Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Recursive Functions

- # let rec factorial n =
 if n = 0 then 1 else n * factorial (n 1);;
 val factorial : int -> int = <fun>
 # factorial 5;;
 : int = 120
- # (* rec is needed for recursive function
 declarations *)

Recursion Example

Compute n ² recursively using:
$n^2 = (2 * n - 1) + (n - 1)^2$
<pre># let rec nthsq n = (* rec for recursion *)</pre>
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
n -> (2 * n -1) (* recursive case *)
+ nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun></fun>
nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

Recursion and Induction

let rec nthsq n = match n with $0 \rightarrow 0$ | n -> (2 * n - 1) + nthsq (n - 1) ;;

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

Evaluation uses an environment p

- Eval (e , ρ)
- A constant evaluates to itself, including primitive operators like + and =

Eval (c , ρ) => Val c

To evaluate a variable v, look it up in ρ:
 Eval (v, ρ) => Val (ρ(v))

- To evaluate a tuple (e₁,...,e_n),
 - Evaluate each e_i to v_i, right to left for Ocaml
 - Then make value (v₁,...,v_n)
 - Eval((e₁,...,e_n),ρ)=> Eval((e₁,...,Eval (e_n, ρ)), ρ)
 - Eval((e₁,...,e_i, Val v_{i+1},..., Val v_n), ρ) => Eval((e₁,...,Eval(e_i, ρ), Val v_{i+1},..., Val v_n), ρ)
 - Eval((Val $v_1,...,Val v_n$), ρ) => Val $(v_1,...,v_n$)

- To evaluate uses of +, -, etc, eval args, then do operation (+, -, *, +., ...)
 - Eval($e_1 \odot e_2, \rho$) => Eval($e_1 \odot Eval(e_2, \rho), \rho$))
 - Eval(e_1 Val e_2 , ρ)=>Eval(Eval(e_1 , ρ) Val v_2 , ρ))
 - Eval(Val v_1) Val v_2) => Val $(v_1$) v_2)

Function expression evaluates to its closure
 Eval (fun x -> e, ρ) => Val < x -> e, ρ>

To evaluate a local dec: let x = e1 in e2
 Eval e1 to v, then eval e2 using {x → v} + ρ

- Eval(let $x = e_1$ in e_2 , ρ) => Eval(let $x = Eval(e_1, \rho)$ in e_2 , ρ)
- Eval(let $x = Val v in e_2, \rho$) => Eval($e_2, \{x \rightarrow v\} + \rho$)

- To evaluate a conditional expression: if b then e₁ else e₂
 - Evaluate b to a value v
 - If v is True, evaluate e₁
 - If v is False, evaluate e₂
 - Eval(if b then e₁ else e₂, ρ) => Eval(if Eval(b, ρ) then e₁ else e₂, ρ)
 - Eval(if Val true then e_1 else e_2 , ρ) =>Eval(e_1 , ρ)
 - Eval(if Val false then e_1 else e_2 , ρ) =>Eval(e_2 , ρ)

Evaluation of Application with Closures

- Given application expression f e
 - In Ocaml, evaluate e to value v
- In environment ρ , evaluate left term to closure, c = <(x₁,...,x_n) → b, ρ' >
 - (x₁,...,x_n) variables in (first) argument
 - v must have form (v₁,...,v_n)
- Update the environment ρ' to
 - $\rho'' = \{\mathbf{x}_1 \rightarrow \mathbf{v}_1, \dots, \mathbf{x}_n \rightarrow \mathbf{v}_n\} + \rho'$
- Evaluate body **b** in environment ρ''

Evaluation of Application with Closures

- Eval(f e, ρ) => Eval(f (Eval(e, ρ)), ρ)
- Eval(f (Val v), ρ) =>Eval((Eval(f, ρ)) (Val v), ρ)

■ Eval((Val <(x₁,...,x_n) → b, ρ' >)(Val (v₁,...,v_n)), ρ)=> Eval(b, {x₁ → v₁,..., x_n → v_n}+ ρ')

Have environment:

 $\rho = \{ plus_x \rightarrow \langle y \rightarrow y + x, \rho_{plus_x} \rangle, \dots, \\ y \rightarrow 19, x \rightarrow 17, z \rightarrow 3, \dots \}$ where $\rho_{plus_x} = \{x \rightarrow 12, \dots, y \rightarrow 24, \dots\}$ = Eval (plus_x z, ρ) => = Eval(plus_x (Eval(z, ρ))) => ...

Have environment:

 $\rho = \{ plus_x \rightarrow \langle y \rightarrow y + x, \rho_{plus_x} \rangle, \dots, \\ y \rightarrow 19, x \rightarrow 17, z \rightarrow 3, \dots \}$ where $\rho_{plus_x} = \{x \rightarrow 12, \dots, y \rightarrow 24, \dots\}$ = Eval (plus_x z, ρ) => = Eval(plus_x (Eval(z, ρ)), ρ) => = Eval(plus_x (Val 3), ρ) => ...

Have environment:

- $\rho = \{ plus_x \rightarrow \langle y \rightarrow y + x, \rho_{plus_x} \rangle, \dots, \\ y \rightarrow 19, x \rightarrow 17, z \rightarrow 3, \dots \}$
- where $\rho_{\text{plus}_x} = \{x \to 12, ..., y \to 24, ...\}$
- Eval (plus_x z, ρ) =>
- Eval (plus_x (Eval(z, ρ)), ρ) =>
- Eval (plus_x (Val 3), ρ) =>
- Eval ((Eval(plus_x, ρ)) (Val 3), ρ) => ...

Have environment:

- $\rho = \{ plus_x \rightarrow \langle y \rightarrow y + x, \rho_{plus_x} \rangle, \dots, \\ y \rightarrow 19, x \rightarrow 17, z \rightarrow 3, \dots \}$ where $\rho_{\text{plus}} = \{x \rightarrow 12, \dots, y \rightarrow 24, \dots\}$
- Eval (plus_ $x \dot{z}$, ρ) \neq >
- Eval (plus_x (ξval(z, ρ)), ρ) =>
- Eval (plus_x (Val 3), ρ) =>
- Eval ((Eval(plus $(x, \rho))$) (Val 3), ρ) => Eval ((Val < y → y + x, ρ_{plus_x} >)(Val 3), ρ) => ...

Have environment:

 $\rho = \{ plus_x \to \langle y \to y + x, \rho_{plus_x} \rangle, ..., \\ y \to 19, x \to 17, z \to 3, ... \}$ where $\rho_{plus_x} = \{ x \to 12, ..., y \to 24, ... \}$ = Eval ((Val<y \to y + x, $\rho_{plus_x} >$)(Val 3), ρ) = > ...

Have environment:

 $\rho = \{ plus_x \to \langle y \to y + x, \rho_{plus_x} \rangle, ..., \\ y \to 19, x \to 17, z \to 3, ... \}$ where $\rho_{plus_x} = \{x \to 12, ..., y \to 24, ...\}$ = Eval ((Val<y $\to y + x, \rho_{plus_x} \rangle$)(Val 3), \emptyset) => Eval (y + x, {y $\to 3$ } + ρ_{plus_x}) => ...

Have environment:

- $\begin{array}{l} \rho = \{ plus_x \to < y \to y + x, \, \rho_{plus_x} >, \, ... \,, \\ y \to 19, \, x \to 17, \, z \to 3, \, ... \} \\ \text{where } \rho_{plus_x} = \{ x \to 12, \, ... \,, \, y \to 24, \, ... \} \\ \bullet \text{ Eval } ((\text{Val} < y \to y + x, \, \rho_{plus_x} >)(\text{Val } 3 \,), \, \rho) \\ = > \end{array}$
- Eval (y + x, {y → 3} + ρ_{plus_x}) => ■ Eval(y+Eval(x, {y → 3} + $\rho_{plus_x}), {y → 3} + \rho_{plus_x}),$

Have environment:

- $$\label{eq:plus_x} \begin{split} \rho &= \{ plus_x \rightarrow < y \rightarrow y + x, \, \rho_{plus_x} >, \, \dots, \\ y \rightarrow 19, \, x \rightarrow 17, \, z \rightarrow 3, \, \dots \} \\ \text{where } \rho_{plus_x} &= \{ x \rightarrow 12, \, \dots, \, y \rightarrow 24, \, \dots \} \\ &= \text{Eval } ((\text{Val}{<}y \rightarrow y + x, \, \rho_{plus_x} >)(\text{Val } 3 \,), \, \rho) \\ &= > \end{split}$$
- Eval (y + x, {y → 3} + ρ_{plus_x}) => ■ Eval(y+Eval(x, {y → 3} + $\rho_{plus_x}), {y → 3} + \rho_{plus_x}),$
- Eval(y+Val 12, $\{\dot{y} \rightarrow 3\} + \rho_{\text{plus}x}$) => ...

Have environment:

 $\rho = \{ plus_x \rightarrow < y \rightarrow y + x, \rho_{plus_x} >, \dots,$ $y \rightarrow 19, x \rightarrow 17, z \rightarrow 3, ...\}$ where $\rho_{\text{plus } x} = \{x \rightarrow 12, \dots, y \rightarrow 24, \dots\}$ • Eval(y+Eval(x, $\{y \rightarrow 3\} + \rho_{\text{plus }x}$), $\{y \rightarrow 3\} + \rho_{\text{plus }x}) =>$ • Eval(y+Val 12,{y \rightarrow 3} + $\rho_{\text{plus x}}$) => • Eval(Eval(y, $\{y \rightarrow 3\} + \rho_{\text{plus } x}) +$ Val 12,{ $y \rightarrow 3$ } + $\rho_{\text{plus } x}$) =>...

Have environment:

 $\begin{array}{l} \rho = \{ plus_x \to < y \to y + x, \, \rho_{plus_x} >, \, \dots, \\ y \to 19, \, x \to 17, \, z \to 3, \, \dots \} \\ \text{where } \rho_{plus_x} = \{ x \to 12, \, \dots, \, y \to 24, \, \dots \} \\ \text{= Eval(Eval(y, \{y \to 3\} + \rho_{plus_x}) + \\ Val \ 12, \{y \to 3\} + \rho_{plus_x}) = > \\ \text{= Eval(Val 3 + Val \ 12, \{y \to 3\} + \rho_{plus_x}) = > \dots \end{array}$

Have environment:

 $\rho = \{ plus_x \rightarrow \langle y \rightarrow y + x, \rho_{plus_x} \rangle, \dots, \}$ $y \rightarrow 19, x \rightarrow 17, z \rightarrow 3, ...$ where $\rho_{\text{plus } x} = \{x \rightarrow 12, \dots, y \rightarrow 24, \dots\}$ • Eval(Eval(y, $\{y \rightarrow 3\} + \rho_{\text{plus } x}) +$ Val 12,{ $y \rightarrow 3$ } + $\rho_{plus x}$ => • Eval(Val 3 + Val 12 ,{ $y \rightarrow 3$ } + $\rho_{\text{plus x}}$) => ■ Val (3 + 12) = Val 15

- Assume environment
- $\rho = \{ x \rightarrow 3...,$

plus_pair $\rightarrow <(n,m) \rightarrow n + m, \rho_{plus_pair} > \} + \rho_{plus_pair}$ • Eval (plus_pair (4,x), ρ)=>

- Eval (plus_pair (Eval ((4, x), ρ)), ρ) =>
- Eval (plus_pair (Eval ((4, Eval (x , ρ)), ρ)), ρ) =>
- Eval (plus_pair (Eval ((4, Val 3), ρ)), ρ) =>
- Eval (plus_pair (Eval ((Eval (4, ρ), Val 3), ρ)), ρ) =>
- Eval (plus_pair (Eval ((Val 4, Val 3), ρ)), ρ) =>

9/12/22

- Assume environment
- $\rho = \{ \mathsf{x} \to \mathsf{3}...,$
- plus_pair →<(n,m) →n+m, $\rho_{\text{plus}_{\text{pair}}}$ + $\rho_{\text{plus}_{\text{pair}}}$ = Eval (plus_pair (Eval ((Val 4, Val 3), ρ)), ρ) =>
- Eval (plus_pair (Val (4, 3)), ρ) =>
- Eval (Eval (plus_pair, ρ), Val (4, 3)), ρ) => ...
- Eval ((Val<(n,m) \rightarrow n+m, $\rho_{plus_{pair}}$ >)(Val(4,3)), ρ)=>
- Eval (n + m, {n -> 4, m -> 3} + ρ_{plus_pair}) =>
- Eval (4 + 3, {n -> 4, m -> 3} + ρ_{plus_pair}) => 7

List can take one of two forms:

- Empty list, written []
- Non-empty list, written x :: xs
 - x is head element, xs is tail list, :: called "cons"
- Syntactic sugar: [x] == x :: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

let fib5 = [8;5;3;2;1;1];;val fib5 : int list = [8; 5; 3; 2; 1; 1]# let fib6 = 13 :: fib5;; val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]# (8::5::3::2::1::1::[]) = fib5;;-: bool = true # fib5 @ fib6;; - : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;1]

Lists are Homogeneous

This expression has type float but is here used with type int

- Which one of these lists is invalid?
- **1**. [2; 3; 4; 6]
- 2. [2,3; 4,5; 6,7]
- **3**. [(2.3,4); (3.2,5); (6,7.2)]
- 4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

- Which one of these lists is invalid?
- **1**. [2; 3; 4; 6]
- 2. [2,3; 4,5; 6,7]
- **3**. [(2.3,4); (3.2,5); (6,7.2)]
- 4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]
- 3 is invalid because of last pair

Functions Over Lists

let rec double up list = match list with $[] \rightarrow []$ (* pattern before ->, expression after *) (x :: xs) -> (x :: x :: double_up xs);; val double_up : 'a list -> 'a list = <fun> # let fib5 2 =double up fib5;; val fib5 2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;1; 1; 1]

Functions Over Lists

- # let silly = double_up ["hi"; "there"];; val silly : string list = ["hi"; "hi"; "there"; "there"] # let rec poor rev list = match list with [] -> [] | (x::xs) -> poor_rev xs @ [x];; val poor_rev : 'a list -> 'a list = <fun> # poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
 - Recursive calls made to components of structure of the same recursive type
 - Base cases of recursive types stop the recursion of the function

Problem: write code for the length of the list

- How to start?
- let rec length list =

Problem: write code for the length of the list

- How to start?
- let rec length list =

match list with

Problem: write code for the length of the list
 What patterns should we match against?
 let rec length list =

 match list with

Question: Length of list

Problem: write code for the length of the list
 What result do we give when list is empty?
 let rec length list =

 match list with [] -> 0
 (a :: bs) ->

Question: Length of list

Problem: write code for the length of the list
 What result do we give when list is not empty?
 let rec length list =

 match list with [] -> 0
 (a :: bs) ->

Question: Length of list

Problem: write code for the length of the list
 What result do we give when list is not empty?
 let rec length list =

 match list with [] -> 0
 (a :: bs) -> 1 + length bs

let rec length list = match list
with [] -> 0 (* Nil case *)
| a :: bs -> 1 + length bs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;

- -: int = 4
- Nil case [] is base case

Cons case recurses on component list bs

Same Length

How can we efficiently answer if two lists have the same length?

Same Length

How can we efficiently answer if two lists have the same length? let rec same length list1 list2 = match list1 with [] -> (match list2 with [] -> true $|(y::ys) \rightarrow false)$ (x::xs) -> (match list2 with [] -> false (y::ys) -> same_length xs ys)

Your turn: doubleList : int list -> int list

Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2

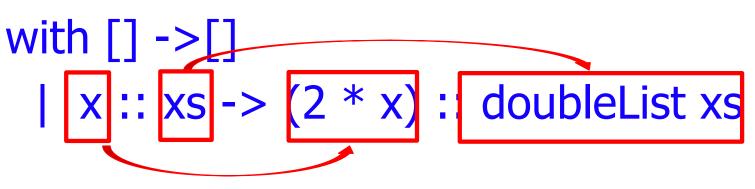
let rec doubleList list =

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2

Your turn: doubleList : int list -> int list

- Write a function that takes a list of int and returns a list of the same length, where each element has been multiplied by 2
- let rec doubleList list =
 - match list



Higher-Order Functions Over Lists

let rec map f list = match list with [] -> [] |(h::t) -> (f h) :: (map f t);;val map : ('a -> 'b) -> 'a list -> 'b list = $\langle fun \rangle$ # map plus two fib5;; - : int list = [10; 7; 5; 4; 3; 3]# map (fun x -> x - 1) fib6;; : int list = [12; 7; 4; 2; 1; 0; 0]

Higher-Order Functions Over Lists

let rec map f list = match list with | (h::t) -> (f h) :: (map f t);; val map : ('a \rightarrow 'b) \rightarrow 'a list \rightarrow 'b list = <fun> # map plus_two fib5;; - : int list = [10; 7; 5; 4; 3; 3]# map (fun x -> x - 1) fib6;; : int list = [12; 7; 4; 2; 1; 0; 0]

Mapping Recursion

Can use the higher-order recursive map function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;

-: int list = [4; 6; 8]

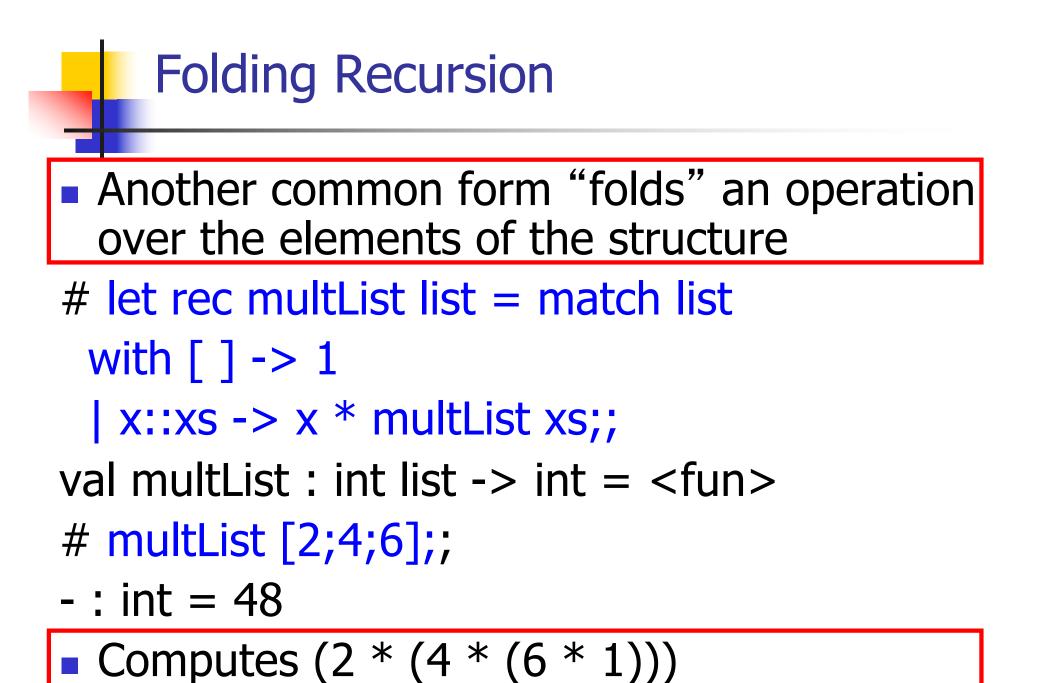
Mapping Recursion

Can use the higher-order recursive map function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;

-: int list = [4; 6; 8]

Same function, but no explicit recursion



Folding Recursion : Length Example

let rec length list = match list with [] -> 0 (* Nil case *) | a :: bs -> 1 + length bs;; (* Cons case *) val length : 'a list -> int = <fun> # length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case, 0 is the base value
- Cons case recurses on component list bs
- What do multList and length have in common?

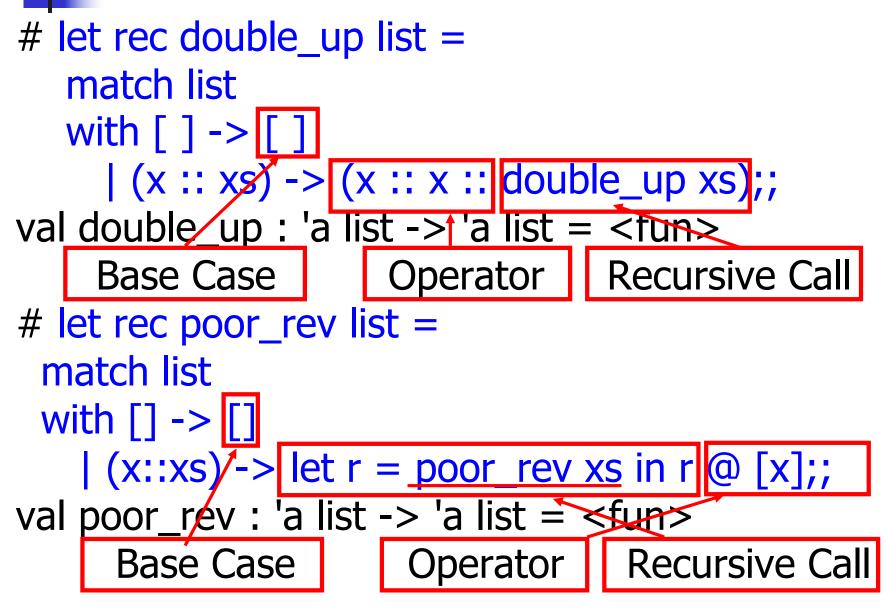
Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Forward Recursion: Examples

- # let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);;
 val double_up : 'a list -> 'a list = <fun>
- # let rec poor_rev list =
 match list
 with [] -> []
 [(x::xs) -> let r = poor_rev xs in r @ [x];;
 val poor_rev : 'a list -> 'a list = <fun>

Forward Recursion: Examples



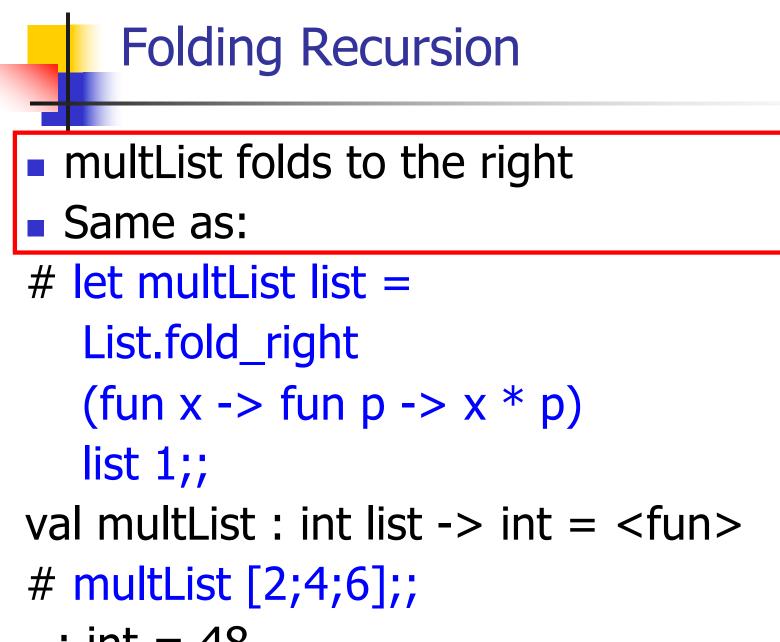
Recursing over lists

```
# let rec fold_right f list b =
 match list
 with [] -> b
                                               The Primitive
 (x :: xs) -> f x (fold_right f xs b);; Recursion Fairy
val fold right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
  <fun>
# fold_right
   (fun s \rightarrow fun () \rightarrow print_string s)
   ["hi"; "there"]
   ();;
therehi- : unit = ()w
```

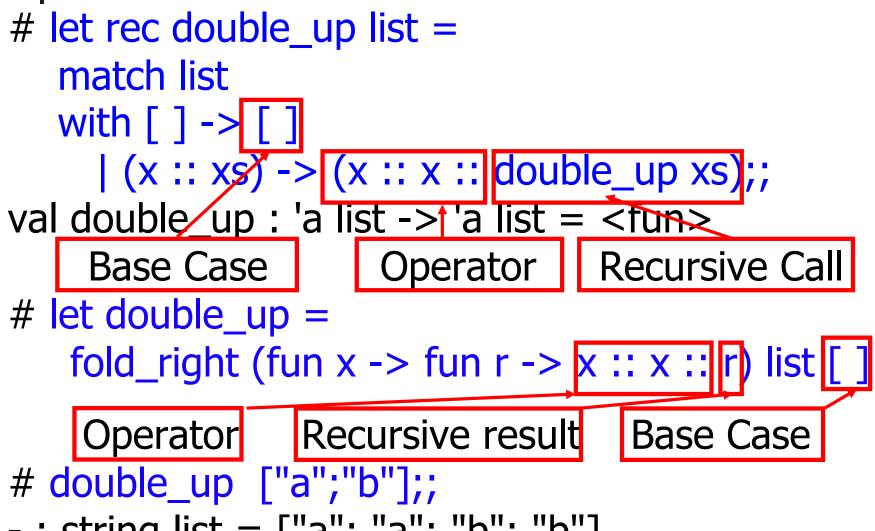
Folding Recursion : Length Example

let rec length list = match list with [] -> 0 (* Nil case *) $|a::bs \rightarrow 1 + length bs;; (* Cons case *)$ val length : 'a list -> int = <fun> # let length list = fold_right (fun a -> fun r -> 1 + r) list 0;; val length : 'a list -> int = <fun> # length [5; 4; 3; 2];;

-: int = 4



Forward Recursion: Examples



let rec append list1 list2 =

val append : 'a list -> 'a list -> 'a list = <fun>

let rec append list1 list2 = match list1 with

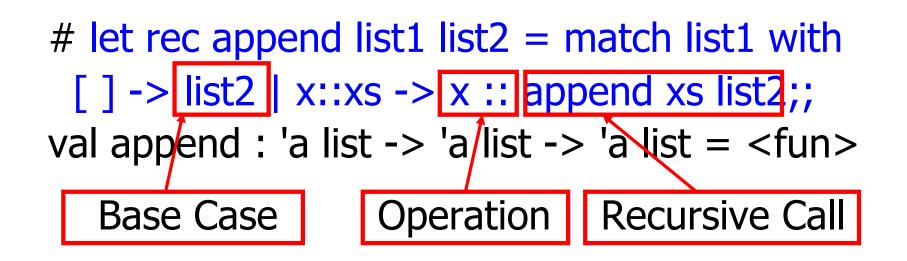
val append : 'a list -> 'a list -> 'a list = <fun>

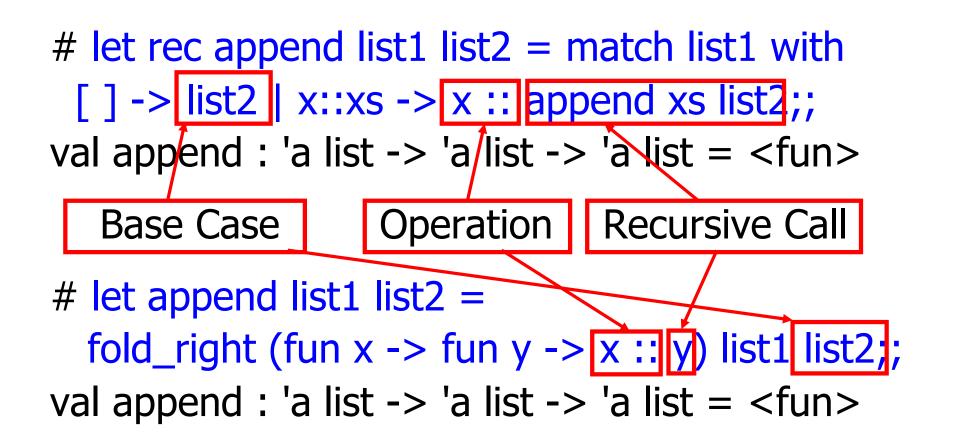
let rec append list1 list2 = match list1 with
 [] -> list2
val append : 'a list -> 'a list -> 'a list = <fun>

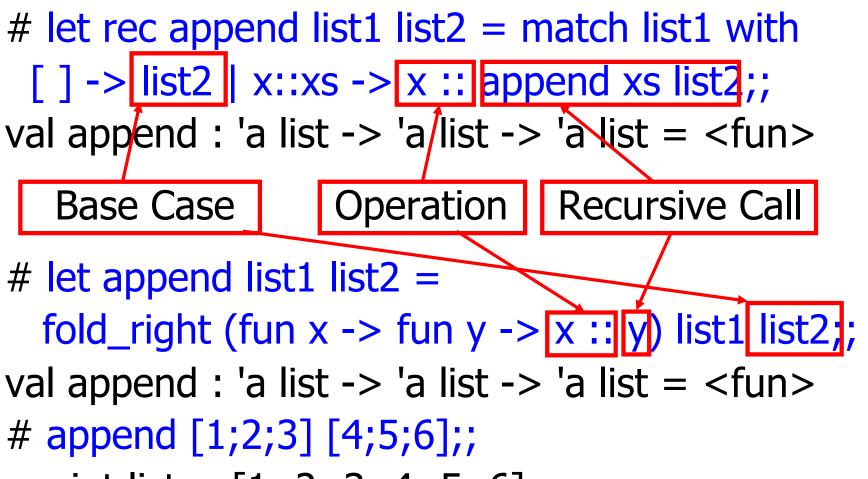
let rec append list1 list2 = match list1 with
[] -> list2
val append : 'a list -> 'a list -> 'a list = <fun>
Base Case

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs ->
val append : 'a list -> 'a list -> 'a list = <fun>
Base Case

let rec append list1 list2 = match list1 with
[]-> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
Base Case







- : int list = [1; 2; 3; 4; 5; 6]

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
 - May require an auxiliary function

Tail Recursion - length

How can we write length with tail recursion? let length list = let rec length_aux list acc_length = match list with [] -> acc_length | (x::xs) -> $length_aux xs (1 + acc_length)$ in length aux list 0

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

What is its running time?

9/12/22

- 3 :: (2:: ([] @ [1])) = [3; 2; 1]
- **3** :: ([2] @ [1]) =
- [3;2] @ [1] =
- (3:: ([]@[2]))@[1] =
- ([3] @ [2]) @ [1] =
- (([]@[3])@[2])@[1]) =
- $= (((poor_rev [0]) @ [2]) @ [1] = (((poor_rev [1]) @ [3]) @ [2]) @ [1] = ((poor_rev [1]) @ [1]) @ [1] = ((poor_rev [1]) @ [1]) @ [1]) @ [1] = ((poor_rev [1]) @ [1]) @ [1]) @ [1] = ((poor_rev [1]) @ [1]) @ [1]) @ [1]) @ [1] = ((poor_rev [1]) @ [1]) @ [1]) @ [1]) @ [1] = ((poor_rev [1]) @ [1]) @ [1]) @ [1]) @ [1]) @ [1]) @ [1]) @ [1] = ((poor_rev [1]) @ [1]$
- (poor_rev [2;3]) @ [1] =
 ((poor_rev [3]) @ [2]) @ [1] =
- poor_rev [1;2;3] =

Comparison

Comparison

- rev_aux [2;3] [1] =
- rev_aux [3] [2;1] =
- rev_aux [] [3;2;1] = [3;2;1]

Iterating over lists

```
# let rec fold left f a list =
 match list
 with [] -> a
 |(x :: xs) \rightarrow fold_left f (f a x) xs;;
val fold left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
  <fun>
# fold left
  (fun () -> print string)
  ["hi"; "there"];;
hithere- : unit = ()
```

Folding - Tail Recursion

let rev list =

fold_left
(fun I -> fun x -> x :: I) //comb op
//accumulator cell
list

fold_left f a [x_1 ; x_2 ;...; x_n] = f(...(f (f a x_1) x_2)...) x_n

fold_right f [x_1 ; x_2 ;...; x_n] b = f x_1 (f x_2 (...(f x_n b)...))

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

How long will it take?

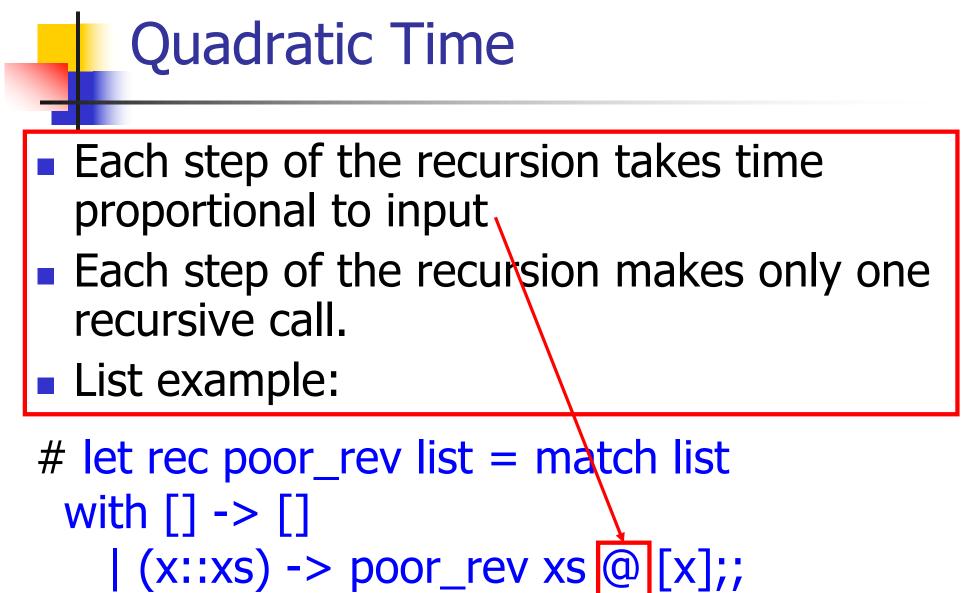
- Remember the big-O notation from CS 225 and CS 374
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power

How long will it take?

Common big-O times: • Constant time O(1)input size doesn't matter Linear time O(n) • double input \Rightarrow double time • Quadratic time $O(n^2)$ • double input \Rightarrow quadruple time • Exponential time $O(2^n)$ • increment input \Rightarrow double time

Linear Time

- Expect most list operations to take linear time O(n)
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial



val poor_rev : 'a list -> 'a list = <fun>

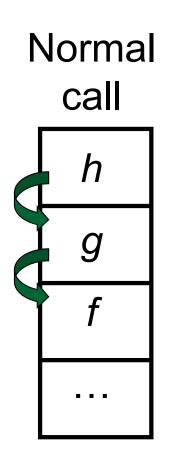
Exponential running time

- Poor worst-case running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

Exponential running time

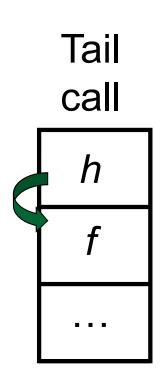
let rec slow n =if n < = 1then 1 else 1+slow (n-1) + slow(n-2);; val slow : int -> int = <fun> # List.map slow [1;2;3;4;5;6;7;8;9];; -: int list = [1; 3; 5; 9; 15; 25; 41; 67; 109]

An Important Optimization



- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?

An Important Optimization



- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g