
9/14/21 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

http://courses.engr.illinois.edu/cs421

9/14/21 2

Forward Recursion

n In Structural Recursion, split input into
components and (eventually) recurse

n Forward Recursion form of Structural
Recursion

n In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

n Wait until whole structure has been
traversed to start building answer

9/14/21 3

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/14/21 4

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call
let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

Base Case Operator Recursive Call

9/14/21 5

Encoding Forward Recursion with Fold

let rec append list1 list2 = match list1 with
[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
Base Case Operation Recursive Call

let append list1 list2 =
fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>
append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]

9/14/21 6

Mapping Recursion

n Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- : int list = [4; 6; 8]
Same function, but no rec

9/14/21 7

Continuations

n Idea: Use functions to represent the control
flow of a program

n Method: Each procedure takes a function as
an extra argument to which to pass its
result; outer procedure “returns” no result

n Function receiving the result called a
continuation

n Continuation acts as “accumulator” for work
still to be done

9/20/21 8

Continuation Passing Style

n An expression is in continuation
passing style (CPS) if every
procedure call in it that is not directly a
call to a continuation takes a
continuation to which to give (pass) the
result, and it returns no result (except
the unknown ultimate result of the final
continuation).

9/14/21 9

Recursive Functions

n Recall:
let rec factorial n =

if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>

factorial 5;;
- : int = 120

9/14/21 10

Recursive Functions

let rec factorial n =
let b = (n = 0) in (* First computation *)
if b then 1 (* Returned value *)
else let s = n – 1 in (* Second computation *)

let r = factorial s in (* Third computation *)
n * r (* Returned value *) ;;

val factorial : int -> int = <fun>
factorial 5;;
- : int = 120

9/14/21 11

Recursive Functions

let rec factorialk n k =
eqk (n, 0)
(fun b -> (* First computation *)
if b then k 1 (* Passed value *)
else subk (n, 1) (* Second computation *)
(fun s -> factorialk s (* Third computation *)
(fun r -> timesk (n, r) k))) (* Passed value *)

val factorialk : int -> (int -> ‘a) -> ‘a = <fun>
factorialk 5 report;;
120
- : unit = ()

9/14/21 12

Recursive Functions

n To make recursive call, must build
intermediate continuation to
n take recursive value: r
n build it to final result: n * r
n And pass it to final continuation:
n times (n, r) k = k (n * r)

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?

9/14/21 13

Example: CPS for length

let rec length list = match list with [] -> 0
| (a :: bs) -> 1 + length bs

What is the let-expanded version of this?
let rec length list = match list with [] -> 0

| (a :: bs) -> let r1 = length bs in 1 + r1

9/14/21 14

Example: CPS for length

#let rec length list = match list with [] -> 0
| (a :: bs) -> let r1 = length bs in 1 + r1

What is the CSP version of this?

9/14/21 15

Example: CPS for length

#let rec length list = match list with [] -> 0
| (a :: bs) -> let r1 = length bs in 1 + r1

What is the CSP version of this?
#let rec lengthk list k = match list with [] -> k 0

| x :: xs -> lengthk xs (fun r -> addk (r,1) k);;
val lengthk : 'a list -> (int -> 'b) -> 'b = <fun>
lengthk [2;4;6;8] report;;
4
- : unit = ()
9/14/21 16

CPS for Higher Order Functions

n In CPS, every procedure / function takes a
continuation to receive its result

n Procedures passed as arguments take
continuations

n Procedures returned as results take
continuations

n CPS version of higher-order functions must
expect input procedures to take
continuations

9/14/21 17

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?

9/14/21 18

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k =

9/14/21 19

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> true

9/14/21 20

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true

9/14/21 21

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/14/21 22

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/14/21 23

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk pk xs k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) -> 'a list ->
(bool -> 'b) -> 'b = <fun>

9/14/21 24

Example: all

#let rec all (p, l) = match l with [] -> true
| (x :: xs) -> let b = p x in

if b then all (p, xs) else false
val all : ('a -> bool) -> 'a list -> bool = <fun>
n What is the CPS version of this?
#let rec allk (pk, l) k = match l with [] -> k true
| (x :: xs) -> pk x

(fun b -> if b then allk (pk, xs) k else k
false)
val allk : ('a -> (bool -> 'b) -> 'b) * 'a list ->
(bool -> 'b) -> 'b = <fun>

9/14/21 25

9/14/21 26

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>

9/14/21 27

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;

9/14/21 28

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0

| x :: xs -> sumk xs (fun r1 -> addk x r1 k);;

9/14/21 29

CPS for sum

let rec sum list = match list with [] -> 0
| x :: xs -> x + sum xs ;;

val sum : int list -> int = <fun>
let rec sum list = match list with [] -> 0

| x :: xs -> let r1 = sum xs in x + r1;;
val sum : int list -> int = <fun>
let rec sumk list k = match list with [] -> k 0

| x :: xs -> sumk xs (fun r1 -> addk (x, r1) k);;
val sumk : int list -> (int -> 'a) -> 'a = <fun>
sumk [2;4;6;8] report;;
20
- : unit = ()

9/14/21 30

Terms

n A function is in Direct Style when it returns its
result back to the caller.

n A Tail Call occurs when a function returns the
result of another function call without any more
computations (eg tail recursion)

n A function is in Continuation Passing Style when it,
and every function call in it, passes its result to
another function.

n Instead of returning the result to the caller, we
pass it forward to another function.

9/14/21 31

Terminology

n Tail Position: A subexpression s of
expressions e, such that if evaluated,
will be taken as the value of e
n if (x>3) then x + 2 else x - 4
n let x = 5 in x + 4

n Tail Call: A function call that occurs in
tail position
n if (h x) then f x else (x + g x)

9/14/21 32

Terminology

n Available: A function call that can be
executed by the current expression

n The fastest way to be unavailable is to be
guarded by an abstraction (anonymous
function, lambda lifted).
n if (h x) then f x else (x + g x)
n if (h x) then (fun x -> f x) else (g (x + x))

Not available

9/14/21 33

CPS Transformation

n Step 1: Add continuation argument to any function
definition:
n let f arg = e Þ let f arg k = e
n Idea: Every function takes an extra parameter

saying where the result goes
n Step 2: A simple expression in tail position should

be passed to a continuation instead of returned:
n return a Þ k a
n Assuming a is a constant or variable.
n “Simple” = “No available function calls.”

9/14/21 34

CPS Transformation

n Step 3: Pass the current continuation to every
function call in tail position
n return f arg Þ f arg k
n The function “isn’t going to return,” so we need

to tell it where to put the result.

CPS Transformation

n Step 4: Each function call not in tail position needs
to be converted to take a new continuation
(containing the old continuation as appropriate)
n return op (f arg) Þ f arg (fun r -> k(op r))
n op represents a primitive operation

n return f(g arg) Þ g arg (fun r-> f r k)

9/14/21 35

9/14/21 36

Example

Before:
let rec add_list lst =
match lst with
[] -> 0

| 0 :: xs -> add_list xs
| x :: xs -> (+) x

(add_list xs);;

After:
let rec add_listk lst k =

(* rule 1 *)
match lst with
| [] -> k 0 (* rule 2 *)
| 0 :: xs -> add_listk xs k

(* rule 3 *)
| x :: xs -> add_listk xs

(fun r -> k ((+) x r));;
(* rule 4 *)

Other Uses for Continuations

n CPS designed to preserve order of
evaluation

n Continuations used to express order of
evaluation

n Can be used to change order of evaluation
n Implements:

n Exceptions and exception handling
n Co-routines
n (pseudo, aka green) threads

9/14/21 37

9/14/21 38

Exceptions - Example

exception Zero;;
exception Zero
let rec list_mult_aux list =

match list with [] -> 1
| x :: xs ->
if x = 0 then raise Zero

else x * list_mult_aux xs;;
val list_mult_aux : int list -> int = <fun>

9/14/21 39

Exceptions - Example

let list_mult list =
try list_mult_aux list with Zero -> 0;;

val list_mult : int list -> int = <fun>
list_mult [3;4;2];;
- : int = 24
list_mult [7;4;0];;
- : int = 0
list_mult_aux [7;4;0];;
Exception: Zero.

9/14/21 40

Exceptions

n When an exception is raised
n The current computation is aborted
n Control is “thrown” back up the call
stack until a matching handler is
found

n All the intermediate calls waiting for a
return values are thrown away

9/14/21 41

Implementing Exceptions

let multkp (m, n) k =
let r = m * n in
(print_string "product result: ";
print_int r; print_string "\n";
k r);;

val multkp : int (int -> (int -> 'a) -> 'a =
<fun>

9/14/21 42

Implementing Exceptions

let rec list_multk_aux list k kexcp =
match list with [] -> k 1
| x :: xs -> if x = 0 then kexcp 0
else list_multk_aux xs

(fun r -> multkp (x, r) k) kexcp;;
val list_multk_aux : int list -> (int -> 'a) -> (int -> 'a)

-> 'a = <fun>
let rec list_multk list k = list_multk_aux list k k;;
val list_multk : int list -> (int -> 'a) -> 'a = <fun>

9/14/21 43

Implementing Exceptions

list_multk [3;4;2] report;;
product result: 2
product result: 8
product result: 24
24
- : unit = ()
list_multk [7;4;0] report;;
0
- : unit = ()

9/20/21 44

Variants - Syntax (slightly simplified)

n type name = C1 [of ty1] | . . . | Cn [of tyn]
n Introduce a type called name
n (fun x -> Ci x) : ty1 -> name
n Ci is called a constructor; if the optional type

argument is omitted, it is called a constant
n Constructors are the basis of almost all

pattern matching

9/20/21 45

Enumeration Types as Variants

An enumeration type is a collection of distinct
values

In C and Ocaml they have an order structure;
order by order of input

9/20/21 46

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday
| Thursday | Friday | Saturday | Sunday;;

type weekday =
Monday

| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday

9/20/21 47

Functions over Enumerations

let day_after day = match day with
Monday -> Tuesday

| Tuesday -> Wednesday
| Wednesday -> Thursday
| Thursday -> Friday
| Friday -> Saturday
| Saturday -> Sunday
| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>

9/20/21 48

Functions over Enumerations

let rec days_later n day =
match n with 0 -> day
| _ -> if n > 0

then day_after (days_later (n - 1) day)
else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday
= <fun>

9/20/21 49

Functions over Enumerations

days_later 2 Tuesday;;
- : weekday = Thursday
days_later (-1) Wednesday;;
- : weekday = Tuesday
days_later (-4) Monday;;
- : weekday = Thursday

9/20/21 50

Disjoint Union Types

n Disjoint union of types, with some possibly
occurring more than once

n We can also add in some new singleton
elements

ty1 ty2 ty1

9/20/21 51

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | SocialSecurity
of int | Name of string

let check_id id = match id with
DriversLicense num ->
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>

9/20/21 52

Polymorphism in Variants

n The type 'a option is gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;
type 'a option = Some of 'a | None

n Used to encode partial functions
n Often can replace the raising of an exception

9/20/21 53

Functions producing option

let rec first p list =
match list with [] -> None
| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = <fun>
first (fun x -> x > 3) [1;3;4;2;5];;
- : int option = Some 4
first (fun x -> x > 5) [1;3;4;2;5];;
- : int option = None

9/20/21 54

Functions over option

let result_ok r =
match r with None -> false
| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>
result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;
- : bool = true
result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;
- : bool = false

9/20/21 55

Folding over Variants

let optionFold someFun noneVal opt =
match opt with None -> noneVal
| Some x -> someFun x;;

val optionFold : ('a -> 'b) -> 'b -> 'a option ->
'b = <fun>

let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

9/20/21 56

Recursive Types

n The type being defined may be a component
of itself

ty ty’ ty

9/20/21 57

Mapping over Variants

let optionMap f opt =
match opt with None -> None
| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap
(fun x -> x - 2)
(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

9/20/21 58

Recursive Data Types

type int_Bin_Tree =
Leaf of int | Node of (int_Bin_Tree *
int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

9/20/21 59

Recursive Data Type Values

let bin_tree =
Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node
(Leaf 3, Leaf 6), Leaf (-7))

9/20/21 60

Recursive Data Type Values

bin_tree = Node

Node Leaf (-7)

Leaf 3 Leaf 6

9/20/21 61

Recursive Functions

let rec first_leaf_value tree =
match tree with (Leaf n) -> n
| Node (left_tree, right_tree) ->
first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int =
<fun>

let left = first_leaf_value bin_tree;;
val left : int = 3

