
ML 2 – Pattern Matching and Recursion
CS 421 – Fall 2019

Revision 1.0

Assigned Saturday, September 7, 2019
Due September 10, 2019 – September 13, 2019
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Objectives and Background
The purpose of this ML is to help the student master:

• pattern matching

• higher-order functions

• recursion

3 Instructions
The problems below have sample executions that suggest how to write answers. You have to use the same function
name, but the name and structure of the parameters that follow the function name need not be duplicated. That is,
you are free to choose different names, or patterns, for the arguments to the functions, or even a different number of
arguments from the ones given in the example execution.

The functions you write must have the types prescribed in the problems. If you fail to write functions of the
right type, your code will not compile with the code for the grade and you submission will receive no points.

We will sometimes use let rec to begin the definition of a function that may involve recursion. You are not
required to start your code with let rec, and you may use let rec when we do not. However, you are expected
to know when the problem requires you to write a recursive solutions, and how to do that. For all these problems, you
are allowed to write your own auxiliary functions and local declarations.

In this assignment, you may not use the functions fst and snd. This restriction will not usually apply, and
will be stated in the assessment when it does apply.

4 Problems
1. (2 pts) Write closer to origin : float * float -> float * float -> int that takes two

2-dimensional float points and determines which is closer to the origin by Euclidean distance. If the first point is
closer, it should evaluate to−1, if the second is closer, it should evaluate to 1, and if the points are equidistant from
the origin, it should evaluate to 0.

# let closer_to_origin p1 p2 = ...
val closer_to_origin : float * float -> float * float -> int = <fun>
# closer_to_origin (2., 0.) (0., -1.);;
- : int = 1
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2. (2 pts) Write swap eq : ’a * ’b -> ’b * ’a -> bool that takes two pairs and determines whether
the second is the left-right swap of the first.

# let swap_eq p1 p2 = ...
val swap_eq : ’a * ’b -> ’b * ’a -> bool = <fun>
# swap_eq (1., 0.) (0., 1.);;
- : bool = true

3. (2 pts) Write twist : (’a * ’b) * (’c * ’d) -> (’d * ’a) * (’c * ’b) that takes a pair
of pairs and returns a new pair of pairs where the first pair in the returned value is the second element of the second
pair of the input paired with the first element of the first pair of the input and the second pair in the returned value
is the first element of the second pair in the input, paired with the paired with the second element of the first pair.

# let twist pp = ...
val twist : (’a * ’b) * (’c * ’d) -> (’d * ’a) * (’c * ’b) = <fun>
# twist (("hi",true),(2, 17.3));;
- : (float * string) * (int * bool) = ((17.3, "hi"), (2,true))

4. (2 pts) Write triple pairs : ’a -> ’b * ’c * ’d -> (’a * ’b) * (’a * ’c) * (’a *
’d) that takes an element and a triple, and returns a triple of pairs where each pair has the first element is the first
input argument and the second element is from the corresponding position in the input triple.

# let triple_pairs x trp = ...
val triple_pairs : ’a -> ’b * ’c * ’d -> (’a * ’b) * (’a * ’c) * (’a * ’d) =
<fun>

# triple_pairs 2 (false, 3, true);;
- : (int * bool) * (int * int) * (int * bool) =
((2, false), (2, 3), (2, true))

5. (2 pts) Write triple xprod : ’a * ’b * ’c -> ’d * ’e -> ((’a * ’d) * (’b * ’d) *
(’c * ’d)) * ((’a * ’e) * (’b * ’e) * (’c * ’e)) that takes a triple and then a pair, and re-
turns a pair of triples where the pairs for the first triple have as their first element the corresponding element from
the input triple and the second element is the first element of the input pair, and where the pairs of the second triple
have as their first element the corresponding element from the input triple and the second element is the second
element of the input pair.

# let triple_xprod trp pr = ...
val triple_xprod :

’a * ’b * ’c ->
’d * ’e ->
((’a * ’d) * (’b * ’d) * (’c * ’d)) * ((’a * ’e) * (’b * ’e) * (’c * ’e)) =
<fun>

# triple_xprod (1,true,33.5) ("hi",17);;
- : ((int * string) * (bool * string) * (float * string)) *

((int * int) * (bool * int) * (float * int)) =
(((1, "hi"), (true, "hi"), (33.5, "hi")), ((1, 17), (true, 17), (33.5, 17)))
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6. (2 pts) Write a function two funs : (’a -> ’b) * (’c -> ’d) -> ’a * ’c -> ’b * ’d that
takes a pair of functions and a pair of inputs and returns the pair of the first function applied to the first input and
the second function applied to the second input.

# let two_funs fns ins = ...
val two_funs : (’a -> ’b) * (’c -> ’d) -> ’a * ’c -> ’b * ’d = <fun>
# two_funs (not, abs) (true, -5);;
- : bool * int = (false, 5)

7. (2 pts) Write a function triple app : (’a -> ’b) * (’c -> ’a) * (’d -> ’c) -> ’d ->
’b that takes a triple of functions and then an argument as inputs and returns the result of applying the first
function in the triple to the result of applying the second function in the triple to the result of applying the third
function in the triple to the follow-on argument input.

# let triple_app (f,g,h) x = ...
val tripple_app : (’a -> ’b) * (’c -> ’a) * (’d -> ’c) -> ’d -> ’b = <fun>
# triple_app (print_string, string_of_int, (fun n -> n + 4)) 21;;
25- : unit = ()

8. (2 pts) Write a function same arg twice : (’a -> ’a -> ’b) -> ’a -> ’b that takes a function
and then an argument as inputs and returns the result of applying the function to the argument and applying the
resultant function to the argument a second time.

# let same_arg_twice f x = ...
val same_arg_twice : (’a -> ’a -> ’b) -> ’a -> ’b = <fun>
# same_arg_twice (fun s1 -> fun s2 -> string_of_int (s1 + s2 + 12)) 3;;
- : string = "18"

9. (2 pts) Write a function rev app : ’a -> (’a -> ’b) -> ’b that takes an argument and then a func-
tion as inputs and returns the result of applying the function to the argument.

# let rev_app x f = ...
val rev_app : ’a -> (’a -> ’b) -> ’b = <fun>
# rev_app true not;;
- : bool = false

10. (2 pts) Write a function map triple : (’a -> ’b) -> ’a * ’a * ’a -> ’b * ’b * ’b that
takes a function and then a triple of inputs and returns the triple where each element id the result of applying the
function to each corresponding element in the input triple.

# let map_triple f (a,b,c) = ...
val map_triple : (’a -> ’b) -> ’a * ’a * ’a -> ’b * ’b * ’b = <fun>
# map_triple float_of_int (1,5,10);;
- : float * float * float = (1., 5., 10.)
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11. (3 pts)The Ackermann function A : N× N→ N is a recursive function defined as follows:

A(m,n) =

 n+ 1 if m = 0
A(m− 1, 1) if m > 0 and n = 0
A(m− 1, A(m,n− 1)) otherwise

Write an OCaml function ackermann : int -> int -> int that takes the numbers m and n and returns
the value of A(m,n). You can assume m and n will be non-negative.

# let rec ackermann m n = ...
val ackermann : int -> int -> int = <fun>
# ackermann 3 4;;
- : int = 125

12. (3 pts)The Collatz sequence for a positive integer n starts at n and repeats the following: if the number is even,
divide by 2 to get the next number in the sequence. If it is odd, multiply by 3 and add 1. It is conjectured that
the Collatz sequence reaches 1 for any positive integer n. Write a function collatz : int -> int that,
given an integer n returns the number of steps its Collatz sequence takes to reach 1 (it takes 0 steps for 1 to reach
itself.) You can assume n will be positive.

# let rec collatz n = ...
val collatz : int -> int = <fun>
# collatz 27;;
- : int = 111

13. (3 pts)The Delannoy number dm,n counts the number of paths on a gridded m × n rectangle from the origin
(0, 0) (at the South-West corner of the rectangle) to the point (m,n) (at the North-East corner) where only North,
East, and North-East steps are allowed. Note: the number of paths from (0, 0) to (0, 0) is 1. Write a function
delannoy : int * int -> int that takes the point (m,n) and returns dm,n. You can assume m and
n will be non-negative.

# let rec delannoy (m, n) = ...
val delannoy : int * int -> int = <fun>
# delannoy (1, 2);;
- : int = 5

14. (3 pts)The Fibonacci number for any integer less than or equal to 1 is 1 and after that, the nth Fibonacci
number is the sum of the two preceding Fibonacci numbers in the sequence, for n > 1. Write a function
naive fibonacci : int -> int that, when applied to an integer n returns the nth Fibonacci number.
Do not worry about be efficient at this time; we will discuss topics related to the efficiency of recursive functions
in a the next one to two weeks.

# let rec naive_fibonacci n = ...
val naive_fibonacci : int -> int = <fun>
# naive_fibonacci 7;;
- : int = 21
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15. (3 pts)Write a function sum evens less eq : int -> int that returns the sum of all positive even num-
bers less than or equal to the input argument, and returns 0 of their are no even positive numbers less than or equal
to the input argument.

# let rec sum_evens_less_eq n = ...
val sum_evens_less_eq : int -> int = <fun>
# sum_evens_less_eq 17;;
- : int = 72
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