

Terminology

- Available: A function call that can be executed by the current expression
- The fastest way to be unavailable is to be guarded by an abstraction (anonymous function, lambda lifted).
- if $(h x)$ then $f x$ else $(x+g x)$
- if (hx) then (fun $x->\mathrm{f} x$) else $(g(x+x)$)

Not available

An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal)?

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function

Terminology

- Tail Position: A subexpression s of expressions e, which is available and such that if evaluated, will be taken as the value of e
- if $(x>3)$ then $x+2$ else $x-4$
- let $x=5$ in $x+4$
- Tail Call: A function call that occurs in tail position
- if $(h x)$ then $f x$ else $(x \pm g x)$

9/13/22

An Important Optimization

- When a function call is made, Tail the return address needs to be call
 saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal)?
- Then h can return directly to f instead of g

Tail Recursion - length

- How can we write length with tail recursion?
let length list =
let rec length_aux list acc_length = match list
with [] -> acc_length
| (x::xs) ->
length_aux xs (1 + acc_length)
in length_aux list 0

9/13/22

Your turn: list_max - tail recursive
\#let list_max list =
let rec max_aux list curr_max =
match list with [] -> curr_max
| (x :: xs) ->
max_aux xs
(if $x>$ curr_max then x else curr_max)
in (match list
with [] -> (* ??? *) -1
| x :: xs -> max_aux xs x)

9/13/22
9

Your turn: length, fold_left
let length list =

Your turn: list_max - tail recursive
\#let list_max list =
let rec max_aux list max_so_far = match list with [] ->max_so_far
| (x :: xs) ->
max_aux xs
(if x > max_so_far then x else max_so_far)
in
max_aux list (-17)

Iterating over lists

\# let rec fold_left f a list = match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left (fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit $=()$

9/13/22
10

Your turn: length, fold_left
let length list =
fold_left (fun acc -> fun $x->1+$ acc) list 0

Your turn: list_max - tail recursive

\#let list_max list =

let rec max_aux list curr_max = match list with [] -> curr_max
| (x :: xs) ->
max_aux xs
(if $x>$ curr_max then x else curr_max)
in (match list
with [] -> (* ??? *) -1
| x :: xs -> max_aux xs x)

9/13/22

Folding

\# let rec fold_left f a list $=$ match list with [] -> a | (x :: xs) -> fold_left f (f a x) xs;; val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left f a $\left[\mathrm{x}_{1} ; \mathrm{x}_{2} ; \ldots ; \mathrm{x}_{\mathrm{n}}\right]=\mathrm{f}\left(\ldots\left(\mathrm{f}\left(\mathrm{f}\right.\right.\right.$ a $\left.\left.\left.\mathrm{x}_{1}\right) \mathrm{x}_{2}\right) . ..\right) \mathrm{x}_{\mathrm{n}}$
\# let rec fold_right f list $\mathrm{b}=$ match list with [] -> b | (x:: xs) -> fx (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $f\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

list_max, fold_left

let list_max list =
match list with [] -> (* ??? *) -1

```
| (x :: xs) ->
        fold_left
            (fun curr_max -> fun x ->
            if x > curr_max then x else curr_max)
        X
        XS
```


Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

Continuations

- Idea: Use functions to represent the control flow of a program
- Method: Each procedure takes a function as an extra argument to which to pass its result; outer procedure "returns" no result
- Function receiving the result called a continuation
- Continuation acts as "accumulator" for work still to be done

Continuation Passing Style

- Writing procedures such that all procedure calls take a continuation to which to give (pass) the result, and return no result, is called continuation passing style (CPS)

Why CPS?

- Makes order of evaluation explicitly clear
- Allocates variables (to become registers) for each step of computation
- Essentially converts functional programs into imperative ones
- Major step for compiling to assembly or byte code
- Tail recursion easily identified
- Strict forward recursion converted to tail recursion
- At the expense of building large closures in heap

Example

Simple reporting continuation:
\# let report x = (print_int x; print_newline()); ;
val report : int -> unit = <fun>

```
- Simple function using a continuation:
\# let addk (a, b) k = k (a + b);;
val addk : int * int -> (int -> 'a) -> 'a = <fun>
\# addk \((22,20)\) report;;
2
- : unit = ()
```


Continuation Passing Style

- A compilation technique to implement nonlocal control flow, especially useful in interpreters.
- A formalization of non-local control flow in denotational semantics
- Possible intermediate state in compiling functional code

Other Uses for Continuations

- CPS designed to preserve order of evaluation
- Continuations used to express order of evaluation
- Can be used to change order of evaluation
- Implements:
- Exceptions and exception handling
- Co-routines
- (pseudo, aka green) threads

Simple Functions Taking Continuations

- Given a primitive operation, can convert it to pass its result forward to a continuation
- Examples:
\# let subk (x, y) $\mathrm{k}=\mathrm{k}(\mathrm{x}-\mathrm{y})$; ;
val subk : int * int -> (int -> 'a) -> 'a = <fun>
\# let eqk (x, y) $k=k(x=y) ;$
val eqk : 'a * 'a -> (bool -> 'b) -> 'b = <fun>
\# let timesk (x, y) $k=k(x * y) ;$;
val timesk : int * int -> (int -> 'a) -> 'a = <fun>

9/13/22

Nesting Continuations

\# let add_triple $(x, y, z)=(x+y)+z ;$;
val add_triple : int * int * int -> int = <fun>
\# let add_triple $(x, y, z)=$ let $p=x+y$ in $p+z ;$;
val add_triple : int * int * int -> int $=<$ fun >
\# let add_triple_k $(x, y, z) k=$ $\operatorname{addk}(\mathrm{x}, \mathrm{y})$ (fun $\mathrm{p}->\operatorname{addk}(\mathrm{p}, \mathrm{z}) \mathbb{K}) ;$;
val add_triple_k: int * int * int -> (int -> 'a) -> 'a = <fun>

add_three: a different order

- \# let add_triple $(x, y, z)=x+(y+z) ;$;
- How do we write add_triple_k to use a different order?
- let add_triple_k (x, y, z) k= $\operatorname{addk}(y, z)$ (fun $r->\operatorname{addk}(x, r) k)$

Terms

- A function is in Direct Style when it returns its result back to the caller.
- A function is in Continuation Passing Style when it, and every function call in it, passes its result to another function.
- Instead of returning the result to the caller, we pass it forward to another function giving the computation after the call.

add_three: a different order

- \# let add_triple $(x, y, z)=x+(y+z) ;$;
- How do we write add_triple_k to use a different order?
- let add_triple_k (x, y, z) k =

Recursive Functions

- Recall:

\# let rec factorial $\mathrm{n}=$
if $\mathrm{n}=0$ then 1 else n * factorial ($\mathrm{n}-1$); ;
val factorial : int -> int = <fun>
\# factorial 5;;

- : int = 120

9/13/22

Recursive Functions

\# let rec factorial $\mathrm{n}=$ let $b=(n=0)$ in (* First computation *) if b then 1 (* Returned value *) else let $\mathrm{s}=\mathrm{n}-1$ in (* Second computation *)
let $r=$ factorial s in (* Third computation $*$) n * r (* Returned value *) ;;
val factorial : int $->$ int $=$ <fun>
\# factorial 5;;

- : int = 120

Recursive Functions

```
# let rec factorialk n k =
    eqk (n, 0)
    (fun b -> (* First computation *)
    if b then k 1 (* Passed value *)
    else subk (n,1) (* Second computation *)
    (fun s -> factorialk s (* Third computation *)
        (fun r -> timesk (n, r) k))) (* Passed value *)
val factorialk : int -> (int -> 'a) -> 'a = <fun>
# factorialk 5 report;;
120
- : unit = ()
```


Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs
What is the let-expanded version of this?

Example: CPS for length
\#let rec length list = match list with [] -> 0
| (a :: bs) -> let r1 = length bs in $1+r 1$ What is the CSP version of this?

Recursive Functions

- To make recursive call, must build intermediate continuation to - take recursive value: r - build it to final result: n * r
- And pass it to final continuation:
- times (n, r) $\mathrm{k}=\mathrm{k}(\mathrm{n} * \mathrm{r})$

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs
What is the let-expanded version of this?
let rec length list $=$ match list with [] $->0$
| (a :: bs) -> let r1 = length bs in $1+r 1$

9/13/22

Example: CPS for length
\#let rec length list $=$ match list with [] $->0$
\mid ($\mathrm{a}:: \mathrm{bs}$) $->$ let $\mathrm{r} 1=$ length bs in $1+r 1$
What is the CSP version of this?
\#let rec lengthk list $\mathrm{k}=$ match list with [] -> k 0
| $\mathrm{x}::$ xs -> lengthk xs (fun r-> addk ($\mathrm{r}, 1$) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
\# lengthk [2;4;6;8] report;;
4

- : unit = ()

CPS for sum

\# let rec sum list $=$ match list with [] -> 0
| x :: xs -> x + sum xs ;
val sum : int list $->$ int $=<$ fun $>$

CPS for sum

\# let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;
val sum : int list $->$ int $=<$ fun $>$
\# let rec sum list $=$ match list with [] -> 0
| x : : xs -> let r1 = sum xs in $x+r 1 ;$;
val sum : int list -> int = <fun>
\# let rec sumk list $k=$ match list with [] -> k 0
| x :: xs -> sumk xs (fun r1 -> addk x r1 k); ;

CPS for Higher Order Functions

- In CPS, every procedure / function takes a continuation to receive its result
- Procedures passed as arguments take continuations
- Procedures returned as results take continuations
- CPS version of higher-order functions must expect input procedures to take continuations

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true
| ($x:: x$) $->$ let $b=p x$ in
if b then all $(p, x s)$ else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | (x :: xs) -> let b = p x in
if b then all ($p, x s$) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, l) k=

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true
| ($\mathrm{x}:: \mathrm{xs}$) -> let $\mathrm{b}=\mathrm{px}$ in
if b then all $(p, x s)$ else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) k = match I with [] -> k true

Example: all
\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | (x :: xs) -> let b=px in if b then all $(p, x s)$ else false val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, l) $\mathrm{k}=$ match I with [] -> k true | (x :: xs) -> pk x

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | (x :: xs) -> let b = p x in
if b then all ($p, x s$) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) k = match I with [] -> true

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true
| ($\mathrm{x}:: \mathrm{xs}$) -> let $\mathrm{b}=\mathrm{px}$ in
if b then all ($p, x s$) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) k = match I with [] -> k true | (x :: xs) ->

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | ($\mathrm{x}:: \mathrm{xs}$) -> let $\mathrm{b}=\mathrm{px}$ in
if b then all ($p, x s$) else false val all : ('a -> bool) -> 'a list -> bool = <fun> - What is the CPS version of this?
\#let rec allk (pk, I) k = match I with [] -> k true | (x :: xs) -> pk x

$$
\text { (fun } b->\text { if } b \text { then else }
$$)

Example: all

\#let rec all $(\mathrm{p}, \mathrm{I})=$ match I with [] -> true | ($x:: x s$) -> let $b=p x$ in if b then all $(p, x s)$ else false val all : ('a -> bool) -> 'a list -> bool = <fun>

- What is the CPS version of this?
\#let rec allk (pk, I) k = match I with [] -> k true | (x :: xs) -> pk x
(fun $b->$ if b then allk (pk, xs) k else k false) val allk: ('a -> (bool -> 'b) -> 'b) * 'a list -> (bool -> 'b) -> 'b = <fun>

CPS Transformation

- Step 1: Add continuation argument to any function definition:
- let $\mathrm{f} \arg =\mathrm{e} \Rightarrow$ let f arg $\mathrm{k}=\mathrm{e}$
- Idea: Every function takes an extra parameter saying where the result goes
- Step 2: A simple expression in tail position should be passed to a continuation instead of returned:
- return a \Rightarrow k a
- Assuming a is a constant or variable.
. "Simple" = "No available function calls."

CPS Transformation

- Step 4: Each function call not in tail position needs to be converted to take a new continuation (containing the old continuation as appropriate)
- return op (f arg) $\Rightarrow \mathrm{f}$ arg (fun r->k(op r))
- op represents a primitive operation
- return $g(f$ arg $) \Rightarrow f$ arg (fun r-> g r k)

Other Uses for Continuations

- CPS designed to preserve order of evaluation
- Continuations used to express order of evaluation
- Can be used to change order of evaluation
- Implements:
- Exceptions and exception handling
- Co-routines
- (pseudo, aka green) threads

Exceptions - Example

\# let list_mult list =
try list_mult_aux list with Zero -> 0;;
val list_mult : int list -> int $=<$ fun $>$
\# list_mult [3;4;2];;

- : int = 24
\# list_mult [7;4;0];;
- : int = 0
\# list_mult_aux [7;4;0];;
Exception: Zero.

Implementing Exceptions

\# let multkp (m, n) k=
let $r=m * n$ in
(print_string "product result: ";
print_int r; print_string "\n";
kr);;
val multkp : int (int -> (int -> 'a) -> 'a = <fun>

Exceptions - Example

\# exception Zero;;

exception Zero
\# let rec list_mult_aux list = match list with [] -> 1
| x :: xs ->
if $x=0$ then raise Zero else x * list_mult_aux xs;;
val list_mult_aux : int list -> int = <fun>

9/13/22

Exceptions

- When an exception is raised
- The current computation is aborted
- Control is "thrown" back up the call stack until a matching handler is found
- All the intermediate calls waiting for a return values are thrown away

Implementing Exceptions

\# let rec list_multk_aux list k kexcp = match list with [] -> k 1
| x :: xs -> if $x=0$ then kexcp 0 else list_multk_aux xs
(fun r -> multkp (x, r) k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a) -> 'a = <fun>
\# let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>
\# list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24

- : unit = ()
\# list_multk [7;4;0] report;;
0
- : unit = ()

