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i Semantics

= EXpresses the meaning of syntax

s Static semantics

=« Meaning based only on the form of the
expression without executing it

= Usually restricted to type checking / type
inference
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i Dynamic semantics

= Method of describing meaning of
executing a program
= Several different types:
= Operational Semantics
= Axiomatic Semantics
= Denotational Semantics

12/9/19



i Dynamic Semantics

= Different languages better suited
to different types of semantics

= Different types of semantics
serve different purposes
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i Operational Semantics

= Start with a simple notion of machine

= Describe how to execute (implement)
programs of language on virtual machine, by
describing how to execute each program
statement (ie, following the structure of the
program)

= Meaning of program is how its execution
changes the state of the machine

= Useful as basis for implementations
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i Axiomatic Semantics

= Also called Floyd-Hoare Logic

= Based on formal logic (first order
predicate calculus)

= Axiomatic Semantics is a logical system
built from axioms and inference rules

= Mainly suited to simple imperative
programming languages
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i Axiomatic Semantics

= Used to formally prove a property
(post-condition) of the state (the
values of the program variables) after
the execution of program, assuming
another property (pre-condition) of the
state before execution

= Written :
{Precondition} Program {Postcondition}
= Source of idea of loop invariant
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i Denotational Semantics

= Construct a function 9 assigning a
mathematical meaning to each program

construct

= Lambda calculus often used as the range
of the meaning function

= Meaning function is compositional:
meaning of construct built from meaning
of parts

= Useful for proving properties of programs
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i Natural Semantics

= Aka Structural Operational Semantics, aka
“Big Step Semantics”

= Provide value for a program by rules and
derivations, similar to type derivations

= Rule conclusions look like
(C,m)|m
or
(E, m) | v
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i Simple Imperative Programming Language

n [ € Identifiers
s N &€ Numerals

m B::=true | false| B& B| Bor B| not B
| E<E|E=E

« E:=N|I|E+E|/E*E|E-E|-E

s Ci=skip| CGC| I:=E
| if Bthen Celse Cfi | while Bdo Cod
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i Natural Semantics of Atomic Expressions

= Identifiers: (Im) | m(I)

= Numerals are values: (N,m) | N

= Booleans: (true,m) | true
(false ,m) || false
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i Booleans:

(B, m) | false (B, m) | true (B, m)| b

(B& B, m) | false (B& B, m)| b
(B, m) | true (B, m)| false (B', m)| b
(Bor B, m) | true (Bor B', m) | b

~ (B, m) | true (B, m) | false

(not B, m) | false (not B, m) | true
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i Relations

(EmIiU (EE,m{yV U~V=>b
(E~E, m)|b

= By U~ V = b, we mean does (the meaning
of) the relation ~ hold on the meaning of U
and V

= May be specified by a mathematical
expression/equation or rules matching U and
V
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i Arithmetic Expressions

(EmyU (E,m}V UopV=N
(EopE', m) | N
where N is the specified value for U op V
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i Commands

Skip: (skip, m) | m

Assignment: (Em)| V
(I:=Em) | mI <--V]

Sequencing: (Cm) | m  (C,m) | m’”’
(GC,m{§m”’
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i If Then Else Command

(Bm) | true (Cm) | m’
(if Bthen Celse C" fi, m) | m’

(Bm) || false (C',m) | m’
(if Bthen Celse C" fi, m) | m’
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i While Command

(B,m) | false
~ (while Bdo Cod, m) | m

(B,m)|true (Cm)|m” (while Bdo Cod, m’ Y|m’’

(while BdoCod, m) | m”’
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i Example: If Then Else Rule

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7}) {7
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i Example: If Then Else Rule

(x> 5, {x->7})|7?

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
x->731 7
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i Example: Arith Relation

?2>7?="7

(XI{X->7})‘U? (SI{X->7})‘U'?
(X >5,{x->7}|7?

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7}) {7
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i Example: Identifier(s)

/ > 5 = true
(X, {xX->7V17 (5{x->7)|5
(x> 5, {x->7}{7?

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7}) {7
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i Example: Arith Relation

/ > 5 = true

(XI{X->7})U'7 (SI{X->7})‘U'5
(x > 5, {x-> 7}){true

(it x> 5theny:=2 + 3 elsey:=3 + 41i,
x->71)17?

12/9/19

26



i Example: If Then Else Rule

/ > 5 = true
(XAX->7N17 (5{x->71)||5 (y:i=2+ 3, {x-> 7}
(x > 5, {x-> 7}){true | ?

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
X->73) {7
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i Example: Assignment

/ > 5 = true (243, {x->7})|7?
(XAX->7N17 (5{x->71)||5 (yi=2+ 3, {x->7}
(x > 5, {x-> 7}){true | ?

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7}) {7
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i Example: Arith Op

24 7=7
(2Ax->71)? GBAx->7}) |?
/ > 5 = true (243, {x->7})|7?
(XAX->7NI7 (5 {x->7})|5 (y:i=2+ 3, {x-> 7}

(x > 5, {x-> 7}){true ?
(if x >5theny:=2 + 3 elsey:=3 + 4fij,

X->7}3) {7
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i Example: Numerals

2+3=5
(2, {x->71)12 (GBAx->7}H) 13
/ > 5 = true (243, {x->7}){7?
(XAX->7NI7 (5 {x->7})|5 (y:i=2+ 3, {x-> 7}
(x > 5, {x -> 7}){true | ?

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
X->73) {7
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i Example: Arith Op

2+3=5
(QAx->72  (BLx->7}) |3
/ > 5 = true (243, {x->7})|5
(XAX->7NI7 (5 {x->7})|5 (y:i=2+ 3, {x-> 7}

(x > 5, {x -> 7}){true |?
(if x >5theny:=2 + 3 elsey:=3 + 4fij,

X->73) 1 7?
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i Example: Assignment

2+3=5
(2, {x->71)12 (GBAx->7}H) 13
/ > 5 = true (243, {x->7})|5
(XAX->7NI7 (5 {x->7})|5 (y:i=2+ 3, {x-> 7}
(x > 5, {x-> 7}){true | {x->7, y->5}

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{xX->7}) {7
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i Example: If Then Else Rule

2+3=5
(2, {x->71)12 (GBAx->7}H) 13
/ > 5 = true (243, {x->7})|5
(XAX->7NI7 (5 {x->7})|5 (y:i=2+ 3, {x-> 7}
(x > 5, {x-> 7}){true | {x->7, y->5}

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7}) | {x->7, y->5}
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i Let in Command

(Em) v (GmI<-v]) § m’

(letIT=EinC m) | m "’

Where m”” (y) = m’ (y) for y= I and
m’’" (I) = m (1) if m(1) is defined,
and m’’ () is undefined otherwise
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i Example

(X {x->5}) | 5 (3,{x->5}) | 3

(x+3,{x->5}) | 8
(54{x->17}) | 5 (xX:=x+3,{x->5}) | {x->8}
(let x = 5in (X:=x+3), {x-> 17}) | ?
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i Example

(X {x->5}) | 5 (3,{x->5}) | 3

(x+3,{x->5}) | 8
(54{x->17}) | 5 (xX:=x+3,{x->5}) | {x->8}
(letx =5in (Xi=x+3), {x -> 17}) | {x->17}
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i Comment

= Simple Imperative Programming Language
introduces variables implicitly through
assignment

= The let-in command introduces scoped
variables explictly

= Clash of constructs apparent in awkward
semantics
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i Interpretation Versus Compilation

= A compiler from language L1 to language
L2 is a program that takes an L1 program
and for each piece of code in L1 generates a
piece of code in L2 of same meaning

= An interpreter of L1 in L2 is an L2 program
that executes the meaning of a given L1
program

= Compiler would examine the body of a loop
once; an interpreter would examine it every
time the loop was executed
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i Interpreter

= An Interpreter represents the operational
semantics of a language L1 (source
language) in the language of implementation
L2 (target language)

= Built incrementally
« Start with literals
= Variables
= Primitive operations
= Evaluation of expressions
= Evaluation of commands/declarations
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i Interpreter

= Takes abstract syntax trees as input
= In simple cases could be just strings

= One procedure for each syntactic category
(nonterminal)

= eg one for expressions, another for commands

= If Natural semantics used, tells how to
compute final value from code

= If Transition semantics used, tells how to
compute next “state”

= 10 get final value, put in a loop
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i Natural Semantics Example

= compute_exp (Var(v), m) = look_up vm
= compute_exp (Int(n), _) = Num (n)

= compute_com(IfExp(b,c1,c2),m) =

if compute_exp (b,m) = Bool(true)
then compute_com (c1,m)

else compute_com (c2,m)
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i Natural Semantics Example

= compute_com(While(b,c), m) =
if compute_exp (b,m) = Bool(false)
then m
else compute_com
(While(b,c), compute_com(c,m))

= May fail to terminate - exceed stack limits
s Returns no useful information then
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i Transition Semantics

= Form of operational semantics

= Describes how each program construct transforms

machine state by transitions
= Rules look like
(C,m)-->((C,m’) or (Cm)-->m’
= C, C’ is code remaining to be executed

= m, m represent the state/store/memory/
environment

» Partial mapping from identifiers to values
= Sometimes m (or C) not needed
= Indicates exactly one step of computation

12/9/19
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i Expressions and Values

= C, C" used for commands; E, E™ for
expressions; U,V for values

= Special class of expressions designated as
values

= Eg 2, 3 are values, but 2+3 is only an
expression

= Memory only holds values
« Other possibilities exist
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i Evaluation Semantics

= Transitions successfully stops when E/C s a
value/memory

= Evaluation fails if no transition possible, but
not at value/memory

= Value/memory is the final meaning of

original expression/command (in the given
state)

= Coarse semantics: final value / memory
= More fine grained: whole transition sequence
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i Simple Imperative Programming Language

n [ € Identifiers
s N &€ Numerals

m Bii=true | false | B& B| BorB| not B | E
<E|E=E

wn E=N/|I|E+E|EXE|E-E/-E
mCii=skip| CGC| I::=E
| if Bthen Celse Cfi | while Bdo Cod
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i Transitions for Expressions

= Numerals are values

= Boolean values = {true, false}

= Identifiers: (I,m) --> (m(1), m)
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i Boolean Operations:

= Operators: (short-circuit)
(false & B, m) --> (false,m) (B, m) --> (B”, m)
(true& B, m) -->(Bm) (B& B, m)-->(B"&B’, m)

(true or B, m) --> (true,m) (B, m)--> (B”, m)
(false or B, m) --> (B.m) (Bor B', m)--> (B”or B",m)

(not true, m) --> (false,m) (B, m) --> (B, m)
(not false, m) --> (true,m) (not B, m) --> (not B°, m)

12/9/19 48



i Relations

(E, m)--> (E"",m)
(E~E, m)->(E ~E,m)

(E, m) --> (E",m)
(V~E m)-> (V~E',m)

(U~ V, m) --> (true,m) or (false,m)
depending on whether U ~ V holds or not
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i Arithmetic Expressions

(E, m) --> (E"",m)
(EopE’, m)--> (E"" op E’,m)

(E, m) --> (E",m)
(Vop E, m)-->(Vop E’,m)

(Uop V, m) -->(N,m) where Nis the
specified value for U op V

12/9/19
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i Commands - in English

= Skip means done evaluating

= When evaluating an assignment, evaluate the
expression first

= If the expression being assigned is already a
value, update the memory with the new value for
the identifier

= When evaluating a sequence, work on the first
command in the sequence first

= If the first command evaluates to a new memory
(ie completes), evaluate remainder with new
memory
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i Commands

(skip, m) --> m

(Elm) --> (E’/m)
(I.:=E,m) --> (I::=E",m)

(I::=V,m) --> m[I <-- V]

(Cm) --> (C"m" ) (Cm) -->m’
(GC, m-->(C7C,m) (GC, m-->(C,m")
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i If Then Else Command - in English

= If the boolean guard in an if_then_else
is true, then evaluate the first branch

s If it is false, evaluate the second branch

= If the boolean guard is not a value,
then start by evaluating it first.
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i If Then Else Command

(if true then Celse C’ fi, m) --> (C, m)
(if false then Celse C’ fi, m) --> (C’, m)
(B/m) -2 (B’/m)

(if Bthen Celse C’ fi, m)
--> (if B’ then Celse C’ fi, m)
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i Wrong! BAD!

(while true do Cod, m) -2 (C, m)

(while true do x := 5 od, { x-> 5})

(B, m) > (B, m)

(while B do C od, m) -=> (while B" do C od, m)
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i While Command

(while Bdo Cod, m) -->
(if Bthen C, while Bdo Cod else skip fi, m)

In English: Expand a While into a test of the boolean
guard, with the true case being to do the body
and then try the while loop again, and the false
case being to stop.
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i Example Evaluation

= First step:

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7})

-—-> 7
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i Example Evaluation

= First step:

(X >5,{x->7})->7?

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7})

-—-> 7
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i Example Evaluation

= First step:

(XAX->7}) ==>(7,{x->7})
(X >5,{x->7})->7?

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7})

--> 7
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i Example Evaluation

= First step:

(X AX->7}) => (7, {x->7})
(X >5,{x->7})-->(7>5,{x->7})

(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7})

-—-> 7
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i Example Evaluation

= First step:
(X,{X->7}) > (7, {x->7})
(X >5,{x->7})-->(7>5,{x->7})
(if x >5theny:=2 + 3 elsey:=3 + 4fij,
{X->7})
--> (if 7 > 5theny:=2 + 3 else y:=3 + 4fi,
{X->7})
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i Example Evaluation

= Second Step:
(7 >5, {x->7}) --> (true, {x->73})
(if 7 >5theny:=2 + 3 elsey:=3 + 4 fi,
{X->7})
--> (if true then y:=2 + 3 else y:=3 + 4 fi,
{x->7})

= Third Step:
(if true theny:=2 + 3 else y:=3 + 4 fi, {x -> 7})
-->(y:=2+3, {X->7})
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i Example Evaluation

= Fourth Step:
(243, {x->7}) --> (5, {x -> 7})

(y:=2+3, {x->7}) --> (y:=5, {x->7})

. Fifth Step:
(y:=5, {x->7}) -->{y->5,x->7}
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i Example Evaluation

. Bottom Line:

(if x >5theny:=2 + 3 elsey:=3 + 4fj,
{X->7})

--> (if 7 > 5then y:=2 + 3 elsey:=3 + 4fi,
{X->7})

-->(if true then y:=2 + 3 else y:=3 + 4 fi,
{X->7})
-->(y:=243, {x->7})

--> (y:=5, {X->7}) --> {y -> 5, x -> 7}
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i Transition Semantics Evaluation

= A sequence of steps with trees of
justification for each step

g U Uyg

(Cllml) -=> (CZImZ) --> (C3Im3) > > m

= Let -->* be the transitive closure of -->

= Ie, the smallest transitive relation
containing -->
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i Adding Local Declarations

= Add to expressions:
s Eii=...|letI=EinE |[funI->E | EF
= fun 7-> Eis a value

= Could handle local binding using state, but
have assumption that evaluating expressions
doesn’ t alter the environment

s We will use substitution here instead

= Notation: E[E" /I] means replace all free
occurrence of Iby E’ in E
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i Call-by-value (Eager Evaluation)

(letI=VinE m)-->(V/I],m)

(E, m) --> (E"",m)
(letI=EinE’,m-->(UetlI=F" inE")

((funI->E)V, m)-->(EV/I]m)

(E’/ m) --> (E’ ’/m)
((fun I-> E) E', m)--> ((funI-> E)E"", m)
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i Call-by-name (Lazy Evaluation)

s(letI=EinE’, m-->(E [E/I],mM)
s ((funI->E )YE m)-->(E [E/I],m)

= Question: Does it make a difference?
= It can depending on the language
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i Church-Rosser Property

s Church-Rosser Property: If E-->* E,
and E-->* E,, if there exists a value V
such that E, -->*V, then E, -->* V

= Also called confluence or diamond
property
s Example: E=2+3+4
P ‘_/ T
E,=5+4 E.=2+7

Ny
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i Does It always Hold?

= No. Languages with side-effects tend not be
Church-Rosser with the combination of call-by-
name and call-by-value

= Alonzo Church and Barkley Rosser proved in 1936
the A\-calculus does have it

= Benefit of Church-Rosser: can check equality of
terms by evaluating them (Given evaluation
strategy might not terminate, though)
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