
9/20/22 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

http://courses.engr.illinois.edu/cs421

9/20/22 2

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

9/20/22 3

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

9/20/22 4

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

9/20/22 5

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

9/20/22 6

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) (* rule 3 *)

9/20/22 7

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

9/20/22 8

Example

Before:
let rec mem (y,lst) =
match lst with
[] -> false

| x :: xs ->
if (x = y)
then true
else mem(y,xs);;

After:
let rec memk (y,lst) k =

(* rule 1 *)
match lst with
| [] -> k false (* rule 2 *)
| x :: xs ->
eqk (x, y)
(fun b ->if b (* rule 4 *)

then k true (* rule 2 *)
else memk (y, xs) k (* rule 3 *)

Data type in Ocaml: lists

n Frequently used lists in recursive program
n Matched over two structural cases

n [] - the empty list
n (x :: xs) a non-empty list

n Covers all possible lists
n type ‘a list = [] | (::) of ‘a * ‘a list

n Not quite legitimate declaration because of
special syntax

9/20/22 16

9/20/22 17

Variants - Syntax (slightly simplified)

n type name = C1 [of ty1] | . . . | Cn [of tyn]
n Introduce a type called name
n (fun x -> Ci x) : ty1 -> name
n Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
n Constructors are the basis of almost all

pattern matching

9/20/22 18

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

9/20/22 19

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

type weekday =
Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

9/20/22 20

Functions over Enumerations

let day_after day = match day with
Monday -> Tuesday

| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>

9/20/22 21

Functions over Enumerations

let rec days_later n day =
match n with 0 -> day
| _ -> if n > 0

then day_after (days_later (n - 1) day)
else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday
= <fun>

9/20/22 22

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday |
Wednesday
| Thursday | Friday | Saturday | Sunday;;

n Write function is_weekend : weekday -> bool
let is_weekend day =

9/20/22 23

Problem:

type weekday = Monday | Tuesday |
Wednesday
| Thursday | Friday | Saturday | Sunday;;

n Write function is_weekend : weekday -> bool
let is_weekend day =

match day with Saturday -> true
| Sunday -> true
| _ -> false

9/20/22 24

9/20/22 25

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp
| SndOp

9/20/22 26

Disjoint Union Types

n Disjoint union of types, with some possibly
occurring more than once

n We can also add in some new singleton
elements

ty1 ty2 ty1

9/20/22 27

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check_id id = match id with
DriversLicense num ->
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>

Problem

n Create a type to represent the currencies for
US, UK, Europe and Japan

9/20/22 28

Problem

n Create a type to represent the currencies for
US, UK, Europe and Japan

type currency =
Dollar of int

| Pound of int
| Euro of int
| Yen of int

9/20/22 29

9/20/22 30

Example Disjoint Union Type

type const =
BoolConst of bool

| IntConst of int
| FloatConst of float
| StringConst of string
| NilConst
| UnitConst

9/20/22 31

Example Disjoint Union Type

type const = BoolConst of bool
| IntConst of int | FloatConst of float
| StringConst of string | NilConst
| UnitConst

nHow to represent 7 as a const?
nAnswer: IntConst 7

9/20/22 32

Polymorphism in Variants

n The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

n Used to encode partial functions
n Often can replace the raising of an exception

9/20/22 33

Functions producing option

let rec first p list =
match list with [] -> None
| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

9/20/22 34

Functions over option

let result_ok r =
match r with None -> false
| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;
- : bool = false

Problem

n Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

9/20/22 35

Problem

n Write a hd and tl on lists that doesn’t raise
an exception and works at all types of lists.

n let hd list =
match list with [] -> None
| (x::xs) -> Some x

n let tl list =
match list with [] -> None
| (x::xs) -> Some xs

9/20/22 36

9/20/22 37

Mapping over Variants

let optionMap f opt =
match opt with None -> None
| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap
(fun x -> x - 2)
(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

9/20/22 38

Folding over Variants

let optionFold someFun noneVal opt =
match opt with None -> noneVal
| Some x -> someFun x;;

val optionFold : ('a -> 'b) -> 'b -> 'a option ->
'b = <fun>

let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

9/20/22 39

Recursive Types

n The type being defined may be a component
of itself

ty ty’ ty

9/20/22 40

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

9/20/22 41

Recursive Data Type Values

let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

9/20/22 42

Recursive Data Type Values

bin_tree = Node

Node Leaf (-7)

Leaf 3 Leaf 6

9/20/22 43

Recursive Data Types

type exp =
VarExp of string

| ConstExp of const
| MonOpAppExp of mon_op * exp
| BinOpAppExp of bin_op * exp * exp
| IfExp of exp* exp * exp
| AppExp of exp * exp
| FunExp of string * exp

9/20/22 44

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent 6 as an exp?

9/20/22 45

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent 6 as an exp?
nAnswer: ConstExp (IntConst 6)

9/20/22 46

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent (6, 3) as an exp?

9/20/22 47

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

nHow to represent (6, 3) as an exp?
nBinOpAppExp (CommaOp, ConstExp (IntConst 6),

ConstExp (IntConst 3))

9/20/22 48

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp
| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int |
…
type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …
nHow to represent [(6, 3)] as an exp?
nBinOpAppExp (ConsOp, BinOpAppExp (CommaOp,
ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst))));;

9/20/22 49

Recursive Functions

let rec first_leaf_value tree =
match tree with (Leaf n) -> n
| Node (left_tree, right_tree) ->
first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int =
<fun>

let left = first_leaf_value bin_tree;;
val left : int = 3

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

9/20/22 50

Problem

type int_Bin_Tree =Leaf of int
| Node of (int_Bin_Tree * int_Bin_Tree);;
n Write sum_tree : int_Bin_Tree -> int
n Adds all ints in tree
let rec sum_tree t =

match t with Leaf n -> n
| Node(t1,t2) -> sum_tree t1 + sum_tree t2

9/20/22 51

9/20/22 52

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?

9/20/22 53

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x ->
| ConstExp c ->
| BinOpAppExp (b, e1, e2) ->
| FunExp (x,e) ->
| AppExp (e1, e2) ->

9/20/22 54

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const
| BinOpAppExp of bin_op * exp * exp
| FunExp of string * exp | AppExp of exp * exp

n How to count the number of variables in an exp?
let rec varCnt exp =

match exp with VarExp x -> 1
| ConstExp c -> 0
| BinOpAppExp (b, e1, e2) -> varCnt e1 + varCnt e2
| FunExp (x,e) -> 1 + varCnt e
| AppExp (e1, e2) -> varCnt e1 + varCnt e2

Your turn now

Try Problem 3 on MP5

9/20/22 55

9/20/22 56

Mapping over Recursive Types

let rec ibtreeMap f tree =
match tree with (Leaf n) -> Leaf (f n)
| Node (left_tree, right_tree) ->
Node (ibtreeMap f left_tree,

ibtreeMap f right_tree);;
val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

9/20/22 57

Mapping over Recursive Types

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf
8), Leaf (-5))

9/20/22 58

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =
match tree with Leaf n -> leafFun n
| Node (left_tree, right_tree) ->
nodeFun
(ibtreeFoldRight leafFun nodeFun left_tree)
(ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) ->
int_Bin_Tree -> 'a = <fun>

9/20/22 59

Folding over Recursive Types

let tree_sum =
ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>
tree_sum bin_tree;;
- : int = 2

9/20/22 60

Mutually Recursive Types

type 'a tree = TreeLeaf of 'a
| TreeNode of 'a treeList

and 'a treeList = Last of 'a tree
| More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a
treeList

and 'a treeList = Last of 'a tree | More of ('a
tree * 'a treeList)

9/20/22 61

Mutually Recursive Types - Values

let tree =
TreeNode
(More (TreeLeaf 5,

(More (TreeNode
(More (TreeLeaf 3,

Last (TreeLeaf 2))),
Last (TreeLeaf 7)))));;

9/20/22 62

Mutually Recursive Types - Values

val tree : int tree =
TreeNode
(More

(TreeLeaf 5,
More
(TreeNode (More (TreeLeaf 3, Last

(TreeLeaf 2))), Last (TreeLeaf 7))))

9/20/22 63

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

5 More Last 7

TreeLeaf TreeLeaf

3 2

9/20/22 64

Mutually Recursive Types - Values

A more conventional picture

5 7

3 2

9/20/22 65

Mutually Recursive Functions

let rec fringe tree =
match tree with (TreeLeaf x) -> [x]

| (TreeNode list) -> list_fringe list
and list_fringe tree_list =

match tree_list with (Last tree) -> fringe tree
| (More (tree,list)) ->
(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>
val list_fringe : 'a treeList -> 'a list = <fun>

9/20/22 66

Mutually Recursive Functions

fringe tree;;
- : int list = [5; 3; 2; 7]

9/20/22 67

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

9/20/22 68

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ ->
| TreeNode ts ->

9/20/22 69

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

9/20/22 70

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =

9/20/22 71

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t ->
| More t ts’ ->

9/20/22 72

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treeList_size ts’

9/20/22 73

Problem
type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList
and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size
let rec tree_size t =

match t with TreeLeaf _ -> 1
| TreeNode ts -> treeList_size ts

and treeList_size ts =
match ts with Last t -> tree_size t
| More t ts’ -> tree_size t + treeList_size ts’

9/20/22 74

Nested Recursive Types

type 'a labeled_tree =
TreeNode of ('a * 'a labeled_tree
list);;

type 'a labeled_tree = TreeNode of ('a
* 'a labeled_tree list)

9/20/22 75

Nested Recursive Type Values

let ltree =
TreeNode(5,

[TreeNode (3, []);
TreeNode (2, [TreeNode (1, []);

TreeNode (7, [])]);
TreeNode (5, [])]);;

9/20/22 76

Nested Recursive Type Values

val ltree : int labeled_tree =
TreeNode
(5,
[TreeNode (3, []); TreeNode (2,

[TreeNode (1, []); TreeNode (7, [])]);
TreeNode (5, [])])

9/20/22 77

Nested Recursive Type Values

Ltree = TreeNode(5)

:: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

[] :: :: [] []

TreeNode(1) TreeNode(7)

[] []

9/20/22 78

Nested Recursive Type Values

5

3 2 5

1 7

9/20/22 79

Mutually Recursive Functions

let rec flatten_tree labtree =
match labtree with TreeNode (x,treelist)

-> x::flatten_tree_list treelist
and flatten_tree_list treelist =
match treelist with [] -> []
| labtree::labtrees

-> flatten_tree labtree
@ flatten_tree_list labtrees;;

9/20/22 80

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list =
<fun>

val flatten_tree_list : 'a labeled_tree list -> 'a
list = <fun>

flatten_tree ltree;;
- : int list = [5; 3; 2; 1; 7; 5]
n Nested recursive types lead to mutually

recursive functions

9/20/22 81

Infinite Recursive Values

let rec ones = 1::ones;;
val ones : int list =
[1; 1; 1; 1; ...]

match ones with x::_ -> x;;
Characters 0-25:
Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
match ones with x::_ -> x;;
^^^^^^^^^^^^^^^^^^^^^^^^^

- : int = 1

9/20/22 82

Infinite Recursive Values

let rec lab_tree = TreeNode(2, tree_list)
and tree_list = [lab_tree; lab_tree];;

val lab_tree : int labeled_tree =
TreeNode (2, [TreeNode(...); TreeNode(...)])

val tree_list : int labeled_tree list =
[TreeNode (2, [TreeNode(...);
TreeNode(...)]);
TreeNode (2, [TreeNode(...);
TreeNode(...)])]

9/20/22 83

Infinite Recursive Values

match lab_tree
with TreeNode (x, _) -> x;;

- : int = 2

9/20/22 84

Records

n Records serve the same programming
purpose as tuples

n Provide better documentation, more
readable code

n Allow components to be accessed by label
instead of position
n Labels (aka field names must be unique)
n Fields accessed by suffix dot notation

9/20/22 85

Record Types

n Record types must be declared before they
can be used in OCaml

type person = {name : string; ss : (int * int
* int); age : int};;

type person = { name : string; ss : int * int *
int; age : int; }

n person is the type being introduced
n name, ss and age are the labels, or fields

9/20/22 86

Record Values

n Records built with labels; order does not
matter

let teacher = {name = "Elsa L. Gunter";
age = 102; ss = (119,73,6244)};;

val teacher : person =
{name = "Elsa L. Gunter"; ss = (119, 73,
6244); age = 102}

9/20/22 87

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"
val age : int = 102
val s3 : int = 6244

9/20/22 88

Record Field Access

let soc_sec = teacher.ss;;
val soc_sec : int * int * int = (119,

73, 6244)

9/20/22 89

Record Values

let student = {ss=(325,40,1276);
name="Joseph Martins"; age=22};;

val student : person =
{name = "Joseph Martins"; ss = (325, 40,
1276); age = 22}

student = teacher;;
- : bool = false

9/20/22 90

New Records from Old

let birthday person = {person with age =
person.age + 1};;

val birthday : person -> person = <fun>
birthday teacher;;
- : person = {name = "Elsa L. Gunter"; ss =

(119, 73, 6244); age = 103}

9/20/22 91

New Records from Old

let new_id name soc_sec person =
{person with name = name; ss = soc_sec};;

val new_id : string -> int * int * int -> person
-> person = <fun>

new_id "Guieseppe Martin" (523,04,6712)
student;;

- : person = {name = "Guieseppe Martin"; ss
= (523, 4, 6712); age = 22}

