

Evaluating expressions

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate an variable, look it up in ρ : $\rho(\mathrm{v})$
- To evaluate uses of + , , etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: let $\mathrm{x}=\mathrm{e} 1$ in e2
- Eval e1 to v, eval e2 using $\{x \rightarrow v\}+\rho$

Evaluation of Application with Closures

- Given application expression $f\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right)$
- Evaluate $\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right)$ to value $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$
- In environment ρ, evaluate left term to closure, $\mathrm{c}=\left\langle\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow \mathrm{b}, \rho^{\prime}\right\rangle$
- ($\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$) variables in (first) argument
- Update the environment ρ^{\prime} to $\rho^{\prime \prime}=\left\{\mathrm{x}_{1} \rightarrow \mathrm{v}_{1}, \ldots, \mathrm{X}_{\mathrm{n}} \rightarrow \mathrm{v}_{\mathrm{n}}\right\}+\rho^{\prime}$
- Evaluate body bin environment $\rho^{\prime \prime}$

Evaluating declarations

- Evaluation uses an environment ρ
- To evaluate a (simple) declaration let $\mathrm{x}=\mathrm{e}$ - Evaluate expression e in ρ to value v
- Update ρ with $\mathrm{x} \mathrm{v}:\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$
- Update: $\rho_{1}+\rho_{2}$ has all the bindings in ρ_{1} and all those in ρ_{2} that are not rebound in ρ_{1} $\{x \rightarrow 2, y \rightarrow 3, a \rightarrow$ "hi" $\}+\{y \rightarrow 100, b \rightarrow 6\}$
$=\left\{x \rightarrow 2, y \rightarrow 3, a \rightarrow{ }^{\prime} h i ", b \rightarrow 6\right\}$
9/7/21

Evaluating conditions expressions

- To evaluate a conditional expression:
if b then e1 else e2
- Evaluate b to a value v
- If v is True, evaluate e1
- If v is False, evaluate e2

Evaluation of Application of plus_x;;

- Have environment:
$\rho=\left\{\right.$ plus_ $x \rightarrow\left\langle y \rightarrow y+x, \rho_{\text {plus_ }}>, \ldots\right.$,

$$
y \rightarrow 3, \ldots\}
$$

where $\rho_{\text {plus_x }}=\{x \rightarrow 12, \ldots, y \rightarrow 24, \ldots\}$

- Eval (plus_x y, ρ) rewrites to
- App (Eval(plus_x, ρ), Eval $(y, \rho))$ rewrites to
- App (Eval(plus_x, ρ) , 3) rewrites to
- App ($<y \rightarrow y+x, \rho_{\text {plus_x }}>, 3$) rewrites to ...

Evaluation of Application of plus_x;

- Have environment:
$\rho=\left\{\right.$ plus_ $x \rightarrow\left\langle y \rightarrow y+x, \rho_{\text {plus_ }}>, \ldots\right.$, $y \rightarrow 3, \ldots\}$
where $\rho_{\text {plus_x }}=\{x \rightarrow 12, \ldots, y \rightarrow 24, \ldots\}$
- App ($<y \rightarrow y+x, \rho_{\text {plus_ }}>, 3$) rewrites to
- Eval $\left(y+x,\{y \rightarrow 3\}+\rho_{\text {plus_ }}\right)$ rewrites to
- Eval ($y,\{y \rightarrow 3\}+\rho_{\text {plus_ }}$) +

Eval ($x,\{y \rightarrow 3\}+\rho_{\text {plus_x }}$) rewrites to

- Eval $\left(y,\{y \rightarrow 3\}+\rho_{\text {plus_x }}\right)+12$ rewrites to
- $3+12=15$

9/7/21

Evaluation of Application of plus_pair

- Assume environment
$\rho=\{x \rightarrow 3 \ldots$,
plus_pair $\left.\rightarrow<(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>\right\}+\rho_{\text {plus_pair }}$
- App (Eval (plus_pair, ρ), $(4,3))=$
- $\operatorname{App}\left(<(n, m) \rightarrow n+m, \rho_{\text {plus_pair }}>,(4,3)\right)=$
- Eval $\left(\mathrm{n}+\mathrm{m},\{\mathrm{n}->4, \mathrm{~m}->3\}+\rho_{\text {plus_pair }}\right)=$
- Eval (4, \{n -> 4, m -> 3\} $\left.+\rho_{\text {plus_pair }}\right)+$
$\operatorname{Eval}\left(3,\{n->4, m->3\}+\rho_{\text {plus_pair }}\right)=4+3=7$

Evaluation of add_three 632

$\rho=\{x \rightarrow 3 \ldots$,

$$
\text { plus_pair } \left.\rightarrow<(n, m) \rightarrow n+m, \rho_{\text {plus_pair }}>\right\}
$$

$+\rho_{\text {plus_pair }}$

- $\operatorname{App}(\operatorname{App}(\operatorname{App}(E v a l($ add_three, $\rho), E v a l(6, \rho)), 3), 2)=$
- App(App(App(Eval(add_three, $\rho), 6), 3), 2)$ =
- App(App(App(<x ->fun y -> (fun z -> x + y + z),
$\left.\left.\left.\rho_{\text {add_three }}>, 6\right), 3\right), 2\right)=$
- App(App(Eval(fun y -> (fun z->x+y+z),

$$
\left.\left.\left.\{x->6\}+\rho_{\text {add_three }}\right), 3\right), 2\right)=
$$

Evaluation of Application of plus_pair
Assume environment
$\rho=\{x \rightarrow 3 \ldots$,
plus_pair $\left.\left.\rightarrow<(\mathrm{n}, \mathrm{m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}\right\rangle\right\}+\rho_{\text {plus_pair }}$

- Eval (plus_pair $(4, \mathrm{x}), \rho)=$
- App (Eval (plus_pair, ρ), Eval $((4, x), \rho))=$
- App (Eval (plus_pair, $\rho),(\operatorname{Eval}(4, \rho), \operatorname{Eval}(x, \rho)))=$
- App (Eval (plus_pair, ρ), (Eval($4, \rho$), 3)) =
- App (Eval (plus_pair, ρ), $(4,3))=$

Evaluation of Curried Functions

Assume $\rho_{\text {add_three }}$ is the environment when add_three is defined, and ρ comes after add_three is defind.
Recall:
let add_three x y z = x + y + z; ;
val add_three : int -> int -> int -> int = <fun>
\# let t = add_three 63 2;;

- Eval (((add_three 6) 3) 2, ρ) =
- App (Eval $((($ add_tree 6$) 3), \rho), \operatorname{Eval}(2, \rho))=$
- App (Eval (((add_tree 6) 3), $\rho), 2)=$
- App (App (Eval ((add 6), ρ), Eval($3, \rho)$), 2) = 9/7/21

Evaluation of add_three 632

- App(App(Eval(fun y -> (fun z -> x + y + z),
$\left.\left.\left.\{x->6\}+\rho_{\text {add_three }}\right), 3\right), 2\right)=$
- App (App(<y -> (fun z ->x + y + z),

$$
\left.\left.\left.\{x->6\}+\rho_{\text {add_three }}>\right), 3\right), 2\right)=
$$

- App (Eval(fun z -> x + y + z,

$$
\left.\left.\{y->3, x->6\}+\rho_{\text {add_three }}\right), 2\right)=
$$

- App (<z -> x + y + z,
$\left.\left.\{y->3, x->6\}+\rho_{\text {add_three }}>\right), 2\right)=$
- Eval($\left.x+y+z,\{z->2, y->3, x->6\}+\rho_{\text {add_three }}\right)$ =

Evaluation of add_three 632

- $\operatorname{Eval}\left(x+y,\{z->2, y->3, x->6\}+\rho_{\text {add_three }}\right)+$
$\operatorname{Eval}\left(z,\{z->2, y->3, x->6\}+\rho_{\text {add_three }}\right)=$
- Eval $\left(x+y,\{z->2, y->3, x->6\}+\rho_{\text {add_three }}\right)+2=$
- (Eval($\left.x,\{z->2, y->3, x->6\}+\rho_{\text {add_three }}\right)+$
$\left.\operatorname{Eval}\left(y,\{z->2, y->3, x->6\}+\rho_{\text {add_three }}\right)\right)+2=$
- (Eval(x, $\left.\{z->2, y->3, x->6\}+\rho_{\text {add_three }}\right)+$

3) $+2=$

- $(6+3)+2=9+2=11$

Recursion Example

Compute n^{2} recursively using:
$n^{2}=(2 * n-1)+(n-1)^{2}$
\# let rec nthsq $\mathrm{n}=$ (* rec for recursion *)
match n (* pattern matching for cases *)
with $0 \rightarrow 0 \quad$ (* base case *)
$\begin{aligned} & \mid n->\left(2^{*} \mathrm{n}-1\right) \\ &+n \text { nthsq }(\mathrm{n}-1): i\left(* \text { recursive case }{ }^{*}\right) \\ &\left.(* \text { recursive call })^{*}\right)\end{aligned}$
val nthsq : int $->$ int $=$ <fun>
\# nthsq 3;;
: int = 9
Structure of recursion similar to inductive proof

Lists

- List can take one of two forms:
- Empty list, written []
- Non-empty list, written x :: xs
- x is head element, xs is tail list, :: called "cons"
- Syntactic sugar: $[\mathrm{x}]==\mathrm{x}$:: []
- [x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Recursion and Induction

\# let rec nthsq $n=$ match n with $0->0$

$$
\mid n->(2 * n-1)+n t h s q(n-1) ;
$$

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain base case
- Failure of these may cause failure of termination

9/7/21

Lists

\# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list $=[8 ; 5 ; 3 ; 2 ; 1 ; 1]$
\# let fib6 = 13 :: fib5;,;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
\# (8::5::3::2::1::1::[]) = fib5;,

- : bool = true
\# fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

9/7/21

Lists are Homogeneous

\＃let bad＿list＝［1；3．2；7］；；
Characters 19－22：
let bad＿list＝［1；3．2；7］；；
ヘヘヘ
This expression has type float but is here used with type int

Answer

－Which one of these lists is invalid？

1．$[2 ; 3 ; 4 ; 6]$
2．$[2,3 ; 4,5 ; 6,7]$
3．$[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4．［［＂hi＂；＂there＂］；［＂wahcha＂］；［ ］；［＂doin＂］］
－ 3 is invalid because of last pair

Functions Over Lists

\＃let silly＝double＿up［＂hi＂；＂there＂］；；
val silly ：string list＝［＂hi＂；＂hi＂；＂there＂；＂there＂］
\＃let rec poor＿rev list＝
match list
with［］－＞［］
｜（x：：xs）－＞poor＿rev xs＠［x］；；
val poor＿rev ：＇a list－＞＇a list＝＜fun＞
\＃poor＿rev silly；；
－：string list＝［＂there＂；＂there＂；＂hi＂；＂hi＂］

Question

－Which one of these lists is invalid？

1．$[2 ; 3 ; 4 ; 6]$
2．$[2,3 ; 4,5 ; 6,7]$
3．$[(2.3,4) ;(3.2,5) ;(6,7.2)]$
4．［［＂hi＂；＂there＂］；［＂wahcha＂］；［ ］；［＂doin＂］］

Functions Over Lists

\＃let rec double＿up list＝ match list
with［ ］－＞［ ］（＊pattern before－＞，
expression after ${ }^{*}$ ）
｜（x ：：xs）－＞（x ：：x ：：double＿up xs）；；
val double＿up ：＇a list－＞＇a list＝＜fun＞
\＃let fib5＿2＝double＿up fib5；；
val fib5＿2 ：int list＝ $8 ; 8 ; 5 ; 5 ; 3 ; 3 ; 2 ; 2 ; 1$ ； $1 ; 1 ; 1]$

Structural Recursion

－Functions on recursive datatypes（eg lists） tend to be recursive
－Recursion over recursive datatypes generally by structural recursion
－Recursive calls made to components of structure of the same recursive type
－Base cases of recursive types stop the recursion of the function

Question: Length of list

- Problem: write code for the length of the list - How to start? let length I =

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length I =
match I with

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when I is empty?
let rec length I =
match I with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list . How to start?
let rec length $\mathrm{I}=$
match I with

Question: Length of list

- Problem: write code for the length of the list - What patterns should we match against?
let rec length $\mathrm{I}=$
match I with [] ->
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when I is not empty?
let rec length $\mathrm{I}=$
match I with [] -> 0
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when I is not empty?
let rec length $\mathrm{I}=$
match I with [] -> 0
| (a :: bs) -> 1 + length bs

Same Length

- How can we efficiently answer if two lists have the same length?

Higher-Order Functions Over Lists

\# let rec map f list =
match list
with [] -> []
| (h::t) -> (f h) :: (map ft);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
\# map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]
\# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]

Structural Recursion : List Example

\# let rec length list = match list with [] -> 0 (* Nil case *)
| x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
\# length [5; 4; 3; 2];;

- : int = 4
- Nil case [] is base case
- Cons case recurses on component list xs

9/7/21

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 = match list1 with [] ->
(match list2 with [] -> true | (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false | (y::ys) -> same_length xs ys)
9/7/21

Recursing over lists

\# let rec fold_right f list b = match list
with [] -> b
| (x :: xs) -> fx (fold_right fxs b);; Recursion Fairy
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
\# fold_right (fun s -> fun () -> print_string s) ["hi"; "there"]
();
therehi- : unit $=()$

9/9/21

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Forward Recursion: Examples

\# let rec double_up list = match list
with []]-> []
| (x : : xs) -> (x :: x:: double_up xs); ;
val double_up: 'a list $->$ 'a list $=$ < funz
Base Case Operator Recursive Call
\# let rec poor_rev list =
match list
with ($[$]-> []
| (x: x xs) -> poor_rev xS @ [x];;
val poor_rev: a list->'alist-<fun>
Base Case Operator Recursive Call
9/7/21
39

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun> \# doubleList [2;3;4];;
- : int list = [4; 6; 8]

Forward Recursion: Examples

\# let rec double_up list = match list
with []-> []
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
\# let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/7/21

Encoding Forward Recursion with Fold

\# let rec append list1 list2 = match list1 with [] -> list2| x::xs -> x :: append xs list2;; val append : 'a list -> 'a/list -> 'a\ist = <fun> Base Case Operation Recursive Call \# let append list1 list2 =
fold_right (fun x y $->$ x : : y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
\# append $[1 ; 2 ; 3][4 ; 5 ; 6] ;$;

- : int list = [1; 2; 3; 4; 5; 6]

9/7/21

Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion
\# let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list $->$ int list $=<$ fun $>$
\# doubleList [2;3;4];;
- : int list = [4; 6; 8]

- Same function, but no rec

Folding Recursion

Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list $->$ int $=<$ fun $>$
\# multList [2;4;6];;

- : int = 48

Folding Recursion

- multList folds to the right

Same as:
\# let multList list =
List.fold_right
(fun $\mathrm{x}->$ fun $\mathrm{p}->\mathrm{x}^{*} \mathrm{p}$)
list 1;;
val multList : int list -> int = <fun>
\# multList [2;4;6];;

- : int = 48

Folding - Forward Recursion

\# let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
\# sumlist [2;3;4];;

- : int = 9
\# let prodlist list = fold_right (*) list 1; ;
val prodlist : int list -> int = <fun>
\# prodlist [2;3;4];;
: int = 24

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
\# let rec multList list = match list with [] -> 1
| x::xs -> x * multList xs;;
val multList : int list $->$ int $=<$ fun $>$
\# multList [2;4;6];;
- : int = 48
- Computes (2 * (4 * (6 * 1)))

9/7/21
44

Folding Functions over Lists

How are the following functions similar?
\# let rec sumlist list $=$ match list with
[] -> $0 \mid x:: x s ~->x+$ sumlist xs;;
val sumlist : int list $->$ int $=$ <fun>
\# sumlist [2;3;4];;

- : int = 9
\# let rec prodlist list = match list with

val prodlist : int list $->$ int $=$ <fun>
\# prodlist [2;3;4];;
- : int = 24

9/7/21
46

How long will it take?

- Remember the big-O notation from CS 225 and CS 374
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power

How long will it take?
Common big-O times:

- Constant time $O(1)$
- input size doesn't matter
- Linear time $O(n)$
- double input \Rightarrow double time
- Quadratic time $O\left(n^{2}\right)$
- double input \Rightarrow quadruple time
- Exponential time $O\left(2^{n}\right)$
- increment input \Rightarrow double time

Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
List example:
\# let rec poor_rev list = match list with [] -> []
| (x::xs) -> poor_rev xs@[x];;
val poor_rev : 'a list -> 'a list = <fun>

Exponential running time

\# let rec slow $\mathrm{n}=$
if $\mathrm{n}<=1$
then 1
else 1+slow (n-1) + slow(n-2);;
val slow : int -> int $=$ <fun> \# List.map slow [1;2;3;4;5;6;7;8;9];;

- : int list = [1; 3; 5; 9; 15; 25; 41; 67; 109]

Exponential running time

- Poor worst-case running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

An Important Optimization

- When a function call is made,

Normal call
 the return address needs to be saved to the stack so we know to where to return when the call is finished

- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal)?

Tail Recursion - Example

\# let rec rev_aux list revlist = match list with [] -> revlist | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>
\# let rev list = rev_aux list [] ; ;
val rev : 'a list -> 'a list = <fun>

- What is its running time?

Comparison

- $\operatorname{rev}[1,2,3]=$
- rev_aux [1,2,3] [] =
- rev_aux $[2,3][1]=$
- rev_aux [3] $[2,1]=$
- rev_aux [] [3,2,1] = [3,2,1]

Folding - Tail Recursion

\# let rev list =
fold_left
(fun I -> fun x -> x :: I) //comb op
[] //accumulator cell
list

Iterating over lists

\# let rec fold_left falist =
match list
with [] -> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
\# fold_left
(fun () -> print_string)
()
["hi"; "there"];;
hithere- : unit = ()

9/7/21

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

Folding

\# let rec fold_left f a list $=$ match list with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>
fold_left fa $\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right]=f\left(\ldots\left(f\left(f a x_{1}\right) x_{2}\right) \ldots\right) x_{n}$
\# let rec fold_right f list $b=$ match list with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>
fold_right $f\left[x_{1} ; x_{2} ; \ldots ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

