
CS 421, Fall 2022
Sample Final Questions

You should review the questions from the sample midterm exams, the practice midterm exams, and the
assignments (MPs and WAs), as well as these question.

1. Write a function get primes : int -> int list that returns the list of primes less than or equal to
the input. You may use the built-in functions / and mod. You will probably want to write one or more
auxiliary functions. Remember that 0 and 1 are not prime.

2. Write a tail-recursive function largest: int list -> int option that returns Some of the largest
element in a list if there is one, or else None if the list is empty.

3. Write a function dividek: (int * int list) -> (int -> ’a) -> ’a, that is in full Continuation
Passing Style (CPS), that divides n successively by every number in the list, starting from the last
element in the list. If a zero is encountered in the list or the result of an of the intermediate call to
dividek is 0, the function should pass 0 to k immediately, without doing any further divisions (to the
left). You should use

# let divk (x, y) k = k(x/y);;;;

val divk : (int * int) -> (int -> ’a) -> ’a = <fun>

for the divisions, and

# let eqk (a, b) k = k(a = b)

val eqk : ’a * ’a -> (bool -> ’b) -> ’b = <fun>

for equality testing. An example use of dividek would be

# let report n = print_string "Result: "; print_int n; print_string "\n";;

val report : int -> unit = <fun>

# dividek (6, [1;3;2]) report;;

Result: 1

- : unit = ()

4. a. Give most general (polymorphic) types for following functions (you don’t have to derive them):

let first lst = match lst with

| a:: aa -> a;;

let rest lst = match lst with

| [] -> []

| a:: aa -> aa;;

1



b. Use these types (i.e., start in an environment with these identifiers bound to these types) to give a
polymorphic type derivation for:

let rec foldright f lst z =

if lst = [] then z

else (f (first lst) (foldright f (rest lst) z))

in foldright (fun x -> fun y -> x +y) [2;3;4] 0

You should use the following types: [] : ∀’a. ’a list, and (::) : ∀’a.’a → ’a list → ’a list

and (=) : ∀’a.’a → ’a → bool.

5. Use the unification algorithm described in class and in MP7 to give a most general unifier for the following
set of equations (unification problem). Capital letters (A,B,C,D,E) denote variables of unification.
The lower-case letters (f, l, n, p) are constants or term constructors. (f and p have arity 2 - i.e., take 2
arguments, l has arity 1, and n has arity 0 - i.e. it is a constant.) Show all your work by listing the
operations performed in each step of the unification and the result of that step.

{(f(A, f(B,B)) = f(p(C,D), f(p(E,F ), p(l(C), l(D))))); (p(l(p(D,n)), C) = p(l(A), C))}

6. For each of the regular expressions below (over the alphabet {a,b,c}), give a right regular gramar that
derives exactly the same set of strings as the set of strings generated by the given regular expression.

i) a*∨b*∨c*

ii) ((aba∨bab)c(aa∨bb))*

iii) (a*b*)*(c∨ε)(b*a*)*

7. Consider the following ambiguous grammar (Capitals are nonterminals, lowercase are terminals):

S → A a B | B a A
A → b | c
B → a | b

a. Give an example of a string for which this grammar has two different parse trees, and give their
parse trees.

b. Disambiguate this grammar.

8. Write an unambiguous grammar for regular expressions over the alphabet {a,b}. The Kleene star
binds most tightly, followed by concatenation, and then choice. Here we will have concatenation and
choice associate to the right. Write an Ocaml datatype corresponding to the tokens for parsing regular
expressions, and one for capturing the abstract syntax trees corresponding to parses given by your
grammar.

2



9. a. Write the transition semantics rules for if then else and repeat until . (A repeat until
executes the code in the body of the loop and then checks the condition, exiting if the condition

is true.)

b. Assume we have an OCaml type bexp with constructors True and False corresponding to true
and false, and other constructors representing the syntax trees of non-value boolean expressions.
Futher assume we have a type mem of memory associating variables (represented by strings) with
values, a type exp for integer expressions in our language, a type comm for language commands with
constructors including IfThenElse of bexp * comm * comm, RepeatUntil of comm * bexp, and
Seq: comm * comm, and type

type eval_comm_result = Mid of (comm * mem) | Done of mem

Further suppose we have a function eval bexp : (bexp * mem) -> (bexp * mem) that returns
the result of one step of evaluation of an expression.

Write Ocaml clauses for a function eval comm : (comm * mem) -> eval comm result for the case
of IfThenElse and RepeatUntil. You may assume that all other needed clauses of eval comm have
been defined, as well as the function eval bexp: (bexp * mem) -> (bexp * mem).

10. Assume you are given the OCaml types exp, bool exp and comm with (partially given) type definitions:

type comm = ... | If of (bool_exp * comm * comm) | ...

type bool_exp = True_exp | False_exp | ...

where the constructor If is for the abstract syntax of an if then else construct. Also assume you have a
type mem of memory associating values to identifiers, where values are just intergers (int). Further assume
you are given a function eval bool: (mem * bool exp) -> bool for evaluating boolean expressions.
Write the OCaml code for the clause of eval comm:(mem * comm) -> mem that implements the following
natural semantics rules for the evaluation of if then else commands:

〈m, b〉 ⇓ true 〈m,C1〉 ⇓ m′

〈m, if b then C1 else C2〉 ⇓ m′
〈m, b〉 ⇓ false 〈m,C2〉 ⇓ m′′

〈m, if b then C1 else C2〉 ⇓ m′′

11. Using the natural semanitics rules given in class, give a proof that, starting with a memory that maps
x to 5 and y to 3, if x = y then z := x else z := x + y evaluates to a memory where x maps to 5,
y maps to 3. and z maps to 8.

12. Prove that λx.x(λz.zxz) is α-equivalent λz.z(λx.xzx). You should label every use of α-conversion,
congruence and transitivity.

13. Reduce the following expressionto full αβ-normal form.

(λxλy.yz)((λx.xxx)(λx.xx))
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14. Give a proof in Floyd-Hoare logic of the partial correctness assertion:

{True} y := w; if x = y the z := x else z := y {z = w}

15. What should the Floyd-Hoare logic rule for repeat C until B be? The code causes C to be executed,
and then, if B is true it completes, and otherwise it does repeat C until B again.
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