Programming Languages and
Compilers (CS 421)

IElsa L Gunter El
2112 SC, UIUC ‘

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

9/7/21 1

;‘ Evaluating declarations

= Evaluation uses an environment p

= To evaluate a (simple) declaration let x = e
= Evaluate expression e in p to value v
= Update pwithxv: {x > v} +p

= Update: p;+ p, has all the bindings in p; and
all those in p, that are not rebound in p;

{xX—>2,y—>3 a-"hi"}+{y > 100, b - 6}
={x—>2,y—>3,a-"hi",b—> 6}

9/7/21 2

‘ Evaluating expressions

= Evaluation uses an environment p
= A constant evaluates to itself
= To evaluate an variable, look it up in p: p(v)

= To evaluate uses of +, _, etc, eval args,
then do operation

= Function expression evaluates to its closure
= To evaluate a local dec: let x = el in e2
= Eval el to v, eval €2 using {x > v} + p

9/7/21 3

:‘ Evaluating conditions expressions

= To evaluate a conditional expression:
if b then el else e2
= Evaluate b to a value v
= If vis True, evaluate el
=« If v is False, evaluate e2

9/7/21 4

‘ Evaluation of Application with Closures

= Given application expression f(ey,...,€,)
= Evaluate (ey,...,€,) to value (vy,...,v,)

= In environment p, evaluate left term to closure,
Cc = <(Xy,-.,Xn) > b, p'>

s (Xy,...,Xy) variables in (first) argument
= Update the environment p’ to

p" = {Xl —> Vi Xn _>Vn}+ p,
= Evaluate body b in environment p”

9/7/21 5

’ Evaluation of Application of plus_x;;

= Have environment:
p = {plUsS_X = <y >y + X, ppiys x >/ -+
y—3, ..}
where Pplus_x = {x—>12,...,y—> 24, ..}
= Eval (plus_xy, p) rewrites to
= App (Eval(plus_x, p) , Eval(y, p)) rewrites to
= App (Eval(plus_x, p) , 3) rewrites to
= App (<Y > V¥ + X, Pplus_x 7 3) rewrites to

9/7/21 6

‘ Evaluation of Application of plus_x;;

= Have environment:
p =Aplus_Xx —> <y > Y + X, ppjys_x >/ -
y—3, ..}
where ppiys x = {X—> 12, ...,y > 24, ...}
= App (<Y > ¥y + X, Pplus_x > 3) rewrites to
= Eval (y + x, {y —» 3} +pp|us_x) rewrites to

= Eval (y, {y — 3} +ppIuS_X) + o
Eval (x, {y — 3} +pp|us_x) rewrites to

= Eval (y, {y —» 3} +pp|us_x) + 12 rewrites to
»3+12=15

9/7/21 7

:-‘ Evaluation of Application of plus_pair

= Assume environment
p={x—3.,
plus_pair —><(n,m) —n + M, ppus pair™>} +Pplus_pair
Eval (plus_pair (4,x), p)=
App (Eval (plus_pair, p), Eval ((4,x), p)) =
App (Eval (plus_pair, p), (Eval(4,p), Eval(x,p))) =
App (Eval (plus_pair, p), (Eval(4,p), 3)) =
App (Eval (plus_pair, p), (4,3)) =

9/7/21 8

:-‘ Evaluation of Application of plus_pair

= Assume environment

p={Xx—3..,
plus_pair »<(n,m) —»n + m, pplus_pair>} +Pplus_pair
App (Eval (plus_pair, p), (4,3)) =

App (<(n,m) -»n + m, Pplus_pair> (4,3)) =

Eval (n + m, {n->4, m-> 3} + pyus par) =
Eval (4, {n-> 4, m -> 3} + ppus_pair) +

Eval(3,{n->4, m->3}+ ppys par) =4+ 3 =7

9/7/21 9

‘ Evaluation of Curried Functions

Assume paqq three IS the environment when add_three is
defined, and p comes after add_three is defind.

Recall:

let add_threexyz=x+y + z;;

val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;

Eval (((add_three 6) 3) 2, p) =

App (Eval (((add_tree 6) 3), p), Eval(2, p)) =
App (Eval (((add_tree 6) 3), p), 2) =

App (App (Eval ((add 6), p), Eval(3, p)), 2) =

9/7/21 10

‘ Evaluation of add_three 6 3 2

p={x—>3..,
plus_pair -<(n,m) —n + M, pyius pair>+
+Pplus_pair
= App(App(App(Eval(add_three, p),Eval(6, p)),3),2) =
= App(App(App(Eval(add_three, p),6),3),2) =
= App(App(App(< x ->funy -> (funz->x+vy + z2),
Padd_three >,6),3),2) =
= App(App(Eval(funy -> (funz->x +y + 2),

{x->6} *+Padd_three), 3),2) =

9/7/21 11

’ Evaluation of add_three 6 3 2

= App(App(Eval(funy -> (funz->x + vy + 2),
{x-> 6} *+Padd_three), 3),2) =
App (App(<y -> (funz->x +y + 2),
{X -> 6} *Padd_three >)r 3)12) =
App (Eval(funz->x+y + z,
{y -> 3, X-> 6} +padd_three)12) =
App (<z->Xx+vYy+z
{y->3,x->6} *Padd_three >),2) =
Eval(x ty+z {z->2, y->3,x-> 6} +padd_three)

9/7/21 12

‘ Evaluation of add_three 6 3 2

= Eval(x +y,{z->2,y->3,X-> 6} +padq_three)+
Eval(z, {z-> 2,y -> 3, X -> 6} +pagd_three) =

n EvaI(x +Yy, {Z -> 2, y-> 3, X-> 6} +padd_three)+2=

= (Eval(x, {z->2,y-> 3, Xx-> 6} +padd_three) +
EvaI(YI {Z -> 21 y-> 31 X -> 6} +padd_three))+2=

s (Bval(x, {z->2,y-> 3, x-> 6} +padd_three) +
3)+2=

= (643)+2=9+2 =11

9/7/21 13

‘ Recursive Functions

let rec factorial n =
if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>
factorial 5;;
-:int = 120
(* rec is needed for recursive function
declarations *)

9/7/21 14

‘ Recursion Example

Compute n? recursively using:
n=(2*n-1)+ (n-1)?

let rec nthsq n = (* rec for recursion *)
match n (* pattern matching for cases *)
with 0 -> 0 (* base case *)
[n->(2*n-1) (* recursive case *)

+ nthsq (n -1);; (* recursive call *)

val nthsq : int -> int = <fun>

nthsq 3;;

- int=9

‘ Recursion and Induction

let rec nthsg n = match n with 0 -> 0
[n->@2*n-1)+nthsq(n-1);;

Structure of recursion similar to inductive proof

Base case is the last case; it stops the computation

Recursive call must be to arguments that are
somehow smaller - must progress to base case

if or match must contain base case
Failure of these may cause failure of termination

9/7/21 15

9/7/21 16

‘ Lists

= List can take one of two forms:
= Empty list, written []
= Non-empty list, written x :: xs
= X is head element, xs is tail list, :: called
cons
= Syntactic sugar: [x] == x::[]
s [X1; X2; ..pxn]==x1:x2: . uxni[]

9/7/21 17

’ Lists

let fib5 = [8;5;3;2;1;1];;

val fib5 : intlist =[8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- :li]nt list=1[8;5;3;2;1;1;13;8;5; 3; 2; 1;

9/7/21 18

‘ Lists are Homogeneous

let bad_list = [1; 3.2; 7];;
Characters 19-22:
let bad_list = [1; 3.2; 7];;

NANN

This expression has type float but is here
used with type int

9/7/21 19

;‘ Question

= Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2,3; 4,5; 6,7]

3. [(2.3,4); (3.2,5); (6,7.2)]

4. [[“hi”; “there”]; [“wahcha™]; []; [“doin”]]
9/7/21 20

‘ Answer

= Which one of these lists is invalid?

[2; 3; 4; 6]

[2,3; 4,5; 6,7]

[(2.3,4); (3.2,5); (6,7.2)]

[[“hi”; “there”]; [“wahcha”]; [1; [“doin”]]

e

= 3isinvalid because of last pair

9/7/21 21

‘ Functions Over Lists

let rec double_up list =
match list
with []->[] (* pattern before ->,
expression after *)
| (x::xs)->(x::x:: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
let fib5_2 = double_up fib5;;
val fib5_2 :intlist =[8; 8; 5; 5; 3; 3; 2; 2; 1;
1;1;1]

9/7/21 22

‘ Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
let rec poor_rev list =

match list

with [1-> []

| (x::xs) -> poor_rev xs @ [X];;

val poor_rev : 'a list -> 'a list = <fun>
poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/7/21 23

’ Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally
by structural recursion

= Recursive calls made to components of structure
of the same recursive type

= Base cases of recursive types stop the recursion
of the function

9/7/21 24

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?

let length | =

9/7/21 25

‘ Question: Length of list

= Problem: write code for the length of the list
= How to start?

let rec length | =
match | with

9/7/21 26

‘ Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with

9/7/21 27

‘ Question: Length of list

= Problem: write code for the length of the list
= What patterns should we match against?

let rec length | =
match | with [] ->
| (@:: bs)->

9/7/21 28

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is empty?

let rec length | =
match | with []-> 0
| (@ ::bs)->

9/7/21 29

’ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is not empty?

let rec length | =
match | with []-> 0
| (@::bs)->

9/7/21 30

‘ Question: Length of list

= Problem: write code for the length of the list
= What result do we give when | is hot empty?

let rec length | =
match | with []-> 0
| (@ ::bs)->1+ length bs

9/7/21 31

‘ Structural Recursion : List Example

let rec length list = match list
with []1-> 0 (* Nil case *)
| X :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
length [5; 4; 3; 2];;
-:int=4

= Nil case [] is base case
= Cons case recurses on component list xs

9/7/21 32

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

9/7/21 33

‘ Same Length

= How can we efficiently answer if two lists
have the same length?

let rec same_length list1 list2 =
match listl with [] ->
(match list2 with [] -> true
| (y::ys) -> false)
| (x::xs) ->
(match list2 with [] -> false
| (y::ys) -> same_length xs ys)

9/7/21 34

‘ Higher-Order Functions Over Lists

let rec map f list =
match list
with []-> []
| (h::t) -> (fFh) :: (map ft);;
val map : ("a -> 'b) -> 'alist -> 'b list = <fun>
map plus_two fib5;;
-:intlist = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
pintlist = [12; 7; 4; 2; 1; 0; 0]

9/7/21 35

Recursing over lists

let rec fold_right f list b =
match list @\
with []->b The Primitive
| (x ::xs) -> f x (fold_right f xs b);; Recursion Fairy

val fold_right : ('a->'b->'b) ->'alist->'b->'b =

<fun>
fold_right
(fun's -> fun () -> print_string s)
[llhi"; lltherell]
0

therehi- : unit = ()

9/9/21 36

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse

= Forward Recursion form of Structural
Recursion

= In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

= Wait until whole structure has been
traversed to start building answer

9/7/21 37

‘ Forward Recursion: Examples

let rec double_up list =
match list
with[]->[]
| (x ::xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [1-> []
| (x::xs) -> poor_rev xs @ [X];;
val poor_rev : 'a list -> 'a list = <fun>

9/7/21 38

Forward Recursion: Examples

let rec double_up list =

match list
with[[]-> []
| (X 1:xs) ->|(x X ::| ouble_up xs);;
val double_up : 'aTist->[a ;ISf =_‘%<
| Base Case | | Operator || Recursive Call|
let rec poor_rev list =
match list
with[[1-> []
| (Qgs) ->| poor_rev xs||@ [x];;
val poor \rev : 'alist -> 'a = >
Base Case | | Operator || Recursive Call|

9/7/21 39

‘ Encoding Forward Recursion with Fold

let rec append listl list2 = match listl with
[1->{list2 || x::xs ->[x ::|hppend xs Tist2;;
val append : 'a list -> 'a/list -> "aNjst = <fun>

| Base Case | |Operation || Recursive Call |

let append list1 list2 =
fold_right (fun x y ->[x [y} list1|list2;

val append : 'a list -> 'a list -> "a list = <fun>
append [1;2;3] [4;5;6];;
-rintlist = [1; 2; 3; 4; 5; 6]

9/7/21 40

‘ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doublelList [2;3;4];;
- 1int list = [4; 6; 8]

9/7/21 41

’ Mapping Recursion

= Can use the higher-order recursive map
function instead of direct recursion

let doubleList list =
List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
doubleList [2;3;4];;
- rint list = [4; 6; 8]

= Same function, but no rec

9/7/21 42

‘ Folding Recursion

= Another common form “folds” an operation

over the elements of the structure

let rec multList list = match list
with[]->1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

9/7/21 43

‘ Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list
with[]->1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>
multList [2;4,6];;
-:int =48
= Computes (2 * (4 * (6 * 1)))

9/7/21 4

‘ Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(funx ->fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>
multList [2;4;6];;
-:int =48

9/7/21 45

‘ Folding Functions over Lists

[How are the following functions similar? |
let rec sumlist list = match list with
[1-> 0] x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let rec prodlist list = match list with
[1->1] x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

-1int=24

9/7/21 46

‘ Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

-:int=9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

- rint =24

9/7/21 47

’ How long will it take?

= Remember the big-O notation from CS 225
and CS 374

= Question: given input of size 17, how long to
generate output?

= Express output time in terms of input size,
omit constants and take biggest power

9/7/21 48

‘ How long will it take?

Common big-O times:
= Constant time O (1)
= input size doesn’t matter
= Linear time O (n)
= double input = double time
= Quadratic time O (?)
= double input = quadruple time
= Exponential time O (27)
= increment input = double time

9/7/21 49

‘ Linear Time

= Expect most list operations to take
linear time O (n)

= Each step of the recursion can be done
in constant time

= Each step makes only one recursive call
= List example: multList, append
= Integer example: factorial

9/7/21 50

‘ Quadratic Time

= Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list
with []-> []
| (x::xs) -> poor_rev xs|@|[x];;
val poor_rev : 'a list -> 'a list = <fun>

9/7/21 51

‘ Exponential running time

= Poor worst-case running times on input of
any size

= Each step of recursion takes constant time

= Each recursion makes two recursive calls

= Easy to write naive code that is exponential

for functions that can be linear

9/7/21 52

‘ Exponential running time

let rec slow n =

ifn<=1

then 1

else 1+slow (n-1) + slow(n-2);;
val slow : int -> int = <fun>
List.map slow [1;2;3;4,5;6;7;8;9];;
-rintlist = [1; 3; 5; 9; 15; 25; 41; 67;

109]

9/7/21 53

’ An Important Optimization

= When a function call is made,
Normal the return address needs to be

call saved to the stack so we know
to where to return when the
p B call is finished
L g = What if Fcalls gand gcalls 5,
B but calling A is the last thing g
does (a fail call)?

9/7/21 54

‘ An Important Optimization

= When a function call is made,
Tail the return address needs to be
call saved to the stack so we know
to where to return when the
p B call is finished
[f | = Whatif Fcalls gand gcalls 4,
but calling /4 is the last thing g
does (a tail call)?

= Then £ can return directly to 7
instead of g

9/7/21 55

‘ Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to
be implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial
results
= May require an auxiliary function

9/7/21 56

‘ Tail Recursion - Example

let rec rev_aux list revlist =
match list with [] -> revlist
| X :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

let rev list = rev_aux list [1;;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/7/21 57

‘ Comparison

= poor_rev [1,2,3] =

= (poor_rev [2,3]) @ [1] =

= ((poor_rev [3]) @ [2]) @ [1] =

= (((poor_rev[]) @ [3]) @ [2]) @ [1] =
= ([J@[B) @2) @[1]) =

» (Bl@2]) @[1] =

s Gu(l@2))@[1]=

s [3,2] @[1] =

» 3n([2]@[1]) =

=3 (l1@[1]) =1[3, 2 1]

9/7/21 58

‘ Comparison

= rev[1,2,3] =

= rev_aux[1,2,3][] =

= rev_aux [2,3] [1] =

= rev_aux [3] [2,1] =

= rev_aux []1[3,2,1] = [3,2,1]

9/7/21 59

’ Folding - Tail Recursion

- # letrev list =
fold_left
(funl->funx->x::1) //comb op
[1 //accumulator cell
list

9/7/21 60

Iterating over lists

let rec fold_left f a list =
match list
with []-> a
| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a->'b->"'a)->'a->'blist->'a =
<fun>
fold_left
(fun () -> print_string)
0
["hi"; "there"];;
hithere- : unit = ()

9/7/21 61

‘ Folding

let rec fold_left f a list = match list
with []1-> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : (‘a->'b->'a)->"'a->'blist->'a=
<fun>

fold_left f a [xq; Xp;...;%,] = f(...(F (f @ X;) X2)...)X,

let rec fold_right f list b = match list
with []-> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a->'b->'b) ->'alist->'b->'b =
<fun>

fold_right T [Xy; X3;...;%X,] b = F X:(F X5 (...(T X5 D)...))

9/7/21 62

‘ Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any tail
primitive recursive definition

9/7/21 63

