= <e>l
and Action and Goto tables generated by YACC for the above grammar:
Action Goto

| State | x | c | l | [eof] | | <e> | <s> |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| st1 | S3 | S4 | Err | Err | | st2 | |
| st2 | Err | Err | Err | A | | | |
| st3 | R2 | R2 | R2 | R2 | | | |
| st4 | S3 | S4 | Err | Err | st6 | st5 | |
| st5 | Err | Err | S7 | Err | | | |
| st6 | S3 | Err | S8 | Err | st6 | st8 | |
| st7 | R3 | R3 | R3 | R3 | | | |
| st8 | S3 | S4 | Err | Err | | st9 | |
| st9 | R1 | R1 | R1 | R1 | | | |

where sti is state i, Si abbreviates shift i , Ri abbreviates reduce i, A abbreviates accept, RErr abbreviates error and [eof] means we have reached the end of input. Describe how the string cxlxx[eof] would be parsed with an LR parser using these productions and tables by filling in the table on the next page. I have given you the first 7 cells in the first three rows to get you started. Thereafter, there are more blank lines than you should need to fill in the rest.
8. Demonstrate that the following grammar is ambiguous (Capitals are non-terminals, lowercase are terminals):

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AaBlBaA} \\
& \mathrm{~A} \rightarrow \mathrm{blc}
\end{aligned}
$$

$$
\mathrm{B} \rightarrow \mathrm{alb}
$$

9. Write an unambiguous grammar generating the set of all strings over the alphabet $\{0,1,+,-\}$, where + and - are infixed operators which both associate to the left and such that + binds more tightly than -, but where - is also a unary operator that binds more tightly than either + or - used as binary operators.
