Programming Languages and
Compilers (CS 421)
Elsa L Gunter
2112 SC, UIUC http://courses.engr.illinois.edu/cs421 Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha 10/26/21

Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)

Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Elements of Syntax

- Character set - previously always ASCII, now often 64 character sets
- Keywords - usually reserved
- Special constants - cannot be assigned to
- Identifiers - can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
- Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
- Specification Technique: Regular Expressions
- Parsing: Convert a list of tokens into an abstract syntax tree
- Specification Technique: BNF Grammars

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata - covered in automata theory

Regular Expressions - Review

- Start with a given character set a, b, c...
- $L(\boldsymbol{\varepsilon})=\{" "\}$
- Each character is a regular expression
- It represents the set of one string containing just that character
- $L(\mathbf{a})=\{a\}$

Regular Expressions

- If \mathbf{x} and \mathbf{y} are regular expressions, then $\mathbf{x} \vee \mathbf{y}$ is a regular expression
- It represents the set of strings described by either \mathbf{x} or \mathbf{y}

If $L(x)=\{a, a b\}$ and $L(y)=\{c, d\}$ then $L(x \vee y)=\{a, a b, c, d\}$

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

Regular Expressions

- If \mathbf{x} and \mathbf{y} are regular expressions, then $\mathbf{x y}$ is a regular expression
- It represents the set of all strings made from first a string described by \mathbf{x} then a string described by y

If $L(x)=\{a, a b\}$ and $L(y)=\{c, d\}$
then $L(x y)=\{a c, a d, a b c, a b d\}$

Regular Expressions

- If \mathbf{x} is a regular expression, then so is (\mathbf{x})
- It represents the same thing as x
- If \mathbf{x} is a regular expression, then so is \mathbf{x}^{*}
- It represents strings made from concatenating zero or more strings from \mathbf{x}
If $L(x)=\{a, a b\}$ then $L\left(x^{*}\right)=\{$ "", $a, a b, a a, a a b, a b a b, \ldots\}$
- ε
- It represents \{""\}, set containing the empty string
- \varnothing
- It represents \{ \}, the empty set

Example Regular Expressions

$(0 \vee 1) * 1$

- The set of all strings of $\mathbf{0}$ ' s and 1 's ending in 1 , $\{1,01,11, \ldots\}$
- $a^{*} b(a *)$
- The set of all strings of a's and b's with exactly one b
- ((01) $\vee(10))^{*}$
- You tell me
- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words

Example

- Right regular grammar:
<Balanced> ::=
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0 ' s as 1's

BNF Grammars

. Start with a set of characters, $\mathbf{a}, \mathbf{b}, \mathbf{c}, \ldots$ - We call these terminals

- Add a set of different characters, X,Y,Z,...
- We call these nonterminals
- One special nonterminal S called start symbol

Right Regular Grammars

- Subclass of BNF (covered in detail sool)
- Only rules of form <nonterminal>::=<terminal><nonterminal> or <nonterminal>::=<terminal> or <nonterminal>::=
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata - nonterminals \cong states; rule \cong edge

10/26/21

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Pushdown automata
- Whole family more of grammars and automata - covered in automata theory

10/28/21

Sample Grammar

- Language: Parenthesized sums of 0's and 1's
- <Sum> ::= 0
- <Sum >::=1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

BNF Grammars

- BNF rules (aka productions) have form
$\mathbf{X}::=y$
where \mathbf{X} is any nonterminal and y is a string of terminals and nonterminals
- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

BNF Deriviations

- Given rules

$$
\mathbf{X}::=y \mathbf{Z} w \text { and } \mathbf{Z}::=v
$$

we may replace \mathbf{Z} by v to say
$\mathbf{X}=>y \mathbf{Z} w=>y v w$

- Sequence of such replacements called derivation
- Derivation called right-most if always replace the right-most non-terminal

BNF Derivations

- Pick a non-terminal
<Sum> =>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a non-terminal:

$$
\begin{aligned}
<\text { Sum }> & =><\text { Sum }>+<\text { Sum }> \\
& =>(\text { SSum }>)+<\text { Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >
$=>($ Sum >) + <Sum>
$=>(<$ Sum $>+\langle$ Sum $>)+<$ Sum $>$

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= (<Sum>)
<Sum> => <Sum> + <Sum > $=>($ <Sum > $)+$ <Sum $>$

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >
$=>($ SUum $>)+$ <Sum $>$
$=>(<$ Sum $>+$ SSum $>)+$ <Sum $>$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::=1
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { Suum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+\text { <Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a non-terminal:

$$
\begin{aligned}
<\text { Sum }> & =><\text { Sum }>+ \text { <Sum }> \\
& =>(\text { SSum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+\text { SUum }>
\end{aligned}
$$

BNF Derivations

- Pick a non-terminal:

$$
\begin{aligned}
<\text { Sum }> & =><\text { Sum }>+<\text { Sum }> \\
& =>(\text { SSum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+ \text { Sum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+1)+\text { <Sum }> \\
& =>(\text { SSum }>+1)+0
\end{aligned}
$$

BNF Derivations

- $(0+1)+0$ is generated by grammar
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { SUum }>)+\text { <Sum }> \\
& =>(\text { SSum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+0 \\
& =>(0+1)+0
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 0

```
<Sum> => <Sum> + <Sum >
        \(=>(\) SUum \(>)+\) <Sum \(>\)
        \(=>(<\) Sum \(>+\) <Sum> \()+\) <Sum \(>\)
        \(=>(<\) Sum \(>+1)+<\) Sum \(>\)
        \(=>(\langle\) Sum \(\rangle+1)+0\)
```


BNF Derivations

- Pick a rule and substitute
- <Sum> ::= 0

```
<Sum> => <Sum> + <Sum >
            \(=>(\) SUum \(>)+\) <Sum \(>\)
            \(=>(\) SUum \(>+\) <Sum> \()+\) <Sum \(>\)
            \(=>(<\) Sum \(>+1)+\) SUum \(>\)
            \(=>(\langle\) Sum \(\rangle+1) 0\)
            \(=>(0+1)+0\)
```


BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { Suum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { Sum }>+1)+\text { <Sum }>
\end{aligned}
$$

Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
- which option to choose,
- how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374

Lexing

- Different syntactic categories of "words": tokens
Example:
- Convert sequence of characters into sequence of strings, integers, and floating point numbers.
- "asd 123 jkl 3.14" will become:
[String "asd"; Int 123; String "jkl"; Float 3.14]

How to do it

- To use regular expressions to parse our input we need:
- Some way to identify the input string
- call it a lexing buffer
- Set of regular expressions,
- Corresponding set of actions to take when they are matched.

Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file
<filename>.mll
- Call
ocamllex <filename>.mll
- Produces Ocaml code for a lexical analyzer in file <filename>.ml

General Input

\{ header \}
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
regexp \{ action \}
| ...
| regexp \{ action \}
and entrypoint [arg1... argn] = parse ...and ...
\{ trailer \}

10/26/21

Ocamllex Input

- <filename>.ml contains one lexing function per entrypoint
- Name of function is name given for entrypoint
- Each entry point becomes an Ocaml function that takes $n+1$ arguments, the extra implicit last argument being of type Lexing.lexbuf
- arg1... argn are for use in action

Sample Input

rule main = parse
['0'-'9']+ \{ print_string "Int\n"\}
| ['0'-'9']+'.'['0'-'9']+ \{ print_string "Float\n"\}
| ['a'-'z']+ \{ print_string "String\n"\}
| _ \{ main lexbuf \}
\{
let newlexbuf = (Lexing.from_channel stdin) in main newlexbuf
\}

10/26/21

Ocamllex Input

- header and trailer contain arbitrary ocaml code put at top an bottom of <filename>.ml
- let ident = regexp ... Introduces ident for use in later regular expressions

Ocamllex Regular Expression

- Single quoted characters for letters: 'a’
- _: (underscore) matches any letter
- Eof: special "end_of_file" marker
- Concatenation same as usual
- "string": concatenation of sequence of characters
- e_{1} / e_{2} : choice - what was $e_{1} \vee e_{2}$

10/26/21

Ocamllex Regular Expression

- $\left[c_{1}-c_{2}\right]$: choice of any character between first and second inclusive, as determined by character codes
- [$\left.{ }^{\wedge} c_{1}-c_{2}\right]$: choice of any character NOT in set
- e^{*} : same as before
- e+: same as e e^{*}
- e?: option - was $e \vee \varepsilon$

Ocamllex Manual

- More details can be found at

http://caml.inria.fr/pub/docs/manualocaml/lexyacc.html

Example : test.mll
rule main = parse
(digits)'.'digits as f \{ Float (float_of_string f) \}
| digits as n $\quad\{$ Int (int_of_string n) \}
| letters as s \{ String s\}
| _ \{ main lexbuf \}
\{ let newlexbuf = (Lexing.from_channel stdin) in print_newline ();
main newlexbuf \}

Example : test.mll

\{ type result = Int of int | Float of float |
String of string \}
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters $=$ letter +

10/26/21

Example

\# \#use "test.ml";;
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> result = <fun>
hi there 2345.2
: result = String "hi"

What happened to the rest?!?

Example

\# let b = Lexing.from_channel stdin;;
\# main b;;
hi 673 there

- : result = String "hi"
\# main b;;
- : result = Int 673
\# main b;;
- : result = String "there"

Problem

- How to get lexer to look at more than the first token at one time?
- Answer: action has to tell it to -- recursive calls
- Side Benefit: can add "state" into lexing
- Note: already used this with the _ case

Example Results

hi there 2345.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]
\#

Used Ctrl-d to send the end-of-file signal

Your Turn

- Work on ML5
- Add a few keywords
- Implement booleans and unit
- Implement Ints and Floats
- Implement identifiers

Example

rule main = parse
(digits) '.' digits as f \{ Float
(float_of_string f) :: main lexbuf\}
| digits as n \{ Int (int_of_string n) :: main lexbuf \}
| letters as s \{ String s:: main lexbuf\}
| eof $\{[]\}$
I_ \{ main lexbuf \}

10/26/21
64

Dealing with comments

First Attempt
let open_comment = "(*"
let close_comment = "*)"
rule main = parse
(digits) '.' digits as f \{ Float (float_of_string
f) :: main lexbuf\}
digits as n main lexbuf \}
letters as s \{ String s :: main lexbuf\}

Dealing with comments

| open_comment \{ comment lexbuf\}
| eof $\{[]\}$
| _ \{ main lexbuf \}
and comment $=$ parse
close_comment \{ main lexbuf \}
| _
\{ comment lexbuf \}

Dealing with nested comments

rule main = parse
(digits) '.' digits as f \{ Float (float_of_string f) :: main lexbuf\}
| digits as n \{ Int (int_of_string n) :: main lexbuf \}
| letters as s \{String s :: main lexbuf\} | open_comment $\{$ (comment 1 lexbuf\} | eof $\{[]\}$
| _ \{ main lexbuf $\}$

Dealing with nested comments

rule main = parse ..
| open_comment \{ comment 1 lexbuf\}
| eof $\{[]\}$
| _ \{ main lexbuf \}
and comment depth $=$ parse
open_comment $\quad\{$ comment (depth+1) lexbuf \}
| close_comment $\quad\{$ if depth $=1$
then main lexbuf else comment (depth -1) lexbuf \}
I _ \{ comment depth lexbuf \}

10/26/21
68

