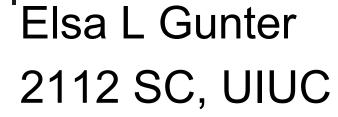
Programming Languages and Compilers (CS 421)



https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Evaluating declarations

- Evaluation uses an environment p
- To evaluate a (simple) declaration let x = e
 - Evaluate expression e in ρ to value v
 - Update ρ with x v: $\{x \rightarrow v\} + \rho$
- Update: $\rho_1 + \rho_2$ has all the bindings in ρ_1 and all those in ρ_2 that are not rebound in ρ_1

$$\{x \to 2, y \to 3, a \to \text{``hi''}\} + \{y \to 100, b \to 6\}$$

= $\{x \to 2, y \to 3, a \to \text{``hi''}, b \to 6\}$

Evaluating expressions

- Evaluation uses an environment p
- A constant evaluates to itself
- To evaluate an variable, look it up in ρ : $\rho(v)$
- To evaluate uses of +, _ , etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let x = e1 in e2
 - Eval e1 to v, eval e2 using $\{x \rightarrow v\} + \rho$

Evaluating conditions expressions

- To evaluate a conditional expression: if b then e1 else e2
 - Evaluate b to a value v
 - If v is True, evaluate e1
 - If v is False, evaluate e2

Evaluation of Application with Closures

- Given application expression f(e₁,...,e_n)
- Evaluate $(e_1,...,e_n)$ to value $(v_1,...,v_n)$
- In environment ρ , evaluate left term to closure, $c = \langle (x_1,...,x_n) \rightarrow b, \rho' \rangle$
 - (x₁,...,x_n) variables in (first) argument
- Update the environment ρ' to

$$\rho'' = \{x_1 \rightarrow v_1, ..., x_n \rightarrow v_n\} + \rho'$$

Evaluate body b in environment p"

Evaluation of Application of plus_x;;

Have environment:

```
\rho = \{\text{plus}\_x \rightarrow <\text{y} \rightarrow \text{y} + \text{x}, \, \rho_{\text{plus}\_x} >, \, \dots, \\ \text{y} \rightarrow 3, \, \dots\} \text{where } \rho_{\text{plus}\_x} = \{\text{x} \rightarrow 12, \, \dots, \, \text{y} \rightarrow 24, \, \dots\}
```

- Eval (plus_x y, ρ) rewrites to
- App (Eval(plus_x, ρ), Eval(y, ρ)) rewrites to
- App (Eval(plus_x, ρ), 3) rewrites to
- App ($\langle y \rightarrow y + x, \rho_{plus x} \rangle$, 3) rewrites to

. . .

Evaluation of Application of plus_x;;

Have environment:

```
\rho = \{plus\_x \rightarrow <y \rightarrow y + x, \rho_{plus~x} >, ... ,
                   v \to 3, ...
   where \rho_{\text{plus } x} = \{x \to 12, ..., y \to 24, ...\}
■ App (\langle y \rightarrow y + x, \rho_{plus x} \rangle, 3) rewrites to
■ Eval (y + x, \{y \rightarrow 3\} + \rho_{\text{plus } x}) rewrites to
■ Eval (y, {y \rightarrow 3} +\rho_{plus\_x}) + Eval (x, {y \rightarrow 3} +\rho_{plus\_x}) rewrites to
■ Eval (y, \{y \rightarrow 3\} + \rho_{\text{plus x}}) + 12 rewrites to
 = 3 + 12 = 15
```


Evaluation of Application of plus_pair

Assume environment

$$\rho = \{x \rightarrow 3..., \\ plus_pair \rightarrow <(n,m) \rightarrow n + m, \rho_{plus_pair}>\} + \rho_{plus_pair}$$

- Eval (plus_pair (4,x), ρ)=
- App (Eval (plus_pair, ρ), Eval ((4,x), ρ)) =
- App (Eval (plus_pair, ρ), (Eval(4, ρ), Eval(x, ρ))) =
- App (Eval (plus_pair, ρ), (Eval(4, ρ), 3)) =
- App (Eval (plus_pair, ρ), (4,3)) =

Evaluation of Application of plus_pair

Assume environment

$$\rho = \{x \rightarrow 3..., \\ plus_pair \rightarrow <(n,m) \rightarrow n + m, \rho_{plus_pair}>\} + \rho_{plus_pair}$$

- App (Eval (plus_pair, ρ), (4,3)) =
- App (<(n,m) \rightarrow n + m, $\rho_{plus_pair}>$, (4,3)) =
- Eval (n + m, {n -> 4, m -> 3} + ρ_{plus_pair}) =
- Eval (4, {n -> 4, m -> 3} + ρ_{plus_pair}) + Eval (3, {n -> 4, m -> 3} + ρ_{plus_pair}) = 4 + 3 = 7

Evaluation of Curried Functions

Assume ρ_{add_three} is the environment when add_three is defined, and ρ comes after add_three is defind.

Recall:

```
let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
# let t = add_three 6 3 2;;
• Eval (((add_three 6) 3) 2, ρ) =
• App (Eval (((add_tree 6) 3), ρ), Eval(2, ρ)) =
```

- App (Eval (((add_tree 6) 3), ρ), 2) =
- App (App (Eval ((add 6), ρ), Eval(3, ρ)), 2) =

Evaluation of add_three 6 3 2

```
\rho = \{x \rightarrow 3..., \\ plus\_pair \rightarrow <(n,m) \rightarrow n + m, \rho_{plus\_pair}>\} \\ + \rho_{plus\_pair}
```

- App(App(Eval(add_three, ρ),Eval(6, ρ)),3),2) =
- App(App(Eval(add_three, ρ),6),3),2) =
- App(App(App(< x ->fun y -> (fun z -> x + y + z), ρ_{add_three} >,6),3),2) =
- App(App(Eval(fun y -> (fun z -> x + y + z), $\{x -> 6\} + \rho_{add three}\}$), 3),2) =

Evaluation of add_three 6 3 2

- App(App(Eval(fun y -> (fun z -> x + y + z), $\{x -> 6\} + \rho_{add three}\}$), 3),2) =
- App (App(<y -> (fun z -> x + y + z), $\{x -> 6\} + \rho_{add three} >$), 3),2) =
- App (Eval(fun z -> x + y + z, $\{y -> 3, x -> 6\} + \rho_{add_three}\}$,2) =
- App ($\langle z \rangle x + y + z$, $\{y - \rangle 3, x - \rangle 6\} + \rho_{add_three} \rangle$),2) =
- Eval(x + y + z, {z -> 2, y -> 3, x -> 6} + ρ_{add_three})

Evaluation of add_three 6 3 2

- Eval(x + y, {z -> 2, y -> 3, x -> 6} + ρ_{add_three})+ Eval(z, {z -> 2, y -> 3, x -> 6} + ρ_{add_three}) =
- Eval(x + y, {z -> 2, y -> 3, x -> 6} + ρ_{add_three})+2=
- (Eval(x, {z -> 2, y -> 3, x -> 6} + ρ_{add_three}) + Eval(y, {z -> 2, y -> 3, x -> 6} + ρ_{add_three}))+2=
- (Eval(x, {z -> 2, y -> 3, x -> 6} + ρ_{add_three}) + 3)+2=
- (6+3)+2=9+2=11

Recursive Functions

```
# let rec factorial n =
   if n = 0 then 1 else n * factorial (n - 1);;
 val factorial: int -> int = <fun>
# factorial 5;;
-: int = 120
# (* rec is needed for recursive function
 declarations *)
```

Recursion Example

```
Compute n<sup>2</sup> recursively using:
               n^2 = (2 * n - 1) + (n - 1)^2
# let rec nthsq n = (* rec for recursion *)
  match n
                      (* pattern matching for cases *)
  with 0 \rightarrow 0 (* base case *)
| n \rightarrow (2 * n - 1) (* recursive case *)
  with 0 \rightarrow 0
         + nthsq (n -1);; (* recursive call *)
val nthsq : int -> int = <fun>
# nthsq 3;;
-: int = 9
```

Structure of recursion similar to inductive proof

Recursion and Induction

```
# let rec nthsq n = match n with 0 -> 0
| n -> (2 * n - 1) + nthsq (n - 1) ;;
```

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

Lists

- List can take one of two forms:
 - Empty list, written []
 - Non-empty list, written x :: xs
 - x is head element, xs is tail list, :: called "cons"
 - Syntactic sugar: [x] == x :: []
 - [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Lists

```
# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
\# (8::5::3::2::1::1::[ ]) = fib5;;
- : bool = true
# fib5 @ fib6;;
-: int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1;
  1]
```


Lists are Homogeneous

```
# let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;
```

This expression has type float but is here used with type int

Question

Which one of these lists is invalid?

- 1. [2; 3; 4; 6]
- 2. [2,3; 4,5; 6,7]
- **3**. [(2.3,4); (3.2,5); (6,7.2)]
- 4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Answer

Which one of these lists is invalid?

- 1. [2; 3; 4; 6]
- 2. [2,3; 4,5; 6,7]
- **3**. [(2.3,4); (3.2,5); (6,7.2)]
- 4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

3 is invalid because of last pair

Functions Over Lists

```
# let rec double_up list =
   match list
   with [] -> [] (* pattern before ->,
                     expression after *)
     (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
# let fib5_2 = double_up fib5;;
val fib5 2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1;
  1; 1; 1]
```

Functions Over Lists

```
# let silly = double_up ["hi"; "there"];;
val silly: string list = ["hi"; "hi"; "there"; "there"]
# let rec poor_rev list =
 match list
 with [] -> []
   (x::xs) -> poor_rev xs @ [x];;
val poor rev : 'a list -> 'a list = <fun>
# poor rev silly;;
-: string list = ["there"; "there"; "hi"; "hi"]
```


Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
 - Recursive calls made to components of structure of the same recursive type
 - Base cases of recursive types stop the recursion of the function

- Problem: write code for the length of the list
 - How to start?

let length I =

- Problem: write code for the length of the list
 - How to start?

let rec length I = match I with

- Problem: write code for the length of the list
 - What patterns should we match against?

let rec length I = match I with

- Problem: write code for the length of the list
 - What patterns should we match against?

```
let rec length I =
  match I with [] ->
  | (a :: bs) ->
```

Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when I is empty?

```
let rec length I =
  match I with [] -> 0
  | (a :: bs) ->
```

Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when I is not empty?

```
let rec length I =
  match I with [] -> 0
  | (a :: bs) ->
```

Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when I is not empty?

```
let rec length I =
  match I with [] -> 0
  | (a :: bs) -> 1 + length bs
```

Structural Recursion: List Example

```
# let rec length list = match list
with [] -> 0 (* Nil case *)
    | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
- : int = 4
```

- Nil case [] is base case
 - Cons case recurses on component list xs

How can we efficiently answer if two lists have the same length?

Same Length

How can we efficiently answer if two lists have the same length?

```
let rec same length list1 list2 =
  match list1 with [] ->
     (match list2 with [] -> true
      (y::ys) -> false)
   (x::xs) ->
     (match list2 with [] -> false
      (y::ys) -> same_length xs ys)
```

Higher-Order Functions Over Lists

```
# let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
# map plus two fib5;;
-: int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
```

Recursing over lists

```
# let rec fold_right f list b =
 match list
 with \lceil \rceil -> b
 (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
  <fun>
# fold_right
   (fun s -> fun () -> print_string s)
   ["hi"; "there"]
   ();;
therehi-: unit = ()
```


The Primitive **Recursion Fairy**

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Forward Recursion: Examples

```
# let rec double_up list =
   match list
   with [ ] -> [ ]
     (x :: xs) -> (x :: x :: double_up xs);;
val double up : 'a list -> 'a list = <fun>
# let rec poor_rev list =
 match list
 with [] -> []
    (x::xs) -> poor_rev xs @ [x];;
val poor rev : 'a list -> 'a list = <fun>
```

Forward Recursion: Examples

```
# let rec double_up list =
   match list
  with [ ] -> [ ]
     | (x †: xs) -> (x :: x :: double_up xs);;
val double up : 'a list -> 'a list = < fun>
                    Operator | Recursive Call
    Base Case
# let rec poor_rev list =
 match list
 with [ ] -> [ ]
    (x::xs) -> poor_rev xs @ [x];;
val poor rev : 'a list -> 'a list = <fun>
                                   Recursive Call
      Base Case
                       Operator
```

Encoding Forward Recursion with Fold

```
# let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append: 'a list -> 'a list -> 'a list = <fun>
                  Operation | Recursive Call
   Base Case
# let append list1 list2 =
  fold_right (fun x y -> x :: y) list1 list2;
val append: 'a list -> 'a list -> 'a list = <fun>
# append [1;2;3] [4;5;6];;
-: int list = [1; 2; 3; 4; 5; 6]
```

Mapping Recursion

 Can use the higher-order recursive map function instead of direct recursion

```
# let doubleList list =
   List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

Mapping Recursion

 Can use the higher-order recursive map function instead of direct recursion

```
# let doubleList list =
   List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

Same function, but no rec

Folding Recursion

Another common form "folds" an operation over the elements of the structure

```
# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
```

Folding Recursion

Another common form "folds" an operation over the elements of the structure

```
# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
```

Computes (2 * (4 * (6 * 1)))

Folding Recursion

- multList folds to the right
- Same as:

```
# let multList list =
    List.fold_right
    (fun x -> fun p -> x * p)
    list 1;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
```

Folding Functions over Lists

How are the following functions similar?

```
# let rec sumlist list = match list with
 [ ] -> 0 | x::xs -> x + sumlist xs;;
val sumlist: int list -> int = <fun>
# sumlist [2;3;4];;
-: int = 9
# let rec prodlist list = match list with
 [ ] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
-: int = 24
```

Folding - Forward Recursion

```
# let sumlist list = fold_right (+) list 0;;
val sumlist: int list -> int = <fun>
# sumlist [2;3;4];;
-: int = 9
# let prodlist list = fold_right ( * ) list 1;;
val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
-: int = 24
```


How long will it take?

- Remember the big-O notation from CS 225 and CS 374
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power

How long will it take?

Common big-O times:

- Constant time O(1)
 - input size doesn't matter
- Linear time O(n)
 - double input ⇒ double time
- Quadratic time $O(n^2)$
 - double input ⇒ quadruple time
- **Exponential time** $O(2^n)$
 - increment input ⇒ double time

Linear Time

- Expect most list operations to take linear time O(n)
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial

Quadratic Time

- Each step of the recursion takes time proportional to input,
- Each step of the recursion makes only one recursive call.
- List example:

Exponential running time

- Poor worst-case running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

Exponential running time

```
# let rec slow n =
    if n <= 1
    then 1
    else 1+slow(n-1) + slow(n-2);;
val slow: int -> int = <fun>
# List.map slow [1;2;3;4;5;6;7;8;9];;
-: int list = [1; 3; 5; 9; 15; 25; 41; 67;
 109]
```


An Important Optimization

Normal call

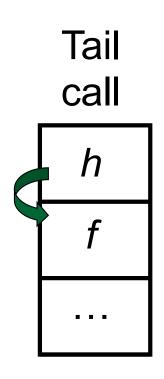
h

g

f
....

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?

An Important Optimization



- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
 - May require an auxiliary function

Tail Recursion - Example

What is its running time?

```
# let rec rev_aux list revlist =
 match list with [ ] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev aux : 'a list -> 'a list -> 'a list = <fun>
# let rev list = rev_aux list [ ];;
val rev: 'a list -> 'a list = <fun>
```

Co

Comparison

- poor_rev [1,2,3] =
- (poor_rev [2,3]) @ [1] =
- ((poor_rev [3]) @ [2]) @ [1] =
- (((poor_rev []) @ [3]) @ [2]) @ [1] =
- (([] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3:: ([] @ [2])) @ [1] =
- **•** [3,2] @ [1] =
- **3** :: ([2] @ [1]) =
- **3** :: (2:: ([] @ [1])) = [3, 2, 1]

Comparison

- rev [1,2,3] =
- rev_aux [1,2,3] [] =
- rev_aux [2,3] [1] =
- rev_aux [3] [2,1] =
- rev_aux [] [3,2,1] = [3,2,1]

Folding - Tail Recursion

```
# let rev list =
fold_left
(fun I -> fun x -> x :: I) //comb op
[] //accumulator cell
list
```

Iterating over lists

```
# let rec fold left f a list =
 match list
 with \lceil \rceil -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
  <fun>
# fold left
  (fun () -> print_string)
  ["hi"; "there"];;
hithere-: unit = ()
```

Folding

```
# let rec fold left f a list = match list
  with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left: ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
   <fun>
fold_left f a [x_1; x_2; ...; x_n] = f(...(f (f a <math>x_1) x_2)...)x_n
# let rec fold right f list b = match list
  with \lceil \rceil -> b \mid (x :: xs) -> f x (fold right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
   <fun>
fold_right f [x_1; x_2;...;x_n] b = f x_1(f x_2 (...(f x_n b)...))
```

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition