
9/12/22 1

Programming Languages and 
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated 
by Vikram Adve and Gul Agha

9/12/22 2

Recursive Functions

# let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;

val factorial : int -> int = <fun>
# factorial 5;;
- : int = 120
# (* rec  is needed for recursive function 

declarations *)

9/12/22 3

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

# let rec nthsq n =         (* rec for recursion *)
match n              (* pattern matching for cases *)
with 0 -> 0                  (* base case *)
| n -> (2 * n -1)           (* recursive case *)

+ nthsq (n -1);;   (* recursive call *)
val nthsq : int -> int = <fun>
# nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

9/12/22 4

Recursion and Induction

# let rec nthsq n = match n with 0 -> 0
| n -> (2 * n - 1) + nthsq (n - 1) ;;

n Base case is the last case; it stops the computation
n Recursive call must be to arguments that are 

somehow smaller - must progress to base case
n if or match must contain base case
n Failure of these may cause failure of termination

Evaluating expressions in OCaml

n Evaluation uses an environment r
n Eval (e , r)

n A constant evaluates to itself, including 
primitive operators like + and =
n Eval (c , r) => Val c

n To evaluate a variable v, look it up in r: 
n Eval (v, r) => Val (r(v))

9/12/22 5

Evaluating expressions in OCaml

n To evaluate a tuple (e1,…,en), 
n Evaluate each ei to vi, right to left for Ocaml
n Then make value (v1,…,vn) 
n Eval((e1,…,en),r)=> Eval((e1,…,Eval (en, r)), r)
n Eval((e1,…,ei, Val vi+1,…, Val vn) , r) =>

Eval((e1,…,Eval(ei, r), Val vi+1,…, Val vn) , r)
n Eval((Val v1,…,Val vn) , r) => Val (v1,…,vn) 

9/12/22 6



Evaluating expressions in OCaml

n To evaluate uses of +, - , etc, eval args, then 
do operation ⦿ (+, -, *, +., ….) 
n Eval(e1⦿e2, r) => Eval(e1⦿Eval(e2, r), r))
n Eval(e1⦿Val e2, r)=>Eval(Eval(e1, r)⦿Val v2, r))
n Eval(Val v1⦿ Val v2) => Val (v1⦿ v2)

n Function expression evaluates to its closure
n Eval (fun x -> e, r) => Val < x -> e, r> 

9/12/22 7

Evaluating expressions in OCaml

n To evaluate a local dec: let x = e1 in e2
n Eval e1 to v, then eval e2 using {x ® v} + r

n Eval(let x = e1 in e2, r) =>                         
Eval(let x = Eval(e1, r) in e2, r)

n Eval(let x = Val v in e2, r) =>                       
Eval(e2, {x ® v} + r) 

9/12/22 8

Evaluating expressions in OCaml

n To evaluate a conditional expression:
if b then e1 else e2
n Evaluate b to a value v
n If v is True, evaluate e1
n If v is False, evaluate e2

n Eval(if b then e1 else e2, r) =>
Eval(if Eval(b, r) then e1 else e2, r) 

n Eval(if Val true then e1 else e2, r) =>Eval(e1, r)
n Eval(if Val false then e1 else e2, r) =>Eval(e2, r)

9/12/22 9 9/12/22 10

Evaluation of Application with Closures

n Given application expression f e
n In Ocaml, evaluate e to value v
n In environment r, evaluate left term to closure,                 

c = <(x1,…,xn) ® b, r’>
n (x1,…,xn) variables in (first) argument 
n v must have form (v1,…,vn) 

n Update the environment r’ to
r’’ = {x1 ® v1,…, xn ®vn}+ r’

n Evaluate body b in environment r’’

9/12/22 11

Evaluation of Application with Closures

n Eval(f e, r) => Eval(f (Eval(e, r)), r)

n Eval(f (Val v), r) =>Eval((Eval(f, r)) (Val v), r)

n Eval((Val <(x1,…,xn) ® b, r’>)(Val (v1,…,vn)), r)=> 
Eval(b, {x1 ® v1,…, xn ® vn}+r’ )

9/12/22 12

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval (plus_x z, r) =>
n Eval(plus_x (Eval(z, r))) => …



9/12/22 13

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval (plus_x z, r) =>
n Eval(plus_x (Eval(z, r)), r) =>
n Eval(plus_x (Val 3), r) => …

9/12/22 14

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval (plus_x z, r) =>
n Eval (plus_x (Eval(z, r)), r) =>
n Eval (plus_x (Val 3), r) =>
n Eval ((Eval(plus_x, r)) (Val 3), r) => … 

9/12/22 15

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval (plus_x z, r) => 
n Eval (plus_x (Eval(z, r)), r) =>
n Eval (plus_x (Val 3), r) =>
n Eval ((Eval(plus_x, r)) (Val 3), r) =>
n Eval ((Val<y ® y + x, rplus_x >)(Val 3 ), r) 

=> …
9/12/22 16

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval ((Val<y ® y + x, rplus_x >)(Val 3 ), r) 
=> …

9/12/22 17

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval ((Val<y ® y + x, rplus_x >)(Val 3 ), r) 
=>

n Eval (y + x, {y ® 3} +rplus_x ) => …

9/12/22 18

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval ((Val<y ® y + x, rplus_x >)(Val 3 ), r) 
=>

n Eval (y + x, {y ® 3} +rplus_x ) =>
n Eval(y+Eval(x, {y ® 3} +rplus_x),

{y ® 3} +rplus_x ) => …



9/12/22 19

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval ((Val<y ® y + x, rplus_x >)(Val 3 ), r) 
=>

n Eval (y + x, {y ® 3} +rplus_x ) =>
n Eval(y+Eval(x, {y ® 3} +rplus_x),

{y ® 3} +rplus_x ) =>
n Eval(y+Val 12,{y ® 3} +rplus_x ) => …

9/12/22 20

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval(y+Eval(x, {y ® 3} +rplus_x),
{y ® 3} +rplus_x ) =>

n Eval(y+Val 12,{y ® 3} +rplus_x ) =>
n Eval(Eval(y, {y ® 3} +rplus_x ) +

Val 12,{y ® 3} +rplus_x ) =>…

9/12/22 21

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval(Eval(y, {y ® 3} +rplus_x ) +
Val 12,{y ® 3} +rplus_x ) =>

n Eval(Val 3 + Val 12 ,{y ® 3} +rplus_x ) =>…

9/12/22 22

Evaluation of Application of plus_x;;

n Have environment:
r = {plus_x ® <y ® y + x, rplus_x >, … ,

y ® 19, x ®17, z ®3, …}
where rplus_x = {x ® 12, … , y ® 24, …}

n Eval(Eval(y, {y ® 3} +rplus_x ) +
Val 12,{y ® 3} +rplus_x ) =>

n Eval(Val 3 + Val 12 ,{y ® 3} +rplus_x ) =>
n Val (3 + 12) = Val 15 

9/12/22 23

Evaluation of Application of plus_pair

n Assume environment 
r = {x ® 3…, 

plus_pair ®<(n,m) ®n + m, rplus_pair>} + rplus_pair
n Eval (plus_pair (4,x), r)=>
n Eval (plus_pair (Eval ((4, x), r)), r) =>
n Eval (plus_pair (Eval ((4, Eval (x , r)), r)), r) =>
n Eval (plus_pair (Eval ((4, Val 3), r)), r) =>
n Eval (plus_pair (Eval ((Eval (4, r), Val 3), r)), r) =>
n Eval (plus_pair (Eval ((Val 4, Val 3), r)), r) =>

9/12/22 24

Evaluation of Application of plus_pair

n Assume environment 
r = {x ® 3…, 

plus_pair ®<(n,m) ®n+m, rplus_pair>} + rplus_pair
n Eval (plus_pair (Eval ((Val 4, Val 3), r)), r) =>
n Eval (plus_pair (Val (4, 3)), r) =>
n Eval (Eval (plus_pair, r), Val (4, 3)), r)  => …
n Eval ((Val<(n,m)®n+m, rplus_pair>)(Val(4,3)) , r)=>
n Eval (n + m, {n -> 4, m -> 3} + rplus_pair) =>
n Eval (4 + 3, {n -> 4, m -> 3} + rplus_pair) => 7



9/12/22 25

Lists

n List can take one of two forms:
n Empty list, written [ ]
n Non-empty list, written  x :: xs

n x is head element, xs is tail list, :: called 
“cons”

n Syntactic sugar: [x] == x :: [ ]
n [ x1; x2; …; xn] == x1 :: x2 :: … :: xn :: [ ]

9/12/22 26

Lists

# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
# (8::5::3::2::1::1::[ ]) = fib5;;
- : bool = true
# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 

1]

9/12/22 27

Lists are Homogeneous

# let bad_list = [1; 3.2; 7];;
Characters 19-22:

let bad_list = [1; 3.2; 7];;
^^^

This expression has type float but is here 
used with type int

9/12/22 28

Question

n Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; [ ]; [“doin”]]

9/12/22 29

Answer

n Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; [ ]; [“doin”]]

§ 3 is invalid because of last pair

9/12/22 30

Functions Over Lists

# let rec double_up list =
match list
with [ ] -> [ ]  (* pattern before ->,

expression after *)
| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>
# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 

1; 1; 1]



9/12/22 31

Functions Over Lists

# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
# let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
# poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/12/22 32

Structural Recursion

n Functions on recursive datatypes (eg lists) 
tend to be recursive

n Recursion over recursive datatypes generally 
by structural recursion
n Recursive calls made to components of structure 

of the same recursive type
n Base cases of recursive types stop the recursion 

of the function

Question: Length of list

n Problem: write code for the length of the list
n How to start?

let rec length list = 

9/12/22 33

Question: Length of list

n Problem: write code for the length of the list
n How to start?

let rec length list =
match list with

9/12/22 34

Question: Length of list

n Problem: write code for the length of the list
n What patterns should we match against?

let rec length list =
match list with

9/12/22 35

Question: Length of list

n Problem: write code for the length of the list
n What patterns should we match against?

let rec length list =
match list with [] ->
| (a :: bs) -> 

9/12/22 36



Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is empty?

let rec length list =
match list with [] -> 0
| (a :: bs) -> 

9/12/22 37

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is not empty?

let rec length list =
match list with [] -> 0
| (a :: bs) -> 

9/12/22 38

Question: Length of list

n Problem: write code for the length of the list
n What result do we give when list is not empty?

let rec length list =
match list with [] -> 0
| (a :: bs) -> 1 + length bs

9/12/22 39 9/12/22 40

Structural Recursion : List Example

# let rec length list = match list
with [ ] -> 0   (* Nil case *)
| a :: bs -> 1 + length bs;;  (* Cons case *)

val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
- : int = 4
n Nil case [ ] is base case
n Cons case recurses on component list bs

Same Length

n How can we efficiently answer if two lists 
have the same length?

9/12/22 41

Same Length

n How can we efficiently answer if two lists 
have the same length?

let rec same_length list1 list2 =
match list1 with [] ->

(match list2 with [] -> true
| (y::ys) -> false)

| (x::xs) -> 
(match list2 with [] -> false

| (y::ys) -> same_length xs ys)
9/12/22 42



Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and 
returns a list of the same length, where each 
element has been multiplied by 2

let rec doubleList list =

9/12/22 43

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and 
returns a list of the same length, where each 
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->[]
|  x :: xs -> (2 * x) :: doubleList xs

9/12/22 44

Your turn: doubleList : int list -> int list

n Write a function that takes a list of int and 
returns a list of the same length, where each 
element has been multiplied by 2

let rec doubleList list =
match list

with [] ->[]
|  x :: xs -> (2 * x) :: doubleList xs

9/12/22 45 9/12/22 46

Higher-Order Functions Over Lists

# let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
# map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/12/22 47

Higher-Order Functions Over Lists

# let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
# map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

9/12/22 48

Mapping Recursion

n Can use the higher-order recursive map 
function instead of direct recursion

# let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
Same function, but no rec



9/12/22 49

Mapping Recursion

n Can use the higher-order recursive map 
function instead of direct recursion

# let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
n Same function, but no explicit recursion

9/12/22 50

Folding Recursion

n Another common form “folds” an operation 
over the elements of the structure

# let rec multList list = match list
with [ ] -> 1
| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
n Computes (2 * (4 * (6 * 1)))

9/12/22 51

Folding Recursion : Length Example

# let rec length list = match list
with [ ] -> 0   (* Nil case *)
| a :: bs -> 1 + length bs;;  (* Cons case *)

val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
- : int = 4
n Nil case [ ] is base case, 0 is the base value
n Cons case recurses on component list bs
n What do multList and length have in common?

9/12/22 52

Forward Recursion

n In Structural Recursion, split input into 
components and (eventually) recurse

n Forward Recursion form of Structural 
Recursion

n In forward recursion, first call the function 
recursively on all recursive components, and 
then build final result from partial results

n Wait until whole structure has been 
traversed to start building answer

9/12/22 53

Forward Recursion: Examples

# let rec double_up list =
match list
with [ ] -> [ ]

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/12/22 54

Forward Recursion: Examples

# let rec double_up list =
match list
with [ ] -> [ ]

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case         Operator     Recursive Call
# let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> let r = poor_rev xs in r @ [x];;
val poor_rev : 'a list -> 'a list = <fun> 

Base Case         Operator     Recursive Call



9/12/22 55

Recursing over lists

# let rec fold_right f list b =
match list
with [] -> b
| (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = 
<fun>

# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()w

The Primitive 
Recursion Fairy

9/12/22 56

Folding Recursion : Length Example

# let rec length list = match list
with [ ] -> 0   (* Nil case *)
| a :: bs -> 1 + length bs;;  (* Cons case *)

val length : 'a list -> int = <fun>
# let length list = 
fold_right (fun a -> fun r -> 1 + r) list 0;;
val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
- : int = 4

9/12/22 57

Folding Recursion

n multList folds to the right
n Same as:
# let multList list =

List.fold_right
(fun x -> fun p -> x * p)
list 1;;

val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48

9/12/22 58

Forward Recursion: Examples

# let rec double_up list =
match list
with [ ] -> [ ]

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case         Operator     Recursive Call
# let double_up =

fold_right (fun x -> fun r -> x :: x :: r) list [ ]
Operator     Recursive result    Base Case

# double_up  ["a";"b"];;
- : string list = ["a"; "a"; "b"; "b"]

9/12/22 59

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

9/12/22 60

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>



9/12/22 61

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case        Operation    Recursive Call 

# let append list1 list2 = 
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

9/12/22 62

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case        Operation    Recursive Call 

# let append list1 list2 = 
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

9/12/22 63

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case        Operation    Recursive Call 

# let append list1 list2 = 
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

9/12/22 64

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case        Operation    Recursive Call 

# let append list1 list2 = 
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

9/12/22 65

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case        Operation    Recursive Call 

# let append list1 list2 = 
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

9/12/22 66

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case        Operation    Recursive Call 

# let append list1 list2 = 
fold_right (fun x -> fun y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]



9/12/22 67

Encoding Forward Recursion with Fold

# let rec append list1 list2 = match list1 with
[ ] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case        Operation    Recursive Call 

# let append list1 list2 = 
fold_right (fun x -> fun y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

9/12/22 68

Tail Recursion

n A recursive program is tail recursive if all 
recursive calls are tail calls

n Tail recursive programs may be optimized to 
be implemented as loops, thus removing the 
function call overhead for the recursive calls

n Tail recursion generally requires extra 
“accumulator” arguments to pass partial 
results
n May require an auxiliary function

Tail Recursion - length

n How can we write length with tail recursion?
let length list = 

let rec length_aux list acc_length =
match list
with [ ] -> acc_length

| (x::xs) ->
length_aux xs (1 + acc_length)

in length_aux list  0

9/12/22 69 9/12/22 70

Tail Recursion - Example

# let rec rev_aux list revlist =
match list with [ ] -> revlist
| x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list = <fun>

# let rev list = rev_aux list [ ];;
val rev : 'a list -> 'a list = <fun>

n What is its running time?

9/12/22 71

Comparison

n poor_rev [1;2;3] =
n (poor_rev [2;3]) @ [1] =
n ((poor_rev [3]) @ [2]) @ [1] =
n (((poor_rev [ ]) @ [3]) @ [2]) @ [1] =
n (([ ] @ [3]) @ [2]) @ [1]) =
n ([3] @ [2]) @ [1] =
n (3:: ([ ] @ [2])) @ [1] =
n [3;2] @ [1] =
n 3 :: ([2] @ [1]) =
n 3 :: (2:: ([ ] @ [1])) = [3; 2; 1]

9/12/22 72

Comparison

n rev [1;2;3] =
n rev_aux [1;2;3] [ ] =
n rev_aux [2;3] [1] =
n rev_aux [3] [2;1] =
n rev_aux [ ] [3;2;1] = [3;2;1] 



9/12/22 73

Iterating over lists

# let rec fold_left f a list =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = 
<fun>

# fold_left
(fun () -> print_string)
()
["hi"; "there"];;

hithere- : unit = ()

9/12/22 74

Folding - Tail Recursion

- # let rev list =
- fold_left
- (fun l -> fun x -> x :: l)     //comb op

[]             //accumulator cell
list

9/12/22 75

Folding

# let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = 
<fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

# let rec fold_right f list b = match list
with [ ] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = 
<fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/12/22 76

Folding

n Can replace recursion by fold_right in any 
forward primitive recursive definition
n Primitive recursive means it only recurses on 

immediate subcomponents of recursive data 
structure

n Can replace recursion by fold_left in any tail 
primitive recursive definition

9/12/22 77

How long will it take?

n Remember the big-O notation from CS 225 
and CS 374

n Question: given input of size n, how long to 
generate output?

n Express output time in terms of input size, 
omit constants and take biggest power

9/12/22 78

How long will it take?

Common big-O times:
n Constant time O (1) 

n input size doesn’t matter
n Linear time O (n) 

n double input Þ double time 
n Quadratic time O (n2 )

n double input Þ quadruple time
n Exponential time O (2n )

n increment input Þ double time



9/12/22 79

Linear Time

n Expect most list operations to take 
linear time O (n) 

n Each step of the recursion can be done 
in constant time

n Each step makes only one recursive call
n List example: multList, append
n Integer example: factorial

9/12/22 80

Quadratic Time

n Each step of the recursion takes time 
proportional to input

n Each step of the recursion makes only one 
recursive call.

n List example:
# let rec poor_rev list = match list

with [] -> []
| (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>

9/12/22 81

Exponential running time

n Poor worst-case running times on input of 

any size

n Each step of recursion takes constant time

n Each recursion makes two recursive calls

n Easy to write naïve code that is exponential 

for functions that can be linear

9/12/22 82

Exponential running time

# let rec slow n =
if n <= 1 
then 1
else 1+slow (n-1) + slow(n-2);;

val slow : int -> int = <fun>
# List.map slow [1;2;3;4;5;6;7;8;9];;
- : int list = [1; 3; 5; 9; 15; 25; 41; 67; 
109]

9/12/22 83

Normal 
call

h

g

f

…

An Important Optimization

n When a function call is made, 
the return address needs to be 
saved to the stack so we know 
to where to return when the 
call is finished

n What if f calls g and g calls h, 
but calling h is the last thing g
does (a tail call)?

9/12/22 84

Tail      
call

h

f

…

An Important Optimization

n When a function call is made, 
the return address needs to be 
saved to the stack so we know 
to where to return when the 
call is finished

n What if f calls g and g calls h, 
but calling h is the last thing g
does (a tail call)?

n Then h can return directly to f
instead of g


