Programming Languages and
Compilers (CS 421)

Elsa L Gunter

2112 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/7/21 1

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

i Evaluating declarations

= Evaluation uses an environment p

= [0 evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
=« Update p with x v: {X —> v} + p

= Update: p;+ p, has all the bindings in p; and
all those in p, that are not rebound in p;,

{X—>2,y—>3,a—>"hi"}+{y—> 100, b — 6}
={X—>2,y—>3,a— hi",b > 6}

9/7/21 2

i Evaluating expressions

= Evaluation uses an environment p
= A constant evaluates to itself
= T0 evaluate an variable, look it up in p: p(v)

= 10 evaluate uses of +, _, etc, eval args,
then do operation

= Function expression evaluates to its closure

= 1O evaluate a local dec: let x = el in e2
=« Eval el to v, eval e2 using {x —> v} + p

9/7/21 3

i Evaluating conditions expressions

= T0 evaluate a conditional expression:
if b then el else e2

= Evaluate b to a value v
« If vis True, evaluate el
« If v is False, evaluate e2

9/7/21

i Evaluation of Application with Closures

= Given application expression f(ey,...,e,)
= Evaluate (e4,...,e,) to value (vy,...,vy)

= In environment p, evaluate left term to closure,
C= <(X11---1Xn) — bl p>

» (Xq,...,X,) variables in (first) argument
= Update the environment p’ to

0" = {X{ = Vi,eee, Xqg >Vpr+ p’
= Evaluate body b in environment p”

9/7/21 5

i Evaluation of Application of plus_x;:

= Have environment:
p ={plus_ X - <y -y + X, Pplus_x 7 =+ 1
v —> 3, ..}

where Pplus_x = {X—>12, ...,y > 24, ...}
= Eval (plus_x vy, p) rewrites to
= App (Eval(plus_x, p) , Eval(y, p)) rewrites to
= App (Eval(plus_x, p) , 3) rewrites to
= App (<Y =Y + X, pplys_x >/ 3) rewrites to

9/7/21 6

i Evaluation of Application of plus_x;:

= Have environment:
p = {plus_Xx = <y -y + X, Pplus_x 7 == r
y— 3, ..}
where ppiys x = 1X—> 12, ...,y > 24, ..}
= App (<Y =Y + X, pplys_x >/ 3) rewrites to
= Eval (y + x, {y = 3} +ppjus_x) rewrites to

= Eval (y, {y — 3} +pPp us_x) T .
Eval (X, {y — 3} +p, us_X) rewrites to

= Eval (y, {y — 3} +ppjus x) + 12 rewrites to
= 3+ 12 =15

9/7/21 7

D
D

i Evaluation of Application of plus_pair

x Assume environment

p=4x—->3..,

plus_pair -><(n,m) -n + m, pplus_pair>} T Pplus_pair

=« Eval (plus_pair (4,x), p)=
plus_pair, p), Eval ((4,x), p)) =

= A

A
= A
A

9/7/21

D
D
D
D

D (Eval (
D (Eval (

0 (Eva

0 (Eva

(
(

dlus_pair, p), (Eval(4,p), Eval(x,p))) =

D

D

us_pair, p), (Eval(4,p), 3)) =
us_pair, p), (4,3)) =

i Evaluation of Application of plus_pair

x Assume environment

p=4{x— 3.,
plus_pair -><(n,m) —n + m, pplus_pair>} *Pplus_pair
= App (Eval (plus_pair, p), (4,3)) =

= App (<(n,m) -»n + m, Pplus_pair= (4,3)) =
s Eval(n+m,{n->4, m->3} + pplus_pair) —
= Eval (4, {n->4, m-> 3} + ppys pair) +

Eval 3,{n->4, m->3}+ pyus par) =4+ 3 =7

9/7/21 9

i Evaluation of Curried Functions

ASSUME Paqq three IS the environment when add_three is
defined, and p comes after add_three is defind.

Recall:

let add_threexyz=x+vy + z;;

val add_three : int -> int -> int -> int = <fun>
lett = add _three 6 3 2;;

= Eval (((add_three 6) 3) 2, p) =

= App (Eval (((add_tree 6) 3), p), Eval(2, p)) =
= App (Eval (((add_tree 6) 3), p), 2) =

= App (App (Eval ((add 6), p), Eval(3, p)), 2) =

9/7/21 10

i Evaluation of add three 6 3 2

p={x— 3.,
plus_pair -<(n,m) —-n + m, pp|us_pair>}

+Pplus_pair
= App(App(App(Eval(add_three, p),Eval(6, p)),3),2) =

= App(App(App(Eval(add_three, p),6),3),2) =
= App(App(App(< X ->funy -> (funz-> X+ Yy + 2),
Padd_three >/6)r3)/2) =
= App(App(Eval(funy -> (funz->x +y + 2),
{X -> 6} +Padd_three)r 3)12) —

9/7/21 11

i Evaluation of add three 6 3 2

= App(App(Eval(funy -> (funz->x + vy + 2),
{X -> 6} +Padd_three)r 3)12) —
= App (App(<y -> (funz -> x +y + 2),
{X -> 6} +Padd_three >)/ 3)12) —
= App (Eval(funz->x+vy + z,
{y -> 3, x-> 6} +padd_three)12) —
m App (<Z2-> X+ VY + Z
{y -> 3/ X -> 6} +padd_three >)12) —
s Eval(x +y +2,{z2->2,y-> 3, X-> 6} +padd_three)

9/7/21 12

i Evaluation of add three 6 3 2

s Eval(x +y,{z->2,y->3,X-> 6} +padd three) T+
Eva (Z/ {z-> 2, y->3,X-> 6} +padd_three) —

s Eval(x +y,{z->2,y->3,X->6} +pagd three)+2=

s (BEval(x, {z->2,y-> 3, X->6} +padd three) T
Eval(y/ {z-> 2, y->3,Xx-> 6} +padd_three))+2=

s (Eval(x, {z-> 2,y ->3,X->6} +padd three) T
3)+2=

s (6+3)+2=9+2 =11

9/7/21 13

i Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int =120
(* rec is needed for recursive function
declarations *)

9/7/21

14

i Recursion Example

Compute n? recursively using:
nf=(2*n-1)+ (n-1)2

let rec nthsg n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
|n->(2*n-1) (* recursive case *)

+ nthsqg (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
nthsq 3;;
- 1int=9

Structure of recursion similar to inductive proof

9/7/21 15

i Recursion and Induction

let rec nthsg n = match n with 0 -> 0
ln->2*n-1)+nthsqg(n-1) ;;

= Base case is the last case; it stops the computation

= Recursive call must be to arguments that are
somehow smaller - must progress to base case

= If or match must contain base case
= Failure of these may cause failure of termination

9/7/21 16

i Lists

= List can take one of two forms:

=« Empty list, written []
= Non-empty list, written X :: xs

= X iS head element, xs is tail list, :: called
“Cons”

= Syntactic sugar: [x] == x :: []
s [X1; X2, .oxn]==x1::x2: .. 0xnz[]

9/7/21

17

i Lists

let fib5 = [8;5:3;2;1:1];;

val fib5 :intlist =[8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : intlist =[13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- i]nt ist=1[8;5;3;2;:1;1;13;8;5; 3; 2; 1;
1

9/7/21 18

i Lists are Homogeneous

let bad _list = [1; 3.2; 71:;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here
used with type int

9/7/21

19

i Question

= Which one of these lists is invalid?

2; 3; 4, 6]

2,3; 4,5, 6,7]

(2.3,4); (3.2,5); (6,7.2)]

[*hi”; “there™]; ["wahcha™]; [1; [“doin"]]

ol

9/7/21 20

i Answer

= Which one of these lists is invalid?

2; 3; 4, 6]

2,3; 4,5, 6,7]

(2.3,4); (3.2,5); (6,7.2)]

[*hi”; “there™]; ["wahcha™]; [1; [“doin"]]

ol

= 3 isinvalid because of last pair

9/7/21 21

i Functions Over Lists

let rec double_up list =
match list
with [| ->[] (* pattern before ->,
expression after *)
| (X ::xs)->(x::X::double_up xs);;
val double_up : 'a list -> "a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist =1[8; 8; 5; 5; 3; 3; 2; 2; 1;
1;1; 1]

9/7/21 22

i Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with [] -> []

val

(X::XS) -> poor_rev Xs @ [X];;
Door_rev : 'a list -> 'a list = <fun>

poor_rev silly;;

9/7/21

string list = ["there”; "there”; "hi"; "hi"]

23

i Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/7/21 24

i Question: Length of list

= Problem: write code for the length of the list
=« How to start?

let length | =

9/7/21 25

i Question: Length of list

= Problem: write code for the length of the list
=« How to start?

let rec length | =
match | with

9/7/21 26

i Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with

9/7/21 27

i Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with [] ->
| (a :: bs) ->

9/7/21 28

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is empty?

let rec length | =
match | with [] -> 0
| (a :: bs) ->

9/7/21 29

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?

let rec length | =
match | with [] -> 0
| (a :: bs) ->

9/7/21 30

i Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?

let rec length | =
match | with [] -> 0
| (@ :: bs) -> 1 + length bs

9/7/21 31

i Structural Recursion : List Example

let rec length list = match list
with [] -> 0 (* Nil case *)
| X :: Xxs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
-:int=4

= Nil case [] is base case
= Cons case recurses on component list xs

9/7/21 32

i Same Length

= How can we efficiently answer if two lists
have the same length?

9/7/21

33

i Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length listl list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (X::Xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/7/21

34

i Higher-Order Functions Over Lists

let rec map f list =
match list
with [] -> []
| (h::t) -> (fh) :: (map ft);;
val map : ('a -> 'b) -> "a list -> 'b list = <fun>
map plus_two fib5;;
- rint list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
cintlist = [12; 7; 4; 2; 1; 0; 0]

9/7/21 35

i Recursing over lists

let rec fold_right f list b =
match list o e
with []-> b The Primitive
| (x :: xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right: ('a->'b->'b)->"alist->'b->"'b =

<fun>
fold_right
(fun s -> fun () -> print_string s)
[Ilhill; Iltherell]
o

therehi- : unit = ()

9/9/21 36

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

s Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

9/7/21 37

i Forward Recursion: Examples

let rec double_up list =
match list
with[]->1]
| (X i Xs) -> (X :: X :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []
| (X::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/7/21

38

i Forward Recursion: Examples

let rec double_up list =
match list

with[[1]-> []
| (x Ja XS) >|_(x ::|double_up xs};;

val doubleé up : 'aTist - >1 alist=<
| Base Case | | Operator || Recursive Call|
let rec poor_rev list =
match list
with|[[|-> []
| ()ths) ->| poor_rev xs|(@ [x];;
val poor_\rev : 'a list -> 'a = >

| Base Case | | Operator || Recursive Callf

9/7/21 39

i Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[1->|list2 || x::xs ->[x ::]bppend xs list3:;
val append : 'a list -> 'a/list -> "a\Lis\t= <fun>

| Operation || Recursive Call |

| Base Case

let append list1 list
fold_right (fun x y -> list1|list2;}

val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5,;6];;

-rintlist =[1; 2; 3; 4; 5; 6]

9/7/21 40

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelist [2;3;4];;
- 1 int list = [4; 6; 8]

9/7/21 41

i Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>
doublelist [2;3;4];;
- 1 int list = [4; 6; 8]

= Same function, but no rec

9/7/21 42

i Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2:4;6];;
- 1 int = 48

9/7/21 43

i Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| X::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2:4;6];;
- 1 int = 48

= Computes (2 * (4 * (6 * 1)))

9/7/21 44

i Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2:4;6];;
- 1 int = 48

9/7/21 45

i Folding Functions over Lists

| How are the following functions similar?

let rec sumlist list = match list with
[1-> 0| x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3:4];;

-:int=9

let rec prodlist list = match list with
[1-> 1] x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

-:int =24

9/7/21

46

i Folding - Forward Recursion

let sumlist list = fold_right (+) list O;;
val sumlist : int list -> int = <fun>

sumlist [2:3:4]:;

-:int=9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

- rint=24

9/7/21

47

i How long will it take?

= Remember the big-O notation from CS 225
and CS 374

= Question: given input of size n, how long to
generate output?

= EXpress output time in terms of input size,
omit constants and take biggest power

9/7/21 48

i How long will it take?

Common big-0 times:
= Constant time O (1)
= input size doesn’t matter
= Linear time O (n)
= double input = double time
= Quadratic time O ()
= double input = quadruple time
= EXponential time O (27)
= increment input = double time

9/7/21

49

i Linear Time

= EXpect most list operations to take
linear time O (n)

= Each step of the recursion can be done
In constant time

= Each step makes only one recursive call
= List example: multList, append
= Integer example: factorial

9/7/21 50

i Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with [] -> []

| (X::Xs) -> poor_rev xs|@|[x];;
val poor_rev : 'a list -> 'a list = <fun>

9/7/21 51

i Exponential running time

= Poor worst-case running times on input of

any size
= Each step of recursion takes constant time
= Each recursion makes two recursive calls

= Easy to write naive code that is exponential

for functions that can be linear

9/7/21 52

i Exponential running time

let rec slow n =

ifn<=1

then 1

else 1+slow (n-1) + slow(n-2);:
val slow : int -> int = <fun>
List.map slow [1;2:3;4:5;6;7;8;9];;
-intlist =[1; 3; 5; 9; 15; 25; 41; 67;

109]

9/7/21 53

i An Important Optimization

= When a function call is made,
Normal the return address needs to be
call saved to the stack so we know

to where to return when the
h call is finished

g = What if Fcalls gand g calls A,

F but calling A is the last thing g
does (a ta/l call)?

9/7/21 54

i An Important Optimization

= When a function call is made,

Tail the return address needs to be
call saved to the stack so we know
to where to return when the
& h call is finished

f = What if Fcalls gand g calls A,
but calling /A is the last thing g
does (a ta/l call)?

= Then /A can return directly to 7
instead of g

9/7/21 55

i Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

9/7/21 56

i Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X 2 XS -> rev_aux Xxs (X::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [|;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/7/21

57

i Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @[3]) @[2]) @[1] =
= ([1@[3]) @[2]) @[1]) =
 ([3]1@[2]) @[1] =

= C([]@[2]) @[1] =

- [312] @ [1] —

= 3 (2] @[1]) =

s 30020 (1@[1])) =1[3, 2, 1]

9/7/21

58

i Comparison

= rev[1,2,3] =
= rev_aux [1,2,3][] =
= rev_aux [2,3] [1] =

= rev_aux [3] [2,1] =
= rev_aux |][3,2 1] [3,2,1]

9/7/21

i Folding - Tail Recursion

- # letrev list =
fold_left
(funl->funx->x::1) //comb op
[] //accumulator cell

list

9/7/21 60

i [terating over lists

let rec fold_left f a list =

match list

with []-> a

| (X :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a->'b->'a)->"'a->'blist-> 'a =

<fun>
fold_left

(fun () -> print_string)

()

["hi"; "there"];;
hithere- : unit = ()

9/7/21

61

i Folding

let rec fold_left f a list = match list
with []->a | (X :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a->'b->"'a)->'a->'blist-> 'a =
<fun>
fold_left f a [Xy; Xo;...;%,] = f(...(f (f @ X1) X5)...)X,

let rec fold_right f list b = match list
with[]->b | (x:: xs) -> f x (fold_right f xs b);;
val fold_right: ('a->'b->'b)->"alist->'b->"'b =
<fun>

fold_right f [X1; X5;...:%,] b = x:(f X5 (...(f X, b)...))

9/7/21 62

i Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any tail
primitive recursive definition

9/7/21 63

