Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Example: test.ml

```ml
{ type result = Int of int | Float of float | String of string }
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +
```
Example: test.mll

rule main = parse

 (digits).'</digits as f { Float (float_of_string f) }
| digits as n { Int (int_of_string n) }
| letters as s { String s}
| _ { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in
 print_newline ();
 main newlexbuf }
Example

```ocaml
# #use "test.ml";;
...
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int ->
  result = <fun>
hi there 234 5.2
- : result = String "hi"
```

What happened to the rest?!?
Example

let b = Lexing.from_channel stdin;;
main b;;
hi 673 there
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"
Problem

- How to get lexer to look at more than the first token at one time?
 - Generally you DON’T want this

- Answer: *action* has to tell it to -- recursive calls

- Side Benefit: can add “state” into lexing

- Note: already used this with the _ case
Example

rule main = parse
 (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf }
| eof { [] }
| _ { main lexbuf }
Example Results

hi there 234 5.2

: result list = [String "hi"; String "there"; Int 234; Float 5.2]

#

Used Ctrl-d to send the end-of-file signal
Dealing with comments

First Attempt

```ml
let open_comment = "(*)
let close_comment = "*)"

rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf }
```
Dealing with comments

open_comment	{ comment lexbuf}
eof	{ [] }
_	{ main lexbuf }

and comment = parse

 close_comment | { main lexbuf } |
| _ | { comment lexbuf } |
Dealing with nested comments

rule main = parse ...
| open_comment { comment 1 lexbuf }
| eof { [] } }
| _ { main lexbuf }
and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
| close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
| _ { comment depth lexbuf }
Dealing with nested comments

rule main = parse

 (digits) \.'\ digits as f { Float (float_of_string f) ::
 main lexbuf}
| digits as n { Int (int_of_string n) :: main lexbuf }
| letters as s { String s :: main lexbuf}
| open_comment { (comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }
Dealing with nested comments

and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
 | close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
 | _ { comment depth lexbuf }
Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata

- Whole family more of grammars and automata – covered in automata theory
Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s

- `<Sum>` ::= 0
- `<Sum>` ::= 1
- `<Sum>` ::= `<Sum>` + `<Sum>`
- `<Sum>` ::= (`<Sum>`)
BNF Grammars

- Start with a set of characters, a, b, c, \ldots
 - We call these *terminals*
- Add a set of different characters, X, Y, Z, \ldots
 - We call these *nonterminals*
- One special nonterminal S called *start symbol*
BNF Grammars

- BNF rules (aka *productions*) have form
 \[X ::= y \]
 where \(X \) is any nonterminal and \(y \) is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- **Terminals:** 0 1 + ()
- **Nonterminals:** <Sum>
- **Start symbol:** = <Sum>

- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

Can be abbreviated as:
- <Sum> ::= 0 | 1
 - | <Sum> + <Sum> | (<Sum>)
BNF Derivations

Given rules

\[X ::= yZw \] and \[Z ::= v \]

we may replace \(Z \) by \(v \) to say

\[X \Rightarrow yZw \Rightarrow yv\]

Sequence of such replacements called **derivation**

Derivation called **right-most** if always replace the right-most non-terminal
The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol.
BNF Derivations

- Start with the start symbol:

\[<\text{Sum}> \Rightarrow \]
BNF Derivations

- Pick a non-terminal

<Sum> =>
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= <Sum> + <Sum>`

 `<Sum>` => `<Sum> + <Sum>`
Pick a non-terminal:

<Sum> => <Sum> + <Sum>
BNF Derivations

Pick a rule and substitute:

\[<\text{Sum}> ::= (<\text{Sum}>) \]
\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}>) + <\text{Sum}> \]
Pick a non-terminal:

\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \]

\[\Rightarrow (<\text{Sum}>) + <\text{Sum}> \]
BNF Derivations

- Pick a rule and substitute:
 - \(<Sum> ::= <Sum> + <Sum>\)

\(<Sum> \Rightarrow <Sum> + <Sum> \Rightarrow (<Sum>) + <Sum> \Rightarrow (<Sum> + <Sum>) + <Sum>\)
Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}>) + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}>
\]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= 1`

 `<Sum> => <Sum> + <Sum>`

 `=> (<Sum>) + <Sum>`

 `=> (<Sum> + <Sum>) + <Sum>`

 `=> (<Sum> + 1) + <Sum>`
BNF Derivations

- Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]
\[
\Rightarrow (<\text{Sum}>) + <\text{Sum}>
\]
\[
\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}>
\]
\[
\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}>
\]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum>` ::= 0

`<Sum>` => `<Sum>` + `<Sum>`
=> (`<Sum>`) + `<Sum>`
=> (`<Sum>` + `<Sum>`) + `<Sum>`
=> (`<Sum>` + 1) + `<Sum>`
=> (`<Sum>` + 1) + 0
Pick a non-terminal:

\[\langle \text{Sum} \rangle \Rightarrow \langle \text{Sum} \rangle + \langle \text{Sum} \rangle \]
\[\Rightarrow (\langle \text{Sum} \rangle) + \langle \text{Sum} \rangle \]
\[\Rightarrow (\langle \text{Sum} \rangle + \langle \text{Sum} \rangle) + \langle \text{Sum} \rangle \]
\[\Rightarrow (\langle \text{Sum} \rangle + 1) + \langle \text{Sum} \rangle \]
\[\Rightarrow (\langle \text{Sum} \rangle + 1) + 0 \]
BNF Derivations

- Pick a rule and substitute
 - \(<\text{Sum}\> ::= 0\)

\(<\text{Sum}\> \Rightarrow \ <\text{Sum}\> + \ <\text{Sum}\> \\
 \Rightarrow (\ <\text{Sum}\>) + \ <\text{Sum}\> \\
 \Rightarrow (\ <\text{Sum}\> + \ <\text{Sum}\>) + \ <\text{Sum}\> \\
 \Rightarrow (\ <\text{Sum}\> + 1) + \ <\text{Sum}\> \\
 \Rightarrow (\ <\text{Sum}\> + 1) \ 0 \\
 \Rightarrow (\ 0 + 1) + \ 0
BNF Derivations

- (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum>

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0

=> (0 + 1) + 0
\[\text{Sum} ::= 0 \mid 1 \mid \text{Sum} + \text{Sum} \mid (\text{Sum}) \]

\[\text{Sum} => \]
Regular Grammars

- Subclass of BNF
- Only rules of form
 \(<\text{nonterminal}>::=\text{<terminal>}\text{<nonterminal>}\) or
 \(<\text{nonterminal}>::=\text{<terminal>}\) or
 \(<\text{nonterminal}>::=\text{ε}\)
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
Example

- Regular grammar:
 - `<Balanced> ::= ε`
 - `<Balanced> ::= 0<OneAndMore>`
 - `<Balanced> ::= 1<ZeroAndMore>`
 - `<OneAndMore> ::= 1<Balanced>`
 - `<ZeroAndMore> ::= 0<Balanced>`

- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Extended BNF Grammars

- Alternatives: allow rules of from \(X ::= y/z \)
 - Abbreviates \(X ::= y, X ::= z \)
- Options: \(X ::= y[v]z \)
 - Abbreviates \(X ::= yvz, X ::= yz \)
- Repetition: \(X ::= y\{v\}*z \)
 - Can be eliminated by adding new nonterminal \(V \) and rules \(X ::= yz, X ::= yVz, V ::= v, V ::= vV \)
Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it
Example

Consider grammar:

\[
<\text{exp}> ::= <\text{factor}>
\]
\[
| <\text{factor}> + <\text{factor}>
\]
\[
<\text{factor}> ::= <\text{bin}>
\]
\[
| <\text{bin}> * <\text{exp}>
\]
\[
<\text{bin}> ::= 0 | 1
\]

Problem: Build parse tree for \(1 \times 1 + 0\) as an \(<\text{exp}>\).
Example cont.

- $1 \times 1 + 0$: <exp>

<exp> is the start symbol for this parse tree
Example cont.

1 * 1 + 0: \(<\text{exp}>\)
\(<\text{factor}>\)

Use rule: \(<\text{exp}>\) ::= \(<\text{factor}>\)
Example cont.

1 * 1 + 0: \(<exp>\)

\(<factor>\)

\(<bin>\) * \(<exp>\)

Use rule: \(<factor> ::= <bin> * <exp>\)
Example cont.

1 * 1 + 0: \(<\text{exp}> \)

\[
\begin{array}{c}
<\text{factor}> \\
<\text{bin}> \quad * \quad <\text{exp}>
\end{array}
\]

1 \quad <\text{factor}> + \quad <\text{factor}>

Use rules: \(<\text{bin}> ::= 1 \) and

\(<\text{exp}> ::= <\text{factor}> + <\text{factor}> \)
Example cont.

1 * 1 + 0:
```
  <exp>
     <factor>  
       *  
       <exp>
       1  
```

Use rule:
```
  <factor> ::= <bin>
```
Example cont.

1 * 1 + 0: <exp>

Use rules: <bin> ::= 1 | 0
Example cont.

1 * 1 + 0: <exp>

```
<bin> * <exp>
```

```
<factor> + <factor>
```

```
<bin> 1 <bin> 0
```

Fringe of tree is string generated by grammar
Your Turn: \(1 \times 0 + 0 \times 1\)

\[
\begin{array}{c}
<\text{exp}>\\
/ \\
<\text{fact}> + <\text{fact}>\\
/ \\
<\text{b}> * <\text{e}> <\text{b}> * <\text{e}>
\end{array}
\]
Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
 - One datatype for each nonterminal
 - One constructor for each rule
 - Defined as mutually recursive collection of datatype declarations
Example

- Recall grammar:
 \[<exp> ::= <factor> | <factor> + <factor> \]
 \[<factor> ::= <bin> | <bin> * <exp> \]
 \[<bin> ::= 0 | 1 \]

- type exp = Factor2Exp of factor
 | Plus of factor * factor
 and factor = Bin2Factor of bin
 | Mult of bin * exp
 and bin = Zero | One
Example cont.

$1 \times 1 + 0$:

```
<exp>
  <factor>
    <bin> * <exp>
      1 <factor> + <factor>
        <bin>
          1 <bin>
            0
```
Example cont.

- Can be represented as

\[
\text{Factor2Exp} \\
(\text{Mult}(\text{One}, \\
\text{Plus}(\text{Bin2Factor One,} \\
\text{Bin2Factor Zero})))
\]
Ambiguous Grammars and Languages

- A BNF grammar is *ambiguous* if its language contains strings for which there is more than one parse tree.
- If all BNF’s for a language are ambiguous then the language is *inherently ambiguous*.
Example: Ambiguous Grammar

$0 + 1 + 0$

```
<Sum>                      <Sum>
  <Sum> + <Sum>          <Sum> + <Sum>
    |                         |
    0                         0
    |                         |     1
    0                         1
```

```
<Sum>                      <Sum>
  |                         |
  0                         0
  |                         |
  1                         0
```
What is the result for:

$$3 + 4 \times 5 + 6$$
Example

What is the result for:

\[3 + 4 \times 5 + 6 \]

Possible answers:

- \[41 = ((3 + 4) \times 5) + 6 \]
- \[47 = 3 + (4 \times (5 + 6)) \]
- \[29 = (3 + (4 \times 5)) + 6 = 3 + ((4 \times 5) + 6) \]
- \[77 = (3 + 4) \times (5 + 6) \]
Example

What is the value of:

\[7 - 5 - 2 \]
What is the value of:

7 – 5 – 2

Possible answers:

In Pascal, C++, SML assoc. left

7 – 5 – 2 = (7 – 5) – 2 = 0

In APL, associate to right

7 – 5 – 2 = 7 – (5 – 2) = 4
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity

- Not the only sources of ambiguity
Disambiguating a Grammar

- Given ambiguous grammar G, with start symbol S, find a grammar G' with same start symbol, such that
 \[
 \text{language of } G = \text{language of } G'
 \]
- Not always possible
- No algorithm in general
Disambiguating a Grammar

- Idea: Each non-terminal represents all strings having some property
- Identify these properties (often in terms of things that can’t happen)
- Use these properties to inductively guarantee every string in language has a unique parse
Steps to Grammar Disambiguation

- Identify the rules and a smallest use that display ambiguity
- Decide which parse to keep; why should others be thrown out?
- What syntactic restrictions on subexpressions are needed to throw out the bad (while keeping the good)?
- Add a new non-terminal and rules to describe this set of restricted subexpressions (called stratifying, or refactoring)
- **Characterize each non-terminal by a language invariant**
- Replace old rules to use new non-terminals
- Rinse and repeat
Example

- Ambiguous grammar:
 \[<\text{exp}> ::= 0 \mid 1 \mid <\text{exp}> + <\text{exp}>\]
 \[\mid <\text{exp}> * <\text{exp}>\]

- String with more than one parse:
 \[0 + 1 + 0\]
 \[1 * 1 + 1\]

- Source of ambiguity: associativity and precedence
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity

- Not the only sources of ambiguity
How to Enforce Associativity

- Have at most one recursive call per production

- When two or more recursive calls would be natural leave right-most one for right associativity, left-most one for left associativity
Example

- `<Sum>` ::= 0 | 1 | `<Sum>` + `<Sum>`
 | (<`Sum`>)

Becomes

- `<Sum>` ::= `<Num>` | `<Num>` + `<Sum>`
- `<Num>` ::= 0 | 1 | (<`Sum`>)

`<Sum>` + `<Sum>` + `<Sum>`
Operator Precedence

- Operators of highest precedence evaluated first (bind more tightly).

- Precedence for infix binary operators given in following table

- Needs to be reflected in grammar
Precedence Table - Sample

<table>
<thead>
<tr>
<th></th>
<th>Fortan</th>
<th>Pascal</th>
<th>C/C++</th>
<th>Ada</th>
<th>SML</th>
</tr>
</thead>
<tbody>
<tr>
<td>highest</td>
<td>**</td>
<td>*, /,</td>
<td>++, --</td>
<td>**</td>
<td>div, mod, /, *</td>
</tr>
<tr>
<td></td>
<td></td>
<td>div,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mod</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*, /</td>
<td>+, -</td>
<td>*%,</td>
<td>*, //, mod</td>
<td>+, -, ^</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>+, -</td>
<td></td>
<td>+, -</td>
<td>+, -</td>
<td>::</td>
</tr>
</tbody>
</table>
First Example Again

- In any above language, $3 + 4 \times 5 + 6 = 29$
- In APL, all infix operators have same precedence
 - Thus we still don’t know what the value is (handled by associativity)
- How do we handle precedence in grammar?
Higher precedence translates to longer derivation chain

Example:
\[<\text{exp}> ::= 0 \mid 1 \mid <\text{exp}> + <\text{exp}>\]
\[\quad \mid <\text{exp}> * <\text{exp}>\]

Becomes
\[<\text{exp}> ::= <\text{mult_exp}>\]
\[\quad \mid <\text{exp}> + <\text{mult_exp}>\]
\[<\text{mult_exp}> ::= <\text{id}> \mid <\text{mult_exp}> * <\text{id}>\]
\[<\text{id}> ::= 0 \mid 1\]
Parser Code

- `<grammar>.mly` defines one parsing function per entry point
- Parsing function takes a lexing function (lexer buffer to token) and a lexer buffer as arguments
- Returns semantic attribute of corresponding entry point
Ocamlyacc Input

- File format:

```%
{  
    <header>
}
%

<declarations>
%

<rules>
%

<trailer>
```
Ocamlyacc <header>

- Contains arbitrary Ocaml code
- Typically used to give types and functions needed for the semantic actions of rules and to give specialized error recovery
- May be omitted
- <footer> similar. Possibly used to call parser
Ocamlyacc <declarations>

- %token symbol ... symbol
 - Declare given symbols as tokens
- %token <type> symbol ... symbol
 - Declare given symbols as token constructors, taking an argument of type <type>
- %start symbol ... symbol
 - Declare given symbols as entry points; functions of same names in <grammar>.ml
Ocamlyacc `<declarations>`

- **%type `<type>` symbol ... symbol**
 Specify type of attributes for given symbols. Mandatory for start symbols

- **%left symbol ... symbol**
- **%right symbol ... symbol**
- **%nonassoc symbol ... symbol**
 Associate precedence and associativity to given symbols. Same line, same precedence; earlier line, lower precedence (broadest scope)
Ocamlyacc <rules>

- **nonterminal**:

 \[symbol \ldots \ text{symbol} \{ \text{semantic_action} \} \]

 \[\ldots\]

 \[symbol \ldots \ text{symbol} \{ \text{semantic_action} \}\]

;

- Semantic actions are arbitrary Ocaml expressions
- Must be of same type as declared (or inferred) for nonterminal
- Access semantic attributes (values) of symbols by position: \$1 for first symbol, \$2 to second ...
Example - Base types

(* File: expr.ml *)
type expr =
 Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)
and term =
 Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)
and factor =
 Id_as_Factor of string
 | Parenthesized_Expr_as_Factor of expr
Example - Lexer (exprlex.mll)

```ml
{ (*open Exprparse*) } 
let numeric = ['0' - '9'] 
let letter = ['a' - 'z' 'A' - 'Z'] 
rule token = parse 
  | "+" {Plus_token} 
  | "-" {Minus_token} 
  | "*" {Times_token} 
  | "/" {Divide_token} 
  | "(" {Left_parenthesis} 
  | ")" {Right_parenthesis} 
  | letter (letter|numeric|"_")* as id {Id_token id} 
  | [' ' '	' '\n'] {token lexbuf} 
  | eof {EOL} 
```
Example - Parser (exprpparse.mly)

```ml
%%
%
{ open Expr }
%
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL
%start main
%type <expr> main
%%
```
Example - Parser (exprparse.mly)

expr:

term
 { Term_as.Expr $1 }
| term Plus_token expr
 { Plus.Expr ($1, $3) }
| term Minus_token expr
 { Minus.Expr ($1, $3) }
Example - Parser (exprparse.mly)

term:

 factor
 { Factor_as_Term $1 }

 | factor Times_token token term
 { Mult_Term ($1, $3) }

 | factor Divide_token token term
 { Div_Term ($1, $3) }
Example - Parser (exprparse.mly)

factor:
 Id_token
 { Id_as_Factor $1 }
 | Left_parenthesis expr Right_parenthesis
 { Parenthesized_Expr_as_Factor $2 }

main:
 | expr EOL
 { $1 }
Example - Using Parser

#use "expr.ml";;
...
#use "exprparse.ml";;
...
#use "exprlex.ml";;
...
let test s =
 let lexbuf = Lexing.from_string (s^"\n") in
 main token lexbuf;;
Example - Using Parser

```ocaml
# test "a + b";;

- : expr =
Plus_Expr
  (Factor_as_Term (Id_as_Factor "a"),
   Term_as_Expr (Factor_as_Term (Id_as_Factor "b")))
```
LR Parsing

- Read tokens left to right (L)
- Create a rightmost derivation (R)
- How is this possible?
- Start at the bottom (left) and work your way up
- Last step has only one non-terminal to be replaced so is right-most
- Working backwards, replace mixed strings by non-terminals
- Always proceed so that there are no non-terminals to the right of the string to be replaced
Example: \(<\text{Sum}> = 0 | 1 | (\text{<Sum>})\)
| \text{<Sum>} + \text{<Sum>}

\text{<Sum>} \implies

\begin{align*}
\text{<Sum>} &= \text{ (0 + 1) + 0} \\
\text{shift}
\end{align*}
Example: \(\langle \text{Sum} \rangle = 0 \mid 1 \mid (\langle \text{Sum} \rangle) \mid \langle \text{Sum} \rangle + \langle \text{Sum} \rangle \)

\[
\langle \text{Sum} \rangle \implies
\]

\[
= (0 + 1) + 0 \quad \text{shift}
\]

\[
= (0 + 1) + 0 \quad \text{shift}
\]
Example: $\langle \text{Sum} \rangle = 0 \mid 1 \mid (\langle \text{Sum} \rangle) \mid \langle \text{Sum} \rangle + \langle \text{Sum} \rangle$

$\langle \text{Sum} \rangle \Rightarrow$

$=> (0 + 1) + 0$
$= (0 + 1) + 0$
$= 0 + 1 + 0$
$= 1 + 0 + 0$
$= 1 + 0$
$= 1$

reduce
shift
shift
Example: \(<\text{Sum}\> = 0 \mid 1 \mid (\langle\text{Sum}\rangle) \mid \langle\text{Sum}\rangle + \langle\text{Sum}\rangle\)

\(<\text{Sum}\> \implies \\
= \,(\,<\text{Sum}\,\,, \,1\,) + 0 \quad \text{shift} \\
=> \,(0\,, \,0\,) + 0 \quad \text{reduce} \\
= \,(0\,, \,1\,) + 0 \quad \text{shift} \\
= \,\,(0\,\,, \,1\,\,) + 0 \quad \text{shift}
Example: \(<\text{Sum}> = 0 \mid 1 \mid (\langle\text{Sum}\rangle)\)
\mid \langle\text{Sum}\rangle + \langle\text{Sum}\rangle\)

\[
\langle\text{Sum}\rangle \Rightarrow
\]

\[
= (\langle\text{Sum}\rangle + \cdot 1) + 0 \quad \text{shift}
\]
\[
= (\langle\text{Sum}\rangle \cdot + 1) + 0 \quad \text{shift}
\]
\[
\Rightarrow (0 \cdot + 1) + 0 \quad \text{reduce}
\]
\[
= (\cdot 0 + 1) + 0 \quad \text{shift}
\]
\[
= \cdot (0 + 1) + 0 \quad \text{shift}
\]
Example: $\langle\text{Sum}\rangle = 0 \mid 1 \mid (\langle\text{Sum}\rangle)$

<table>
<thead>
<tr>
<th>$\langle\text{Sum}\rangle \Rightarrow$</th>
</tr>
</thead>
</table>

$\Rightarrow (\langle\text{Sum}\rangle + 1 \circlearrowleft) + 0$ reduce

$= (\langle\text{Sum}\rangle + 1 \circlearrowleft) + 0$ shift

$= (\langle\text{Sum}\rangle \circlearrowleft + 1 \circlearrowleft) + 0$ shift

$\Rightarrow (0 \circlearrowleft + 1 \circlearrowleft) + 0$ reduce

$= (0 \circlearrowleft 0 + 1 \circlearrowleft) + 0$ shift

$= \circlearrowleft (0 + 1 \circlearrowleft) + 0$ shift
Example: $\langle \text{Sum} \rangle = 0 \mid 1 \mid (\langle \text{Sum} \rangle) \mid \langle \text{Sum} \rangle + \langle \text{Sum} \rangle$

$\langle \text{Sum} \rangle \Rightarrow$

$\Rightarrow (\langle \text{Sum} \rangle + \langle \text{Sum} \rangle \bullet) + 0 \quad \text{reduce}$

$\Rightarrow (\langle \text{Sum} \rangle + 1 \bullet) + 0 \quad \text{reduce}$

$= (\langle \text{Sum} \rangle + \bullet 1) + 0 \quad \text{shift}$

$= (\langle \text{Sum} \rangle \bullet + 1) + 0 \quad \text{shift}$

$\Rightarrow (0 \bullet + 1) + 0 \quad \text{reduce}$

$= (\bullet 0 + 1) + 0 \quad \text{shift}$

$= \bullet (0 + 1) + 0 \quad \text{shift}$
Example: \(<\text{Sum}> = 0 \mid 1 \mid (\langle\text{Sum}\rangle) \mid \langle\text{Sum}\rangle + \langle\text{Sum}\rangle\>

\[
\text{<Sum>} \implies \n
= (\langle\text{Sum}\rangle \bullet) + 0 \quad \text{shift}
\rightarrow (\langle\text{Sum}\rangle + \langle\text{Sum}\rangle \bullet) + 0 \quad \text{reduce}
\rightarrow (\langle\text{Sum}\rangle + 1 \bullet) + 0 \quad \text{reduce}
= (\langle\text{Sum}\rangle + \bullet 1) + 0 \quad \text{shift}
= (\langle\text{Sum}\rangle \bullet + 1) + 0 \quad \text{shift}
\rightarrow (0 \bullet + 1) + 0 \quad \text{reduce}
= (\bullet 0 + 1) + 0 \quad \text{shift}
= \bullet (0 + 1) + 0 \quad \text{shift}
Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>), \mid <\text{Sum}> + <\text{Sum}> <\text{Sum}> \Rightarrow \)

\[
\begin{align*}
=> & (<\text{Sum}>) \bullet + 0 & \text{reduce} \\
= & (<\text{Sum}>) \bullet + 0 & \text{shift} \\
=> & (<\text{Sum}>+ <\text{Sum}>) \bullet + 0 & \text{reduce} \\
=> & (<\text{Sum}>+ 1 \bullet) + 0 & \text{reduce} \\
= & (<\text{Sum}> + 1 \bullet) + 0 & \text{shift} \\
= & (<\text{Sum}> \bullet + 1) + 0 & \text{shift} \\
=> & (0 \bullet + 1) + 0 & \text{reduce} \\
= & (0 \bullet + 1) + 0 & \text{shift} \\
= & (0 + 1) + 0 & \text{shift}
\end{align*}
\]
Example: \(<\text{Sum}\> = 0 \mid 1 \mid (<\text{Sum}\>) \mid <\text{Sum}\> + <\text{Sum}\>\)

\(<\text{Sum}\> \Rightarrow \\
= <\text{Sum}\> \bullet + 0 \quad \text{shift} \\
=> (<\text{Sum}\>) \bullet + 0 \quad \text{reduce} \\
= (<\text{Sum}\> \bullet) + 0 \quad \text{shift} \\
=> (<\text{Sum}\> + <\text{Sum}\> \bullet) + 0 \quad \text{reduce} \\
=> (<\text{Sum}\> + 1 \bullet) + 0 \quad \text{reduce} \\
= (<\text{Sum}\> + \bullet 1) + 0 \quad \text{shift} \\
= (<\text{Sum}\> \bullet + 1) + 0 \quad \text{shift} \\
=> (0 \bullet + 1) + 0 \quad \text{reduce} \\
= (\bullet 0 + 1) + 0 \quad \text{shift} \\
= \bullet (0 + 1) + 0 \quad \text{shift}
Example: \(<\text{Sum}\> = 0 \mid 1 \mid (\langle\text{Sum}\rangle) \mid \langle\text{Sum}\rangle + \langle\text{Sum}\rangle\)

\[\langle\text{Sum}\rangle \implies\]

\[= \langle\text{Sum}\rangle + \bullet 0 \quad \text{shift}\]
\[= \langle\text{Sum}\rangle \bullet + 0 \quad \text{shift}\]
\[\Rightarrow (\langle\text{Sum}\rangle) \bullet + 0 \quad \text{reduce}\]
\[= (\langle\text{Sum}\rangle \bullet) + 0 \quad \text{shift}\]
\[\Rightarrow (\langle\text{Sum}\rangle + \langle\text{Sum}\rangle \bullet) + 0 \quad \text{reduce}\]
\[\Rightarrow (\langle\text{Sum}\rangle + 1 \bullet) + 0 \quad \text{reduce}\]
\[= (\langle\text{Sum}\rangle + \bullet 1) + 0 \quad \text{shift}\]
\[= (\langle\text{Sum}\rangle \bullet + 1) + 0 \quad \text{shift}\]
\[\Rightarrow (0 \bullet + 1) + 0 \quad \text{reduce}\]
\[= (\bullet 0 + 1) + 0 \quad \text{shift}\]
\[= \bullet (0 + 1) + 0 \quad \text{shift}\]
Example: $<\text{Sum}> = 0 | 1 | (<\text{Sum}>)$
| $<\text{Sum}> + <\text{Sum}>$

$<\text{Sum}> \Rightarrow$

$\Rightarrow <\text{Sum}> + 0 \quad \text{reduce}$
$= <\text{Sum}> + 0 \quad \text{shift}$
$= <\text{Sum}> + 0 \quad \text{shift}$

$\Rightarrow (<\text{Sum}>) + 0 \quad \text{reduce}$
$= (<\text{Sum}>) + 0 \quad \text{shift}$

$\Rightarrow (<\text{Sum}> + <\text{Sum}>) + 0 \quad \text{reduce}$
$= (<\text{Sum}> + 1) + 0 \quad \text{reduce}$
$= (<\text{Sum}> + 1) + 0 \quad \text{shift}$
$= (<\text{Sum}> + 1) + 0 \quad \text{shift}$

$\Rightarrow (0 + 1) + 0 \quad \text{reduce}$
$= (0 + 1) + 0 \quad \text{shift}$
$= (0 + 1) + 0 \quad \text{shift}$
Example: $<\text{Sum}> = 0 | 1 | (<\text{Sum}>)$
$| \ <\text{Sum}> + \ <\text{Sum}>$

\[
<\text{Sum}> \quad \Rightarrow \quad <\text{Sum}> + <\text{Sum}> \quad \bullet \quad \text{reduce}
\]
\[
= \quad <\text{Sum}> + \bullet \ 0 \quad \text{reduce}
\]
\[
= \quad <\text{Sum}> + 0 \quad \text{shift}
\]
\[
= \quad <\text{Sum}> + 0 \quad \text{shift}
\]
\[
= \quad (<\text{Sum}>) \bullet + 0 \quad \text{reduce}
\]
\[
= \quad (<\text{Sum}> \bullet) + 0 \quad \text{shift}
\]
\[
= \quad (<\text{Sum}> + <\text{Sum}> \bullet) + 0 \quad \text{reduce}
\]
\[
= \quad (<\text{Sum}> + 1 \bullet) + 0 \quad \text{reduce}
\]
\[
= \quad (<\text{Sum}> + \bullet 1) + 0 \quad \text{shift}
\]
\[
= \quad (<\text{Sum}> \bullet + 1) + 0 \quad \text{shift}
\]
\[
= \quad (0 \bullet + 1) + 0 \quad \text{reduce}
\]
\[
= \quad (\bullet 0 + 1) + 0 \quad \text{shift}
\]
\[
= \quad (0 + 1) + 0 \quad \text{shift}
\]
Example: \(<Sum> = 0 | 1 | (<Sum>) \ |
<Sum> + <Sum>\)

\(<Sum> \Rightarrow <Sum> + <Sum> \Rightarrow reduce \)
\Rightarrow <Sum> + 0 \Rightarrow reduce
\= <Sum> + 0 \= shift
\= <Sum> + 0 \= shift
\Rightarrow (<Sum>) + 0 \Rightarrow reduce
\= (<Sum>) + 0 \= shift
\Rightarrow (<Sum> + <Sum>) + 0 \Rightarrow reduce
\Rightarrow (<Sum> + 1) + 0 \Rightarrow reduce
\= (<Sum> + 1) + 0 \= shift
\= (<Sum> + 1) + 0 \= shift
\Rightarrow (0 + 1) + 0 \Rightarrow reduce
\= (0 + 1) + 0 \= shift
\= (0 + 1) + 0 \= shift
Example

\[(0 + 1) + 0\]
Example

\[(0 + 1) + 0\]
Example

\[(0 + 1) + 0\]
Example

\[
\langle \text{Sum} \rangle \\
(0 + 1) + 0
\]
Example

\[
\langle \text{Sum} \rangle_0 + 1) + 0
\]
Example

\[
\langle \text{Sum} \rangle \\
0 + 1 \quad) + 0
\]
Example

\[(\langle \text{Sum} \rangle 0 + \langle \text{Sum} \rangle 1) + 0\]
Example

\[(0 + 1) + 0\]
Example

\[
\begin{align*}
\langle \text{Sum} \rangle & \quad \langle \text{Sum} \rangle \\
\langle \text{Sum} \rangle & \\
(0 & + 1)
\end{align*}
\]

) + 0
Example

\[
(0 + 1) + 0
\]
Example

\[\langle \text{Sum} \rangle \]

\[\langle \text{Sum} \rangle \]

\[\langle \text{Sum} \rangle \]

\[(0 + 1) + 0 \]
Example

\[
\begin{align*}
\langle \text{Sum} \rangle & \quad \langle \text{Sum} \rangle \\
\langle \text{Sum} \rangle & \quad \langle \text{Sum} \rangle \\
\langle \text{Sum} \rangle & \quad \langle \text{Sum} \rangle \\
(& \quad 0 + 1) \\
\langle \text{Sum} \rangle + & \quad 0
\end{align*}
\]
Example

(0 + 1) + 0
LR Parsing Tables

- Build a pair of tables, Action and Goto, from the grammar
 - This is the hardest part, we omit here
 - Rows labeled by states
 - For Action, columns labeled by terminals and “end-of-tokens” marker
 - (more generally strings of terminals of fixed length)
 - For Goto, columns labeled by non-terminals
Action and Goto Tables

- Given a state and the next input, Action table says either
 - **shift** and go to state n, or
 - **reduce** by production k (explained in a bit)
 - **accept** or **error**

- Given a state and a non-terminal, Goto table says
 - go to state m
LR(i) Parsing Algorithm

- Based on push-down automata
- Uses states and transitions (as recorded in Action and Goto tables)
- Uses a stack containing states, terminals and non-terminals
LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-of-tokens” symbol

1. Start in state 1 with an empty stack

2. Push state(1) onto stack

3. Look at next i tokens from token stream ($toks$) (don’t remove yet)

4. If top symbol on stack is state(n), look up action in Action table at (n, $toks$)
LR(i) Parsing Algorithm

5. If action = \texttt{shift} \ m,
 a) Remove the top token from token stream and push it onto the stack
 b) Push \texttt{state}(m) onto stack
 c) Go to step 3
6. If action = reduce k where production k is $E ::= u$

 a) Remove $2 \times \text{length}(u)$ symbols from stack (u and all the interleaved states)

 b) If new top symbol on stack is state(m), look up new state ρ in Goto(m,E)

 c) Push E onto the stack, then push state(ρ) onto the stack

 d) Go to step 3
7. If action = **accept**
 - Stop parsing, return success
8. If action = **error**,
 - Stop parsing, return failure
Adding Synthesized Attributes

- Add to each **reduce** a rule for calculating the new synthesized attribute from the component attributes
- Add to each non-terminal pushed onto the stack, the attribute calculated for it
- When performing a **reduce**,
 - gather the recorded attributes from each non-terminal popped from stack
 - Compute new attribute for non-terminal pushed onto stack
Shift-Reduce Conflicts

- **Problem**: can’t decide whether the action for a state and input character should be **shift** or **reduce**
- Caused by ambiguity in grammar
- Usually caused by lack of associativity or precedence information in grammar
Example: \(<\text{Sum}\> = 0 \mid 1 \mid (\langle\text{Sum}\>)\)
\mid \langle\text{Sum}\> + \langle\text{Sum}\>

\[
\begin{array}{c}
0 + 1 + 0 \\
0 + 1 + 0 \\
\langle\text{Sum}\> + 1 + 0 \\
\langle\text{Sum}\> + 1 + 0 \\
\langle\text{Sum}\> + \langle\text{Sum}\> + 0
\end{array}
\]
Example - cont

- **Problem:** shift or reduce?

- You can shift-shift-reduce-reduce or reduce-shift-shift-reduce

- Shift first - right associative
- Reduce first - left associative
Problem: can’t decide between two different rules to reduce by
Again caused by ambiguity in grammar
Symptom: RHS of one production suffix of another
Requires examining grammar and rewriting it
Harder to solve than shift-reduce errors
Example

- $S ::= A | aB$
- $A ::= abc$
- $B ::= bc$

- abc shift
- a bc shift
- ab c shift
- abc

Problem: reduce by $B ::= bc$ then by $S ::= aB$, or by $A ::= abc$ then $S ::= A$?