

Terminology

- Type: A type t defines a set of possible data values
- E.g. short in C is $\left\{x \mid 2^{15}-1 \geq x \geq-2^{15}\right\}$
- A value in this set is said to have type t
- Type system: rules of a language assigning types to expressions

Sound Type System

- If an expression is assigned type t, and it evaluates to a value v, then v is in the set of values defined by t
- SML, OCAML, Scheme and Ada have sound type systems
- Most implementations of C and C++ do not

Strongly Typed Language

- C++ claimed to be "strongly typed", but
- Union types allow creating a value at one type and using it at another
- Type coercions may cause unexpected (undesirable) effects
- No array bounds check (in fact, no runtime checks at all)
- SML, OCAML "strongly typed" but still must do dynamic array bounds checks, runtime type case analysis, and other checks

Type Checking

- When is op(arg1,...,argn) allowed?
- Type checking assures that operations are applied to the right number of arguments of the right types
- Right type may mean same type as was specified, or may mean that there is a predefined implicit coercion that will be applied
- Used to resolve overloaded operations

Dynamic Type Checking

- Performed at run-time before each operation is applied
- Types of variables and operations left unspecified until run-time
- Same variable may be used at different types

Static vs Dynamic Types

- Static type: type assigned to an expression at compile time
- Dynamic type: type assigned to a storage location at run time
- Statically typed language: static type assigned to every expression at compile time
- Dynamically typed language: type of an expression determined at run time

Type Checking

- Type checking may be done statically at compile time or dynamically at run time
- Dynamically typed (aka untyped) languages (eg LISP, Prolog) do only dynamic type checking
- Statically typed languages can do most type checking statically

Dynamic Type Checking

- Data object must contain type information
- Errors aren't detected until violating application is executed (maybe years after the code was written)

Static Type Checking

- Performed after parsing, before code generation
- Type of every variable and signature of every operator must be known at compile time

Static Type Checking

- Typically places restrictions on languages
- Garbage collection
- References instead of pointers
- All variables initialized when created
- Variable only used at one type
- Union types allow for work-arounds, but effectively introduce dynamic type checks

Type Inference

- Type inference: A program analysis to assign a type to an expression from the program context of the expression
- Fully static type inference first introduced by Robin Miller in ML
- Haskle, OCAML, SML all use type inference
- Records are a problem for type inference

Static Type Checking

- Can eliminate need to store type information in data object if no dynamic type checking is needed
- Catches many programming errors at earliest point
- Can't check types that depend on dynamically computed values
- Eg: array bounds

Type Declarations

- Type declarations. explicit assignment of types to variables (signatures to functions) in the code of a program
- Must be checked in a strongly typed language
- Often not necessary for strong typing or even static typing (depends on the type system)

Format of Type Judgments

- A type judgement has the form

$$
\text { Г |- exp : } \tau
$$

- Γ is a typing environment
- Supplies the types of variables (and function names when function names are not variables)
- Γ is a set of the form $\{x: \sigma, \ldots\}$
- For any x at most one σ such that $(x: \sigma \in \Gamma)$
- exp is a program expression
- τ is a type to be assigned to exp
- !- pronounced "turnstyle", or "entails" (or
"satisfies" or, informally, "shows")
10/5/21

Axioms - Constants

$\Gamma \mid-n$: int (assuming n is an integer constant)

$$
\overline{\Gamma \mid \text { - true : bool }} \overline{\Gamma \mid- \text { false : bool }}
$$

- These rules are true with any typing environment
- Γ, n are meta-variables

Simple Rules - Arithmetic

Primitive Binary operators $(\oplus \in\{+,-, *, \ldots\})$:

$$
\frac{\Gamma\left|-e_{1}: \tau_{1} \quad \Gamma\right|-e_{2}: \tau_{2} \quad(\oplus): \tau_{1} \rightarrow \tau_{2} \rightarrow \tau_{3}}{\Gamma \mid-e_{1} \oplus e_{2}: \tau_{3}}
$$

Special case: Relations ($\sim_{\in\{<,>,=,<=,>=\}}$):

$$
\frac{\Gamma\left|-e_{1}: \tau \Gamma\right|-e_{2}: \tau(\sim): \tau \rightarrow \tau \rightarrow \text { bool }}{\Gamma \mid-e_{1} \sim e_{2}: \text { bool }}
$$

For the moment, think τ is int

Example: $\{x:$ int $\} \mid-x+2=3$:bool

What do we need for the left side?

$$
\frac{\{x: \text { int }\} \mid-x+2: \text { int } \quad\{x: \text { int }\} \mid-3: \text { int }}{\{x: \text { int }\} \mid-x+2=3: \text { bool }}
$$

Axioms - Variables (Monomorphic Rule)
Notation: Let $\Gamma(x)=\sigma$ if $x: \sigma \in \Gamma$ Note: if such σ exits, its unique

Variable axiom:
$\overline{\Gamma \mid-x: \sigma} \quad$ if $\Gamma(x)=\sigma$

10/5/21
20

Example: $\{x:$ int $\} \mid-x+2=3$:bool
What do we need to show first?

$$
\{x: \text { int }\} \mid-x+2=3 \text { : bool }
$$

Example: $\{x:$ int $\} \mid-x+2=3$:bool
How to finish?
$\frac{\{x: \text { int }\} \mid-x: \text { int }\{x: \text { int }\} \mid-2: \text { int }}{\frac{\{x: \text { int }\} \mid-x+2: \text { int }}{\{x: \text { int }\} \mid-3: \text { int }}} \frac{\text { Bin }}{\{x: \text { int }\} \mid-x+2=3: \text { bool }}$

Example: $\{x:$ int $\} \mid-x+2=3$:bool

Complete Proof (type derivation)

Type Variables in Rules

- If_then_else rule:

$$
\frac{\Gamma \mid-e_{1}: \text { bool } \Gamma\left|-\mathrm{e}_{2}: \tau \Gamma\right|-\mathrm{e}_{3}: \tau}{\Gamma \mid-\left(\text { if } e_{1} \text { then } \mathrm{e}_{2} \text { else } \mathrm{e}_{3}\right): \tau}
$$

- τ is a type variable (meta-variable)
- Can take any type at all
- All instances in a rule application must get same type
- Then branch, else branch and if_then_else must all have same type

Fun Rule

- Rules describe types, but also how the environment Γ may change
- Can only do what rule allows!
- fun rule:

$$
\frac{\left\{x: \tau_{1}\right\}+\Gamma \mid-e: \tau_{2}}{\Gamma \mid- \text { fun } x->e: \tau_{1} \rightarrow \tau_{2}}
$$

Fun Examples

$$
\frac{\{y: \text { int }\}+\Gamma \mid-y+3: \text { int }}{\Gamma \mid- \text { fun } y->y+3: \text { int } \rightarrow \text { int }}
$$

\{f : int \rightarrow bool $\}+$ Г - f $2::$ [true] : bool list
Г $\mid-($ fun $f->f 2::$ [true])
: (int \rightarrow bool) \rightarrow bool list

- let rule:
$\Gamma\left|-e_{1}: \tau_{1} \quad\left\{x: \tau_{1}\right\}+\Gamma\right|-e_{2}: \tau_{2}$ $\Gamma \mid-\left(\right.$ let $x=e_{1}$ in $\left.e_{2}\right): \tau_{2}$
- let rec rule:
$\frac{\left\{x: \tau_{1}\right\}+\Gamma\left|-e_{1}: \tau_{1}\left\{x: \tau_{1}\right\}+\Gamma\right|-e_{2}: \tau_{2}}{\Gamma \mid-\left(\text { let rec } x=e_{1} \text { in } e_{2}\right): \tau_{2}}$

Example

- Let rec rule: (2) \{one : int list |-
(1)
(let $x=2$ in
\{one : int list\} |- fun $y->(x:: ~ y ~:: ~ o n e)) ~$
($1::$ one) : int list $\quad:$ int \rightarrow int list
|- (let rec one $=1::$ one in
let $x=2$ in
fun $y->(x:: y$:: one $)):$ int \rightarrow int list

Proof of 1

- Binary Operator

(3)

\{one : int list\} |- \{one : int list\} |1: int one : int list
\{one : int list\} |- (1 :: one) : int list where (: :) : int \rightarrow int list \rightarrow int list

Example

- Which rule do we apply?
|-(let rec one = $1::$ one in let $x=2$ in fun $y->(x:: ~ y ~:: ~ o n e) ~) ~: ~ i n t ~ \rightarrow i n t ~$ list

10/5/21
32

Proof of 1

- Which rule?
\{one : int list\} |- (1 :: one) : int list

Proof of 1

(3)
(4)

Constant Rule
$\overline{\text { \{one : int list\} |- }}$
1: int
\{one : int list\} |- (1 :: one) : int list

Proof of 2

- Let Rule
\{x:int; one : int list\} |fun y->
(x :: y :: one))
\{one : int list \} |- 2:int $\quad:$ int \rightarrow int list
\{one : int list\} |- (let $x=2$ in
fun $y->(x:: ~ y ~:: ~ o n e)):$ int \rightarrow int list

Proof of 5

$\frac{?}{\{x: \text { int; one }: \text { int list }\} \mid- \text { fun } y->(x:: y ~:: ~ o n e))}$

Proof of 5

(6)

(7)

\{y:int; $x: i n t ;$ one:int list\} $\{y: i n t ; ~ x: i n t ; ~ o n e: i n t ~ l i s t\} ~$

- x :int ل-(y :: one) : int list
$\underline{\{y: i n t ; ~} x:$ int; one : int list $\} \mid-(x:: y::$ one $)$: int list
\{x:int; one : int list\}|- fun $y->(x:: y ~:: ~ o n e))$

$$
: \text { int } \rightarrow \text { int list }
$$

By BinOp where (: :) : int \rightarrow int list \rightarrow int list

Proof of 6

(6)

Constant Rule
\{y:int; x:int; one:int list\}
\{y:int; x :int; one:int list\}
ل-x:int
ل-(y :: one) : int list
\{y:int; x :int; one : int list\} |- ($x:: y$:: one) : int list
\{x:int; one : int list $\}$ |- fun $y->(x$:: y :: one))

$$
: \text { int } \rightarrow \text { int list }
$$

Proof of 7

- Binary Operation Rule
\{...; one:int list;...\}
\{y:int; ...\}|-y:int ل- one : int list \{y:int; x :int; one : int list\}|- (y :: one) : int list

By BinOp where (: :) : int \rightarrow int list \rightarrow int list

Curry - Howard Isomorphism

- Type Systems are logics; logics are type systems
- Types are propositions; propositions are types
- Terms are proofs; proofs are terms
- Function space arrow corresponds to implication; application corresponds to modus ponens

Mea Culpa

- The above system can't handle polymorphism as in OCAML
- No type variables in type language (only metavariable in the logic)
- Would need:
- Object level type variables and some kind of type quantification
- let and let rec rules to introduce polymorphism
- Explicit rule to eliminate (instantiate) polymorphism

Proof of 7

	Variable Rule
Variable Rule	\{...; one:int list;...\}
\{y:int; ...\}\|-y:int	1 - one : int list

\{y:int; $x: i n t ;$ one : int list $\} \mid-(y$:: one) : int list

Curry - Howard Isomorphism

- Modus Ponens

$$
\frac{A \Rightarrow B \quad A}{B}
$$

- Application

$$
\frac{\Gamma\left|-e_{1}: \alpha \rightarrow \beta \quad \Gamma\right|-e_{2}: \alpha}{\Gamma \mid-\left(e_{1} e_{2}\right): \beta}
$$

Support for Polymorphic Types

- Monomorpic Types (τ):
- Basic Types: int, bool, float, string, unit, ...
- Type Variables: $\alpha, \beta, \gamma, \delta, \varepsilon$
- Compound Types: $\alpha \rightarrow \beta$, int * string, bool list, ...
- Polymorphic Types:
- Monomorphic types τ
- Universally quantified monomorphic types
- $\forall \alpha_{1}, \ldots, \alpha_{n}$. τ
- Can think of τ as same as \forall. τ

Example FreeVars Calculations

- Vars('a -> (int -> 'b) -> 'a) =\{’a, 'b\}
- FreeVars (All 'b. 'a -> (int -> 'b) -> 'a) =
- $\quad\left\{{ }^{\prime} \mathrm{a}, \mathrm{\prime} \mathrm{~b}\right\}-\{’ \mathrm{~b}\}=\{’ \mathrm{a}\}$
- FreeVars $\{x: A l l ~ ` b . ~ ’ a->~(i n t ~->~ ' b) ~->~ ' a ́, ~$
- id: All 'c. 'c -> 'c,
- y: All 'c. 'a -> 'b -> 'c\} =
- \quad 'a $\} \cup\left\} \cup\left\{{ }^{\prime} \mathrm{a}, \mathrm{\prime} \mathrm{~b}\right\}=\left\{{ }^{\prime} \mathrm{a}, ~ ' b\right\}\right.$

Monomorphic to Polymorphic

- Given:
- type environment Γ
- monomorphic type τ
- τ shares type variables with Γ
- Want most polymorphic type for τ that doesn't break sharing type variables with Γ
- $\operatorname{Gen}(\tau, \Gamma)=\forall \alpha_{1}, \ldots, \alpha_{\mathrm{n}} . \tau$ where $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}=$ freeVars $(\tau)-$ freeVars (Γ)

Polymorphic Let and Let Rec

- let rule:

$$
\frac{\Gamma\left|-e_{1}: \tau_{1}\left\{x: \operatorname{Gen}\left(\tau_{1}, \Gamma\right)\right\}+\Gamma\right|-e_{2}: \tau_{2}}{\Gamma \mid-\left(\text { let } x=e_{1} \text { in } e_{2}\right): \tau_{2}}
$$

- let rec rule:

$$
\frac{\left\{x: \tau_{1}\right\}+\Gamma\left|-e_{1}: \tau_{1}\left\{x: \operatorname{Gen}\left(\tau_{1}, \Gamma\right)\right\}+\Gamma\right|-e_{2}: \tau_{2}}{\Gamma \mid-\left(\text { let rec } x=e_{1} \text { in } e_{2}\right): \tau_{2}}
$$

Support for Polymorphic Types

- Typing Environment Γ supplies polymorphic types (which will often just be monomorphic) for variables
- Free variables of monomorphic type just type variables that occur in it
- Write FreeVars ($\tau)$
- Free variables of polymorphic type removes variables that are universally quantified
- $\operatorname{FreeVars}\left(\forall \alpha_{1}, \ldots, \alpha_{n} . \tau\right)=\operatorname{FreeVars}(\tau)-\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$
- FreeVars $(\Gamma)=$ all FreeVars of types in range of Γ

Polymorphic Typing Rules

- A type judgement has the form

$$
\Gamma \mid-\exp : \tau
$$

- Γ uses polymorphic types
- τ still monomorphic
- Most rules stay same (except use more general typing environments)
- Rules that change:
- Variables
- Let and Let Rec
- Allow polymorphic constants
- Worth noting functions again

10/5/21

Polymorphic Variables (Identifiers)

Variable axiom:
$\overline{\Gamma \mid-X: \varphi(\tau)} \quad$ if $\Gamma(x)=\forall \alpha_{1}, \ldots, \alpha_{n} \cdot \tau$

- Where φ replaces all occurrences of $\alpha_{1}, \ldots, \alpha_{n}$ by monotypes $\tau_{1}, \ldots, \tau_{n}$
- Note: Monomorphic rule special case:

$$
\overline{\Gamma \mid-x: \tau} \quad \text { if } \Gamma(x)=\tau
$$

- Constants treated same way

Fun Rule Stays the Same

- fun rule:

$$
\frac{\left\{x: \tau_{1}\right\}+\Gamma \mid-e: \tau_{2}}{\Gamma \mid- \text { fun } x->e: \tau_{1} \rightarrow \tau_{2}}
$$

- Types τ_{1}, τ_{2} monomorphic
- Function argument must always be used at same type in function body

Polymorphic Example

- Show:

?

\{\} |- let rec length = fun I -> if is_empty I then 0 else $1+$ length (tl I)
in length (2 :: []) + length(true :: []) : int

- Show:
\{length: α list -> int\} |fun I -> if is_empty I then 0

$$
\text { else } 1 \text { + length (tl I) }
$$

: α list -> int

Polymorphic Example (1): Fun Rule

- Show:
(3)
\{length: α list -> int, I: α list \} |if is_empty I then 0
else length (hd I) + length (tl I) : int
\{length: α list -> int\} |-
fun 1 -> if is_empty I then 0
else $1+$ length (tl I)
: α list -> int
- Let $\Gamma=\{$ length: α list -> int, I: α list $\}$
- Show

?

$\Gamma \mid$ - if is_empty I then 0 else $1+$ length (tl I) : int

Polymorphic Example (4)

- Let $\Gamma=\{$ length: α list -> int, I: α list \}
- Show

?

$\Gamma \mid$ - is_empty I : bool

Polymorphic Example (4)

- Let $\Gamma=\{$ length: α list -> int, I: α list $\}$
- Show

By Const since α list -> bool is instance of $\forall \alpha$. α list -> bool ?
$\Gamma \mid$ - is_empty : α list -> bool $\quad \Gamma|-|: \alpha$ list
$\Gamma \mid$ - is_empty I : bool

Polymorphic Example (3):IfThenElse

- Let $\Gamma=\{$ length: α list -> int, I: α list $\}$
- Show
(4) (5) (6)
$\Gamma \mid$ - is_empty $\mathrm{I} \quad \Gamma \mid-0$:int $\quad \Gamma \mid-1+$ length (tl I) : bool : int
$\Gamma \mid$ - if is_empty I then 0 else $1+$ length (tl I) : int

Polymorphic Example (4):Application

- Let $\Gamma=\{$ length: α list -> int, I: α list \}
. Show
?
?
$\Gamma \mid$ - is_empty : α list -> bool $\Gamma \mid-1: \alpha$ list
$\Gamma \mid$ - is_empty 1 : bool

10/5/21
64

Polymorphic Example (4)

- Let $\Gamma=\{$ length: α list -> int, I: α list $\}$
- Show

By Const since α list -> bool is By Variable instance of $\forall \alpha . \alpha$ list $->$ bool $\quad \Gamma(\mathrm{I})=\alpha$ list $\overline{\Gamma \mid- \text { is_empty : } \alpha \text { list -> bool } \quad \overline{\Gamma|-|: ~} \alpha \text { list }}$ $\Gamma \mid$ - is_empty I : bool

- This finishes (4)
- Let $\Gamma=\{$ length: α list -> int, I: α list $\}$
- Show

By Const Rule

$$
\Gamma \mid-0: \text { int }
$$

Polymorphic Example (7):App Rule

- Let $\Gamma=\{$ length: α list -> int, I: α list \}
- Show
$\frac{\text { By Const }}{\Gamma \mid-\mathrm{tl}: \alpha \text { list }->\alpha \text { list }} \quad \frac{\text { By Variable }}{\Gamma \mid-I: \alpha \text { list }}$
$\Gamma \mid-(\mathrm{tl} \mathrm{I}): \alpha$ list

By Const since α list -> α list is instance of $\forall \alpha . \alpha$ list -> α list

Polymorphic Example (6):Arith Op

- Let $\Gamma=\{$ length: α list $->$ int, I: α list $\}$
- Show

	By Variable
	$\bar{\Gamma}$ - length
By Const	: α list -> int $\Gamma \mid-(\mathrm{tl} \mathrm{I}): \alpha$ list
$\bar{\Gamma} \mid$-1:int	Γ - length (tII) : int
	$\Gamma \mid-1+$ length (tl I) : int

Polymorphic Example: (2) by ArithOp

- Let $\Gamma^{\prime}=\{$ length: $\forall \alpha . \alpha$ list -> int $\}$
- Show:
(8)
Γ^{\prime} |-

$$
\begin{equation*}
\Gamma^{\prime} \mid- \tag{9}
\end{equation*}
$$

length (2 :: []) :int length(true :: []) : int \{length: $\forall \alpha . \alpha$ list $->$ int $\}$ |- length (2 :: []) + length(true :: []) : int

- Let $\Gamma^{\prime}=\{$ length: $\forall \alpha$. α list -> int $\}$
- Show:
$\underline{\Gamma^{\prime} \mid- \text { length }: \text { int list }->\text { int } \Gamma^{\prime} \mid-(2::[]): \text { int list }}$ Γ^{\prime} |- length (2 :: []) :int

