Programming Languages and Compilers (CS 421)

Elsa L Gunter
 2112 SC, UIUC http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics

- Used to formally prove a property (postcondition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state holds before execution

Axiomatic Semantics

- Goal: Derive statements of form $\{P\} C\{Q\}$
- P , Q logical statements about state, P precondition, Q postcondition, C program
- Example: $\{x=1\} x:=x+1\{x=2\}$

Axiomatic Semantics

- Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form

$$
\{P\} C\{Q\}
$$

where C is a statement of that type

- Compose axioms and inference rules to build proofs for complex programs

Axiomatic Semantics

- An expression $\{P\} C\{Q\}$ is a partial correctness statement
- For total correctness must also prove that C terminates (i.e. doesn't run forever)
- Written: [P] C [Q]
- Will only consider partial correctness here

Language

- We will give rules for simple imperative language
<command>
::= <variable> := <term>
| <command>; ... ;<command>
if <statement> then <command> else <command> fi
| while <statement> do <command> od
- Could add more features, like for-loops

Substitution

- Notation: $\mathrm{P}[\mathrm{e} / \mathrm{v}]$ (sometimes $\mathrm{P}[\mathrm{v}<-\mathrm{e}]$)
- Meaning: Replace every vin P by e
- Example:

$$
(x+2)[y-1 / x]=((y-1)+2)
$$

The Assignment Rule

$$
\{P[e / x]\} x:=e ~\{P\}
$$

Example:

$$
\{\quad ? \quad\} x:=y\{x=2\}
$$

The Assignment Rule

$$
\{P[e / x]\} x:=e ~\{P\}
$$

Example:

$$
\{\bar{q}=2\} x:=y\{x=2\}
$$

The Assignment Rule

$$
\{P[e / x]\} x:=e ~\{P\}
$$

Example:

$$
\{y=2\} x:=y\{x=2\}
$$

The Assignment Rule

$$
\overline{\{P[e / x]\} x:=e\{P\}}
$$

Examples:

$$
\begin{aligned}
& \overline{\{y=2\} x:=y\{x=2\}} \\
& \overline{\{y=2\} x:=2\{y=x\}} \\
& \{x+1=n+1\} x:=x+1 \quad\{x=n+1\} \\
& \{2=2\} x:=2\{x=2\}
\end{aligned}
$$

The Assignment Rule - Your Turn

- What is the weakest precondition of

$$
x:=x+y\{x+y=w-x\} ?
$$

$$
\{\quad ? \quad\}
$$

$$
x:=x+y
$$

$$
\{x+y=w-x\}
$$

The Assignment Rule - Your Turn

- What is the weakest precondition of

$$
x:=x+y\{x+y=w-x\} ?
$$

$$
\begin{gathered}
\{(x+y)+y=w-(x+y)\} \\
x:=x+y \\
\{x+y=w-x\}
\end{gathered}
$$

Precondition Strengthening

$$
\frac{P \rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} C\{Q\}}{\{P\} C\{Q\}}
$$

- Meaning: If we can show that P implies P' $\left(P \rightarrow P^{\prime}\right)$ and we can show that $\left\{P^{\prime}\right\} C\{Q\}$, then we know that $\{P\} C\{Q\}$
- P is stronger than P^{\prime} means $\mathrm{P} \rightarrow$ P'

Precondition Strengthening

- Examples:

$$
\frac{x=3 \rightarrow x<7\{x<7\} x:=x+3\{x<10\}}{\{x=3\} x:=x+3\{x<10\}}
$$

$$
\begin{gathered}
\frac{\text { True } \rightarrow 2=2 \quad\{2=2\} x:=2\{x=2\}}{\{\text { True }\}} x:=2\{x=2\} \\
\frac{x=n \rightarrow x+1=n+1 \quad\{x+1=n+1\} x:=x+1\{x=n+1\}}{\{x=n\} x:=x+1\{x=n+1\}}
\end{gathered}
$$

Which Inferences Are Correct?

$$
\begin{gathered}
\frac{\{x>0 \& x<5\} x:=x * x\{x<25\}}{\{x=3\} x:=x^{*} x\{x<25\}} \\
\frac{\{x=3\} x:=x^{*} x\{x<25\}}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}} \\
\frac{\left\{x^{*} x<25\right\} x:=x^{*} x\{x<25\}}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}
\end{gathered}
$$

Which Inferences Are Correct?

$$
\begin{gathered}
\frac{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}{\{x=3\} x:=x^{*} x\{x<25\}} \\
\frac{\left\{x=31 x:=x^{*} x\{x<25\}\right.}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}} \\
\frac{\left\{x^{*} x<25\right\} x:=x^{*} x\{x<25\}}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}
\end{gathered}
$$

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

- Example:

$$
\begin{gathered}
\{z=z \& z=z\} x:=z\{x=z \& z=z\} \\
\{x=z \& z=z\} y:=z\{x=z \& y=z\} \\
\{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\}
\end{gathered}
$$

Sequencing

$$
\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}}{\{P\} C_{1} ; C_{2}\{R\}}
$$

- Example:

$$
\begin{array}{r}
\{z=z \& z=z\} x:=z\{x=z \& z=z\} \\
\{x=z \& z=z\} y:=z\{x=z \& y=z\}
\end{array}
$$

Postcondition Weakening

$$
\frac{\{P\} C\left\{Q^{\prime}\right\} \quad Q^{\prime} \rightarrow Q}{\{P\} C\{Q\}}
$$

Example:

$$
\begin{gathered}
\{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\} \\
(x=z \& y=z) \rightarrow(x=y) \\
\{z=z \& z=z\} x:=z ; y:=z\{x=y\}
\end{gathered}
$$

Rule of Consequence

$$
\frac{P \rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} C\left\{Q^{\prime}\right\} \quad Q^{\prime} \rightarrow Q}{\{P\} C\{Q\}}
$$

- Logically equivalent to the combination of Precondition Strengthening and Postcondition Weakening
- Uses $P \rightarrow P^{\prime}$ and $Q^{\prime} \rightarrow Q$

If Then Else

$\{P$ and $B\} C_{1}\{Q\} \quad\{P$ and $(n o t B)\} C_{2}\{Q\}$ $\{P\}$ if B then C_{1} else $C_{2} f i\{Q\}$

- Example: Want

$$
\begin{gathered}
\{y=a\} \\
\text { if } x<0 \text { then } y:=y-x \text { else } y:=y+x \text { fi } \\
\{y=a+|x|\}
\end{gathered}
$$

Suffices to show:
(1) $\{y=a \& x<0\} y:=y-x \quad\{y=a+|x|\}$ and
(4) $\{y=a \& n o t(x<0)\} y:=y+x\{y=a+|x|\}$

$$
\{y=a \& x<0\} \quad y:=y-x \quad\{y=a+|x|\}
$$

(3) $(y=a \& x<0) \rightarrow y-x=a+|x|$
(2) $\{y-x=a+|x|\} \quad y:=y-x \quad\{y=a+|x|\}$
(1)
$\{y=a \& x<0\} \quad y:=y-x \quad\{y=a+|x|\}$
(1) Reduces to (2) and (3) by Precondition Strengthening
(2) Follows from assignment axiom
(3) Because $x<0 \rightarrow|x|=-x$

$\{y=a \& n o t(x<0)\} y:=y+x\{y=a+|x|\}$

(6) $\quad(y=a \& n o t(x<0)) \rightarrow(y+x=a+|x|)$
(5) $\quad\{y+x=a+|x|\} \quad y:=y+x \quad\{y=a+\mid x\}\}$
(4) $\{y=a \& \operatorname{not}(x<0)\} y:=y+x\{y=a+|x|\}$
(4) Reduces to (5) and (6) by

Precondition Strengthening
(5) Follows from assignment axiom
(6) Because $\operatorname{not}(x<0) \rightarrow|x|=x$

If then else

(1) $\quad\{y=a \& x<0\} y:=y-x\{y=a+|x|\}$
(4) $\quad\{y=a \& n o t(x<0)\} y:=y+x\{y=a+|x|\}$
$\{y=a\}$
if $x<0$ then $y:=y-x$ else $y:=y+x$

$$
\{y=a+|x|\}
$$

By the if_then_else rule

While

- We need a rule to be able to make assertions about while loops.
- Inference rule because we can only draw conclusions if we know something about the body
- Let' s start with:
$\frac{\{?\} \quad C\{?}{\{? \quad\} \text { while } B \text { do } C \text { od }\{P\}}$

While

- The loop may never be executed, so if we want P to hold after, it had better hold before, so let's try:

$$
\frac{\{?\} \quad C \quad\{\quad ? \quad}{\{P\} \text { while } B \text { do } C \text { od }\{P\}}
$$

While

- If all we know is P when we enter the while loop, then we all we know when we enter the body is (P and B)
- If we need to know P when we finish the while loop, we had better know it when we finish the loop body:

$$
\frac{\{P \text { and } B\} C\{P\}}{\{P\} \text { while } B \text { do } C \text { od }\{P\}}
$$

While

- We can strengthen the previous rule because we also know that when the loop is finished, not B also holds
- Final while rule:
$\frac{\{P \text { and } B\} C\{P\}}{\{P\} \text { while } B \text { do } C \text { od }\{P \text { and not } B\}}$

While

\{P and B \} $C\{P$ \}
$\{P\}$ while B do C od $\{P$ and not $B\}$

- P satisfying this rule is called a loop invariant because it must hold before and after the each iteration of the loop

While

- While rule generally needs to be used together with precondition strengthening and postcondition weakening
- There is NO algorithm for computing the correct P; it requires intuition and an understanding of why the program works

Example

- Let us prove
$\{x>=0$ and $x=a\}$
fact := 1;
while $x>0$ do (fact := fact * $x ; x:=x-1$) od \{fact $=a!\}$

Example

- We need to find a condition P that is true both before and after the loop is executed, and such that

$$
(P \text { and not } x>0) \rightarrow(\text { fact }=a!)
$$

Example

- First attempt:

$$
\{a!=\text { fact * }(x!)\}
$$

- Motivation:
- What we want to compute: a!
- What we have computed: fact which is the sequential product of a down through ($x+1$)
- What we still need to compute: x !

Example

By post-condition weakening suffices to show

1. $\{x>=0$ and $x=a\}$
fact := 1;
while $x>0$ do (fact := fact * x; $x:=x-1$) od
\{a! = fact * (x!) and not (x>0)\}
and
2. $\{\mathrm{a}!=$ fact * $(\mathrm{x}!)$ and not $(\mathrm{x}>0)\} \rightarrow$ fact $=\mathrm{a}$! $\}$

Problem

2. $\{$ a! $=$ fact * $(\mathrm{x}!)$ and not $(\mathrm{x}>0)\} \rightarrow$ fact $=\mathrm{a}$! $\}$

- Don' t know this if $x<0$
- Need to know that $x=0$ when loop terminates
- Need a new loop invariant
- Try adding $x>=0$

Then will have $x=0$ when loop is done

Example

Second try, combine the two:

$$
P=\{a!=\text { fact * }(x!) \text { and } x>=0\}
$$

Again, suffices to show

1. $\{x>=0$ and $x=a\}$
fact := 1;
while $x>0$ do (fact := fact * x; $x:=x-1$) od
$\{P$ and not $x>0\}$
and
2. $\{P$ and not $x>0\} \rightarrow$ fact $=a!\}$

Example

- For 2, we need
$\{a!=$ fact * $(x!)$ and $x>=0$ and not $(x>0)\} \rightarrow$ \{fact = a!\}
But $\{x>=0$ and not $(x>0)\} \rightarrow\{x=0\}$ so fact * $(x!)=$ fact * $(0!)=$ fact
Therefore
$\{a!=$ fact * $(x!)$ and $x>=0$ and not $(x>0)\} \rightarrow$ \{fact $=a!\}$

Example

- For 1 , by the sequencing rule it suffices to show

3. $\{x>=0$ and $x=a\}$
fact := 1
\{a! = fact * (x!) and $x>=0\}$
And
4. $\{\mathrm{a}!=$ fact * $(\mathrm{x}!)$ and $\mathrm{x}>=0\}$
while $x>0$ do
(fact := fact * x; $x:=x-1$) od
$\{a!=$ fact * $(x!)$ and $x>=0$ and not $(x>0)\}$

Example

- Suffices to show that

$$
\{a!=\text { fact * }(x!) \text { and } x>=0\}
$$

holds before the while loop is entered and that if

$$
\{(a!=\text { fact * }(x!)) \text { and } x>=0 \text { and } x>0\}
$$ holds before we execute the body of the loop, then

$$
\{(\mathrm{a}!=\text { fact * }(\mathrm{x}!)) \text { and } \mathrm{x}>=0\}
$$

holds after we execute the body

Example

By the assignment rule, we have

$$
\begin{gathered}
\{\mathrm{a}!=1 *(\mathrm{x}!) \text { and } \mathrm{x}>=0\} \\
\text { fact }:=1 \\
\{\mathrm{a}!=\text { fact * }(\mathrm{x}!) \text { and } \mathrm{x} \gg=0\}
\end{gathered}
$$

Therefore, to show (3), by precondition strengthening, it suffices to show

$$
\begin{gathered}
(x>=0 \text { and } x=a) \rightarrow \\
\left(a!=1^{*}(x!) \text { and } x>=0\right)
\end{gathered}
$$

Example

$$
\begin{gathered}
(x>=0 \text { and } x=a) \rightarrow \\
\left(a!=1^{*}(x!) \text { and } x>=0\right) \\
\text { holds because } x=a \rightarrow x!=a!
\end{gathered}
$$

Have that $\{a!=$ fact * $(x!)$ and $x>=0\}$ holds at the start of the while loop

Example

To show (4):
$\{a!=$ fact * (x!) and $x>=0\}$ while $x>0$ do
(fact := fact * $\mathrm{x} ; \mathrm{x}:=\mathrm{x}-1$)
od
$\{a!=$ fact * (x!) and $x>=0$ and not ($x>0$) \}
we need to show that

$$
\{(a!=\text { fact * }(x!)) \text { and } x>=0\}
$$

is a loop invariant

Example

We need to show:

$$
\begin{gathered}
\{(\mathrm{a}!=\text { fact * }(x!)) \text { and } x>=0 \text { and } x>0\} \\
(\text { fact }=\text { fact * } x ; x:=x-1) \\
\left\{\left(a!=\text { fact }^{*}(x!)\right) \text { and } x>=0\right\}
\end{gathered}
$$

We will use assignment rule, sequencing rule and precondition strengthening

Example

By the assignment rule, we have

$$
\begin{gathered}
\{(\mathrm{a}!=\text { fact * }((\mathrm{x}-1)!)) \text { and } \mathrm{x}-1>=0\} \\
\mathrm{x}:=\mathrm{x}-1 \\
\left\{\left(\mathrm{a}!=\text { fact }{ }^{*}(\mathrm{x}!)\right) \text { and } \mathrm{x}>=0\right\}
\end{gathered}
$$

By the sequencing rule, it suffices to show
$\{(a!=$ fact * $(x!))$ and $x>=0$ and $x>0\}$ fact $=$ fact ${ }^{*} x$
$\{(\mathrm{a}!=$ fact * $((\mathrm{x}-1)!))$ and $\mathrm{x}-1>=0\}$

Example

By the assignment rule, we have that

$$
\begin{gathered}
\left\{\left(\mathrm{a}!=(\text { fact * } x)^{*}((x-1)!)\right) \text { and } x-1>=0\right\} \\
\quad f_{\text {fact }=\text { fact * } x} \\
\{(\mathrm{a}!=\text { fact * }((x-1)!)) \text { and } x-1>=0\}
\end{gathered}
$$

By Precondition strengthening, it suffices to show that
$((a!=$ fact * $(x!))$ and $x>=0$ and $x>0) \rightarrow$
$\left(\left(a!=(\right.\right.$ fact * $\left.x){ }^{*}((x-1)!)\right)$ and $\left.x-1>=0\right)$

Example

However

$$
\text { fact * } x^{*}(x-1)!=\text { fact * }(x!)
$$

and

$$
(x>0) \rightarrow x-1>=0
$$

since x is an integer,so

$$
\begin{aligned}
& \{(\mathrm{a}!=\text { fact * }(\mathrm{x}!)) \text { and } \mathrm{x}>=0 \text { and } \mathrm{x}>0\} \rightarrow \\
& \left\{\left(\mathrm{a!}=\left(\text { fact }{ }^{*} \mathrm{x}\right)^{*}((\mathrm{x}-1)!)\right) \text { and } \mathrm{x}-1>=0\right\}
\end{aligned}
$$

Example

Therefore, by precondition strengthening

$$
\begin{gathered}
\{(a!=\text { fact * }(x!)) \text { and } x>=0 \text { and } x>0\} \\
\text { fact }=\text { fact * } x \\
\{(a!=\text { fact * }((x-1)!)) \text { and } x-1>=0\}
\end{gathered}
$$

This finishes the proof

