Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

12/8/21

Lambda Calculus - Motivation

- Aim is to capture the essence of functions, function applications, and evaluation
- λ-calculus is a theory of computation
- "The Lambda Calculus: Its Syntax and Semantics". H. P. Barendregt. North Holland, 1984

12/8/21 2

Lambda Calculus - Motivation

- All sequential programs may be viewed as functions from input (initial state and input values) to output (resulting state and output values).
- λ-calculus is a mathematical formalism of functions and functional computations
- Two flavors: typed and untyped

12/8/21

3

Untyped λ-Calculus

- Only three kinds of expressions:
 - Variables: x, y, z, w, ...
 - Abstraction: λ x. e
 (Function creation, think fun x -> e)
 - Application: e₁ e₂
 - Parenthesized expression: (e)

Untyped λ -Calculus Grammar

- Formal BNF Grammar:
 - <expression> ::= <variable>

| <abstraction>

| <application>

| (<expression>)

<abstraction>

 $:= \lambda < \text{variable} > \cdot < \text{expression} > \cdot$

<application>

::= <expression> <expression>

12/8/21

Untyped λ -Calculus Terminology

- Occurrence: a location of a subterm in a term
- Variable binding: λ x. e is a binding of x in e
- Bound occurrence: all occurrences of x in λ x. e
- Free occurrence: one that is not bound
- Scope of binding: in λ x. e, all occurrences in e not in a subterm of the form λ x. e' (same x)
- Free variables: all variables having free occurrences in a term

Label occurrences and scope:

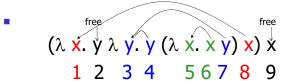
$$(\lambda x. y \lambda y. y (\lambda x. x y) x) x$$

1 2 3 4 5 6 7 8 9

12/8/21

Example

Label occurrences and scope:



12/8/21 8

Untyped λ-Calculus

- How do you compute with the λ-calculus?
- Roughly speaking, by substitution:
- $(\lambda x. e_1) e_2 \Rightarrow * e_1 [e_2/x]$
- * Modulo all kinds of subtleties to avoid free variable capture

12/8/21

Transition Semantics for λ -Calculus

Application (version 1 - Lazy Evaluation)

$$(\lambda x. E) E' \longrightarrow E[E'/x]$$

Application (version 2 - Eager Evaluation)

$$\frac{E' --> E''}{(\lambda \ X \cdot E) \ E' --> (\lambda \ X \cdot E) \ E''}$$

 $(\lambda \ X . E) \ V \rightarrow E[V/x]$ V - variable or abstraction (value)

12/8/21 10

How Powerful is the Untyped λ -Calculus?

- The untyped λ-calculus is Turing Complete
 - Can express any sequential computation
- Problems:
 - How to express basic data: booleans, integers, etc?
 - How to express recursion?
 - Constants, if_then_else, etc, are conveniences; can be added as syntactic sugar

12/8/21

11

Typed vs Untyped λ -Calculus

- The pure λ-calculus has no notion of type: (f f) is a legal expression
- Types restrict which applications are valid
- Types are not syntactic sugar! They disallow some terms
- Simply typed λ-calculus is less powerful than the untyped λ-Calculus: NOT Turing Complete (no recursion)

12/8/21

Uses of λ-Calculus

- Typed and untyped λ-calculus used for theoretical study of sequential programming languages
- Sequential programming languages are essentially the λ-calculus, extended with predefined constructs, constants, types, and syntactic sugar
- Ocaml is close to the λ-Calculus:

fun x -> exp -->
$$\lambda$$
 x. exp
let x = e₁ in e₂ --> $(\lambda$ x. e₂)e₁

12/8/21

13

α Conversion

- α -conversion:
 - λ x. exp -- α --> λ y. (exp [y/x])
- 3. Provided that
 - 1. y is not free in exp
 - No free occurrence of x in exp becomes bound in exp when replaced by y

$$\lambda x. x (\lambda y. x y) - \times -> \lambda y. y(\lambda y.y y)$$

14

α Conversion Non-Examples

- 1. Error: y is not free in term second
 - λ x. x y \rightarrow λ y. y y
- Error: free occurrence of x becomes bound in wrong way when replaced by y

$$\lambda \times \lambda \times y \times y - x - > \lambda \times y \times y \times y$$

$$= \exp \left[\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2}$$

But λ x. (λ y. y) x -- α --> λ y. (λ y. y) y And λ y. (λ y. y) y -- α --> λ x. (λ y. y) x

12/8/21

15

17

Congruence

- Let ~ be a relation on lambda terms. ~ is a congruence if
- it is an equivalence relation
- If $e_1 \sim e_2$ then
 - $(e e_1) \sim (e e_2)$ and $(e_1e) \sim (e_2 e)$
 - λ x. $e_1 \sim \lambda$ x. e_2

12/8/21 16

α Equivalence

- α equivalence is the smallest congruence containing α conversion
- One usually treats α -equivalent terms as equal i.e. use α equivalence classes of terms

Example

Show: λx . (λy . y x) $x \sim \alpha \sim \lambda y$. (λx . x y) y

- λ x. (λ y. y x) x -- α --> λ z. (λ y. y z) z so λ x. (λ y. y x) x \sim α \sim λ z. (λ y. y z) z
- $(\lambda y. yz) --\alpha --> (\lambda x. xz)$ so

$$(\lambda y. yz) \sim \alpha \sim (\lambda x. xz)$$
 so

 $(\lambda y. yz) z \sim \alpha \sim (\lambda x. xz) z so$

 λ z. (λ y. y z) z $\sim \alpha \sim \lambda$ z. (λ x. x z) z

- λ z. (λ x. x z) z -- α --> λ y. (λ x. x y) y so λ z. (λ x. x z) z \sim α \sim λ y. (λ x. x y) y
- $\lambda x. (\lambda y. yx) x \sim \alpha \sim \lambda y. (\lambda x. xy) y$

12/8/21

18

12/8/21

Substitution

- Defined on α -equivalence classes of terms
- P [N / x] means replace every free occurrence of x in P by N
 - P called *redex*; N called *residue*
- Provided that no variable free in P becomes bound in P [N / x]
 - Rename bound variables in P to avoid capturing free variables of N

12/8/21

19

Substitution

- x [N / x] = N
- $y[N/x] = y \text{ if } y \neq x$
- $(e_1 e_2) [N / x] = ((e_1 [N / x]) (e_2 [N / x]))$
- $(\lambda x. e) [N / x] = (\lambda x. e)$
- $(\lambda y. e) [N / x] = \lambda y. (e [N / x])$ provided $y \neq x$ and y not free in N
 - Rename y in redex if necessary

12/8/21 20

Example

 $(\lambda y. y z) [(\lambda x. x y) / z] = ?$

- Problems?
 - z in redex in scope of y binding
 - y free in the residue
- (λ y. y z) [(λ x. x y) / z] --α-->
 (λ x. x z) [(λ x. x y) / z] =
 λ x. ((x z) [(λ x. x y) / z]) =
 λ x. x (λ x. x y)

12/8/21

21

23

Example

- Only replace free occurrences
- $(\lambda y. y z (\lambda z. z)) [(\lambda x. x) / z] =$ $\lambda y. y (\lambda x. x) (\lambda z. z)$

Not

$$\lambda$$
 y. y (λ x. x) (λ z. (λ x. x))

12/8/21

β reduction

- β Rule: (λ x. P) N --β--> P [N /x]
- Essence of computation in the lambda calculus
- Usually defined on α-equivalence classes of terms

12/8/21

Example

- $(\lambda z. (\lambda x. xy) z) (\lambda y. yz)$
- $--\beta--> (\lambda x. x y) (\lambda y. y z)$
- --β--> (λ y. y z) y --β--> y z
- **(λ x. x x)** (λ x. x x)
- $--\beta-->(\lambda \times \times \times)(\lambda \times \times \times)$
- $--\beta--> (\lambda X. X X) (\lambda X. X X) --\beta-->$

12/8/21

α β Equivalence

- α β equivalence is the smallest congruence containing α equivalence and β reduction
- A term is in *normal form* if no subterm is α equivalent to a term that can be β reduced
- Hard fact (Church-Rosser): if e_1 and e_2 are $\alpha\beta$ -equivalent and both are normal forms, then they are α equivalent

12/8/21 25

Order of Evaluation

- Not all terms reduce to normal forms
- Not all reduction strategies will produce a normal form if one exists

12/8/21 26

Lazy evaluation:

- Always reduce the left-most application in a top-most series of applications (i.e. Do not perform reduction inside an abstraction)
- Stop when term is not an application, or left-most application is not an application of an abstraction to a term

12/8/21

Example 1

- **•** (λ z. (λ x. x)) ((λ y. y y) (λ y. y y))
- Lazy evaluation:
- Reduce the left-most application:
- $(\lambda z. (\lambda x. x)) ((\lambda y. y y) (\lambda y. y y))$ -- β --> $(\lambda x. x)$

12/8/21 28

Eager evaluation

- (Eagerly) reduce left of top application to an abstraction
- Then (eagerly) reduce argument
- Then β-reduce the application

Example 1

- **•** (λ z. (λ x. x))((λ y. y y) (λ y. y y))
- Eager evaluation:
- Reduce the rator of the top-most application to an abstraction: Done.
- Reduce the argument:
- (λ z. (λ x. x))((λ y. y y) (λ y. y y))
- $-\beta->(\lambda z. (\lambda x. x))((\lambda y. y y) (\lambda y. y y))$
- $--\beta$ --> (λ z. (λ x. x))((λ y. y y) (λ y. y y))...

12/8/21 30

12/8/21

29

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda x. x x)((\lambda y. y y) (\lambda z. z)) --\beta-->$

Example 2

- $(\lambda x. x x)((\lambda y. y y) (\lambda z. z))$
- Lazy evaluation:

 $(\lambda x. x x)((\lambda y. y y) (\lambda z. z)) --\beta-->$

12/8/21

31

32

Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda \times X \times X)((\lambda y. y y) (\lambda z. z))$ -- β --> $((\lambda y. y y) (\lambda z. z))((\lambda y. y y) (\lambda z. z))$

12/8/21

=

12/8/21

Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda x. x x)((\lambda y. y y) (\lambda z. z)) --\beta-->$ $((\lambda y. y y) (\lambda z. z)) ((\lambda y. y y) (\lambda z. z)$

12/8/21

Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

 $(\lambda x. x x)((\lambda y. y y) (\lambda z. z)) --\beta-->$ $((\lambda y. y) y) (\lambda z. z)) ((\lambda y. y y) (\lambda z. z))$

12/8/21

4

Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

(λ x. x x)((λ y. y y) (λ z. z)) --β--> ((λ y. y y) (λ z. z)) ((λ y. y y) (λ z. z))-β--> ((λ z. z) (λ z. z))((λ y. y y) (λ z. z))

12/8/21

35

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

(λ x. x x)((λ y. y y) (λ z. z)) --β-->
((λ y. y y) (λ z. z)) ((λ y. y y) (λ z. z))
--β-->
$$((λ z. z) (λ z. z))((λ y. y y) (λ z. z))$$

12/8/21

37

Example 2

- $(\lambda x. x x)((\lambda y. y y) (\lambda z. z))$
- Lazy evaluation:

$$(λ x. x x)((λ y. y y) (λ z. z)) --β-->$$

 $((λ y. y y) (λ z. z)) ((λ y. y y) (λ z. z))$
 $-β--> ((λ z. z)) ((λ y. y y) (λ z. z))$

12/8/21 38

Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

$$(λ x. x x)((λ y. y y) (λ z. z)) --β-->$$
 $((λ y. y y) (λ z. z)) ((λ y. y y) (λ z. z))$
 $-β--> ((λ z. z) (λ z. z))((λ y. y y) (λ z. z))$
 $-β--> (λ z. z) ((λ y. y y) (λ z. z))$

12/8/21

Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

12/8/21 40

Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

$$(λ x. x x)((λ y. y y) (λ z. z)) --β-->$$

$$(λ y. y y) (λ z. z) ((λ y. y y) (λ z. z))$$

$$(λ y. y y) (λ z. z) ((λ y. y y) (λ z. z))$$

$$(-β--> (λ z. z) ((λ y. y y) (λ z. z)) --β-->$$

$$(λ y. y y) (λ z. z)$$

12/8/21

-

41

Example 2

- (λ x. x x)((λ y. y y) (λ z. z))
- Lazy evaluation:

$$(λ x. x x)((λ y. y y) (λ z. z)) --β-->$$

$$(λ y. y y) (λ z. z)) ((λ y. y y) (λ z. z))$$

$$(λ z. z) (λ z. z)((λ y. y y) (λ z. z))$$

$$-β--> (λ z. z)((λ y. y y) (λ z. z)) --β-->$$

$$(λ y. y y) (λ z. z) γρ λ z. z$$

- (λ x. x x)((λ y. y y) (λ z. z))
- Eager evaluation:

$$(\lambda \times \times \times)$$
 $((\lambda y. y y) (\lambda z. z))$ $--\beta-->$ $(\lambda \times \times \times)$ $((\lambda z. z) (\lambda z. z))$ $--\beta-->$ $(\lambda \times \times \times)$ $(\lambda z. z)$ $--\beta-->$

 $(\lambda z. z) (\lambda z. z) --\beta--> \lambda z. z$

12/8/21

43

Untyped λ -Calculus

- Only three kinds of expressions:
 - Variables: x, y, z, w, ...
 - Abstraction: λ x. e
 (Function creation)
 - Application: e₁ e₂

12/8/21 44

How to Represent (Free) Data Structures (First Pass - Enumeration Types)

- Suppose τ is a type with n constructors: $C_1, ..., C_n$ (no arguments)
- Represent each term as an abstraction:
- Let $C_i \rightarrow \lambda X_1 \dots X_n$. X_i
- Think: you give me what to return in each case (think match statement) and I'll return the case for the ith constructor

12/8/21

How to Represent Booleans

- bool = True | False
- True $\rightarrow \lambda x_1$. λx_2 . $x_1 \equiv_{\alpha} \lambda x$. λy . x
- False $\rightarrow \lambda x_1$. λx_2 . $x_2 \equiv_{\alpha} \lambda x$. λy . y
- Notation
 - Will write

$$\lambda x_1 ... x_n$$
. e for λx_1 λx_n . e $e_1 e_2 ... e_n$ for $(...(e_1 e_2)... e_n)$

12/8/21 46

Functions over Enumeration Types

- Write a "match" function
- match e with $C_1 \rightarrow x_1$

$$| \dots | C_n \rightarrow X_n$$

- $\rightarrow \lambda X_1 \dots X_n e. e X_1 \dots X_n$
- Think: give me what to do in each case and give me a case, and I'll apply that case

12/8/21 47

Functions over Enumeration Types

- type $\tau = C_1 | ... | C_n$
- match e with $C_1 \rightarrow x_1$

$$\mid ... \mid C_n \rightarrow X_n$$

- $match\tau = \lambda x_1 ... x_n e. e x_1...x_n$
- e = expression (single constructor)
 x_i is returned if e = C_i

match for Booleans

- bool = True | False
- True $\rightarrow \lambda x_1 x_2 \cdot x_1 \equiv_{\alpha} \lambda x y \cdot x$
- False $\rightarrow \lambda x_1 x_2 \cdot x_2 \equiv_{\alpha} \lambda x y \cdot y$
- \blacksquare match_{hool} = ?

12/8/21

match for Booleans

- bool = True | False
- True $\rightarrow \lambda x_1 x_2 ... x_1 \equiv_{\alpha} \lambda x y ... x$
- False $\rightarrow \lambda x_1 x_2 \cdot x_2 \equiv_{\alpha} \lambda x y \cdot y$
- match_{bool} = $\lambda x_1 x_2$ e. e $x_1 x_2$ ≡_a $\lambda x y$ b. b x y

12/8/21 50

How to Write Functions over Booleans

- if b then x₁ else x₂ →
- if_then_else b x₁ x₂ = b x₁ x₂
- if_then_else $\equiv \lambda$ b $x_1 x_2$. b $x_1 x_2$

12/8/21

4

How to Write Functions over Booleans

- Alternately:
- if b then x_1 else x_2 = match b with True -> x_1 | False -> x_2 \rightarrow match_{bool} x_1 x_2 b = (λ x_1 x_2 b . b x_1 x_2) x_1 x_2 b = b x_1 x_2
- if_then_else $\equiv \lambda \ b \ x_1 \ x_2.$ (match_{bool} $x_1 \ x_2 \ b$) $= \lambda \ b \ x_1 \ x_2.$ ($\lambda \ x_1 \ x_2 \ b \ .$ $b \ x_1 \ x_2$) $x_1 \ x_2 \ b$ $= \lambda \ b \ x_1 \ x_2.$ $b \ x_1 \ x_2$

12/8/21 52

Example:

not b

- = match b with True -> False | False -> True
- \rightarrow (match_{bool}) False True b
- = $(\lambda x_1 x_2 b . b x_1 x_2) (\lambda x y. y) (\lambda x y. x) b$
- = b $(\lambda x y. y)(\lambda x y. x)$
- not $\equiv \lambda$ b. b $(\lambda x y. y)(\lambda x y. x)$
- Try and, or

12/8/21

4

and

or

12/8/21

53

How to Represent (Free) Data Structures (Second Pass - Union Types)

- Suppose τ is a type with n constructors: type $\tau = C_1 t_{11} \dots t_{1k} | \dots | C_n t_{n1} \dots t_{nm}$
- Represent each term as an abstraction:
- $C_i t_{i1} \dots t_{ij} \rightarrow \lambda X_1 \dots X_n$ $X_i t_{i1} \dots t_{ij}$
- $C_i \rightarrow \lambda \ t_{i1} \dots \ t_{ij} \ X_1 \dots \ X_n \cdot X_i \ t_{i1} \dots \ t_{ij}$
- Think: you need to give each constructor its arguments fisrt

12/8/21

How to Represent Pairs

- Pair has one constructor (comma) that takes two arguments
- type (α, β) pair = (,) α β
- (a , b) --> λ x . x a b
- (_ , _) --> λ a b x . x a b

12/8/21 56

Functions over Union Types

- Write a "match" function
- match e with C₁ y₁ ... y_{m1} -> f₁ y₁ ... y_{m1}
 | ...
 | Cₙ y₁ ... y_{mn} -> fₙ y₁ ... y_{mn}
- $match\tau \rightarrow \lambda f_1 ... f_n e. e f_1...f_n$
- Think: give me a function for each case and give me a case, and I'll apply that case to the appropriate fucntion with the data in that case

12/8/21

55

Functions over Pairs

- match_{pair} = λ f p. p f
- fst p = match p with (x,y) -> x
- fst $\rightarrow \lambda$ p. match_{pair} (λ x y. x) = (λ f p. p f) (λ x y. x) = λ p. p (λ x y. x)
- snd $\rightarrow \lambda$ p. p (λ x y. y)

12/8/21 58

How to Represent (Free) Data Structures (Third Pass - Recursive Types)

- Suppose τ is a type with n constructors: type $\tau = C_1 t_{11} \dots t_{1k} | \dots | C_n t_{n1} \dots t_{nm}$
- Suppose t_{ih} : τ (ie. is recursive)
- In place of a value t_{ih} have a function to compute the recursive value $r_{ih} x_1 \dots x_n$
- $C_i t_{i1} \dots t_{ih} \dots t_{ij} \rightarrow \lambda X_1 \dots X_n \cdot X_i t_{i1} \dots (t_{ih} X_1 \dots X_n) \dots t_{ii}$
- $C_i \rightarrow \lambda t_{i1} \dots t_{ih} \dots t_{ij} X_1 \dots X_n . X_i t_{i1} \dots (r_{ih} X_1 \dots X_n) \dots t_{ii}$

12/8/21

59

How to Represent Natural Numbers

- nat = Suc nat | 0
- Suc = λ n f x. f (n f x)
- Suc $n = \lambda f x$. f(n f x)
- $\mathbf{0} = \lambda f x. x$
- Such representation called Church Numerals

Some Church Numerals

• Suc 0 = $(\lambda \text{ n f x. f (n f x)}) (\lambda \text{ f x. x}) --> \lambda \text{ f x. f } ((\lambda \text{ f x. x}) \text{ f x}) --> \lambda \text{ f x. f } ((\lambda \text{ x. x}) \text{ x}) --> \lambda \text{ f x. f x}$

Apply a function to its argument once

12/8/21

Some Church Numerals

• Suc(Suc 0) = $(\lambda \text{ n f x. f (n f x)})$ (Suc 0) --> $(\lambda \text{ n f x. f (n f x)})$ $(\lambda \text{ f x. f x})$ --> $\lambda \text{ f x. f }((\lambda \text{ f x. f x}) \text{ f x}))$ --> $\lambda \text{ f x. f }((\lambda \text{ x. f x}) \text{ x}))$ --> $\lambda \text{ f x. f }(f \text{ x})$ Apply a function twice

In general $n = \lambda f x$. f (... (f x)...) with n applications of f

12/8/21 62

Primitive Recursive Functions

- Write a "fold" function
- fold f₁ ... f_n = match e with C₁ y₁ ... y_{m1} -> f₁ y₁ ... y_{m1}

| ...
|
$$Ci$$
 y_1 ... r_{ij} ... y_{in} -> $f_n y_1$... (fold f_1 ... $f_n r_{ij}$) ... y_{mn}
| ...
| $C_n y_1$... y_{mn} -> $f_n y_1$... y_{mn}

- $fold\tau \rightarrow \lambda f_1 ... f_n e. e f_1...f_n$
- Match in non recursive case a degenerate version of fold

12/8/21

61

Primitive Recursion over Nat

- fold f z n=
- match n with 0 -> z
- | Suc m -> f (fold f z m)
- $\overline{\text{fold}} \equiv \lambda \, \text{f z n. n f z}$
- is zero $n = \overline{\text{fold}}$ (λ r. False) True n
- = $(\lambda f x. f^n x) (\lambda r. False)$ True
- \bullet = ((λ r. False) ⁿ) True
- \blacksquare if n = 0 then True else False

12/8/21

Adding Church Numerals

- $\mathbf{n} \equiv \lambda f \mathbf{x} \cdot f^{\mathbf{n}} \mathbf{x}$ and $\mathbf{m} \equiv \lambda f \mathbf{x} \cdot f^{\mathbf{m}} \mathbf{x}$
- $\overline{n + m} = \lambda f x. f^{(n+m)} x$ $= \lambda f x. f^{n} (f^{m} x) = \lambda f x. \overline{n} f (\overline{m} f x)$
- + $\equiv \lambda$ n m f x. n f (m f x)
- Subtraction is harder

12/8/21

65

Multiplying Church Numerals

- $\overline{n} \equiv \lambda f x. f^n x$ and $m \equiv \lambda f x. f^m x$
- $\overline{n * m} = \lambda f \underline{x}. (f^{n*m}) x = \lambda f \underline{x}. (f^m)^n x$ $= \lambda f \underline{x}. \overline{n} (\overline{m} f) x$
- $\bar{*} \equiv \lambda \, \text{n m f x. n (m f) x}$

12/8/21

Predecessor

- let pred_aux n =
 match n with 0 -> (0,0)
 | Suc m
- -> (Suc(fst(pred_aux m)), fst(pred_aux m) = fold (λ r. (Suc(fst r), fst r)) (0,0) n
- pred = λ n. snd (pred_aux n) n = λ n. snd (fold (λ r.(Suc(fst r), fst r)) (0,0) n)

12/8/21

Recursion

- Want a λ-term Y such that for all term R we have
- Y R = R (Y R)
- Y needs to have replication to "remember" a copy of R
- $Y = \lambda y$. $(\lambda x. y(x x)) (\lambda x. y(x x))$
- Y R = $(\lambda x. R(x x)) (\lambda x. R(x x))$ = R $((\lambda x. R(x x)) (\lambda x. R(x x)))$
- Notice: Requires lazy evaluation

12/8/21 68

Factorial

= 3 * 2 * 1 * 1 = 6

• Let $F = \lambda$ f n. if n = 0 then 1 else n * f (n - 1)Y F 3 = F (Y F) 3= if 3 = 0 then 1 else 3 * ((Y F)(3 - 1)) = 3 * (Y F) 2 = 3 * (F(Y F) 2) = 3 * (if 2 = 0 then 1 else 2 * (Y F)(2 - 1)) = 3 * (2 * (Y F)(1)) = 3 * (2 * (F(Y F) 1)) =... = 3 * 2 * 1 * (if 0 = 0 then 1 else 0*(Y F)(0 -1))

12/8/21 69

Y in OCaml

let rec y f = f (y f);;
val y : ('a -> 'a) -> 'a = <fun>
let mk_fact =
 fun f n -> if n = 0 then 1 else n * f(n-1);;
val mk_fact : (int -> int) -> int -> int = <fun>
y mk_fact;;
Stack overflow during evaluation (looping)

Stack overflow during evaluation (looping recursion?).

12/8/21 70

Eager Eval Y in Ocaml

Use recursion to get recursion

Some Other Combinators

- For your general exposure
- $I = \lambda X \cdot X$
- $K = \lambda x. \lambda y. x$
- $K_* = \lambda x. \lambda y. y$
- $S = \lambda x. \lambda y. \lambda z. x z (y z)$

72

12/8/21 71 12/8/21