
MP 3 – Unification Algorithm
CS 421 – Fall 2019

Revision 1.0

Assigned October 25, 2019
Due November 1, 2019
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Objectives
Your objective for this assignment is to understand the details of the basic algorithm for first order unification.

3 Preliminaries
In ML4 you implemented the first part of the type inferencer for the PicoML language. In this MP you will im-
plement the second step of the inferencer: the unification algorithm unify that solves constraints generated by the
inferencer. The unifier in ML4 was a black box that gave you the solution when fed the constraints generated by your
implementation of the inferencer.

It is recommended that before or in tandem with completing this assignment, you go over lecture notes covering
type inference and unification as well as the solution to ML4 to have a good understanding of how types are inferred.

4 Datatypes for Type Inference
Below is some of the code available for your use in the Common module. This module includes the following data
types to represent the types of PicoML, which you should recognize from ML4:

type typeVar = int

type monoTy = TyVar of typeVar | TyConst of (string * monoTy list)

You can use string of monoTy in common to convert your types into a readable concrete syntax for types.

5 Substitutions
In ML4, one of the things we returned was a substitution. Our substitutions have the type (typeVar * monoTy)
list. The first component of a pair is the index (or “name”) of a type variable. The second is the type that should be
substituted for that type variable.

In this MP, you will implement a function subst fun that will take a substitution and return a substitution
function, a function that takes a type variable as input and returns the replacement type as given by the substitution.
(Recall that we are using the the type int for type variables, which we give the synonym typeVar.) When creating
such a function from a substitution (i.e., a list of pairs as described above), if a given type variable does not have an

1

entry in the list, the identity substitution is assumed for that type variable (i.e. the variable is substituted with itself).
For instance, the substitution

let phi = [(5, mk_fun_ty bool_ty (TyVar(2)))];;
val phi : (int * monoTy) list =

[(5, TyConst ("->", [TyConst ("bool", []); TyVar 2]))]

is considered to represent the subsitution function

φ(τi) =

{
bool→ τ2 if i = 5
τi otherwise

Throughout this MP you may assume that substitutions we work on are always well-structured: there are no two
pairs in a substitution list with the same index.

As described above, your function subst fun should, given a substitution, return the function it represents. This
should be a function that takes a typeVar and returns a monoTy.

let subst_fun s = ...
val subst_fun : (typeVar * monoTy) list -> typeVar -> monoTy = <fun>
let subst = subst_fun phi;;
val subst : typeVar -> monoTy = <fun>
subst 1;;
- : monoTy = TyVar 1
subst 5;;
- : monoTy = TyConst ("->", [TyConst ("bool", []); TyVar 2])

We can also lift a substitution to operate on types. A substitution φ, when lifted, replaces all the type vari-
ables occurring in its input type with the corresponding types. In this MP you will be implementing a function
monoTy lift subst for lifting substitutions to generic monoTys.

let rec monoTy_lift_subst s = ...
val monoTy_lift_subst : (typeVar * monoTy) list -> monoTy -> monoTy = <fun>
let lifted_sub = monoTy_lift_subst phi;;
val lifted_sub : monoTy -> monoTy = <fun>
lifted_sub (TyConst ("->", [TyVar 1; TyVar 5]));;
- : monoTy =
TyConst ("->", [TyVar 1; TyConst ("->", [TyConst ("bool", []); TyVar 2])])

6 Unification
The unification algorithm takes a set of pairs of types that are supposed to be equal. A system of constraints looks like
the following set

{(s1, t1), (s2, t2), ..., (sn, tn)}

Each pair is called an equation. A (lifted) substitution φ solves an equation (s, t) if φ(s) = φ(t). It solves a constraint
set if φ(si) = φ(ti) for every (si, ti) in the constraint set. The unification algorithm will return a substitution that
solves the given constraint set (if a solution exists).

You will remember from lecture that the unification algorithm consists of four transformations. These transforma-
tions can be expressed in terms of how an action on the first element of the unification problem affects the remaining
elements.

Given a constraint set C

1. If C is empty, return the identity substitution.

2. If C is not empty, pick an equation (s, t) ∈ C. Let C ′ be C \ {(s, t)}.

2

(a) Delete rule: If s and t are are equal, discard the pair, and unify C ′.

(b) Orient rule: If t is a variable, and s is not, then discard (s, t), and unify {(t, s)} ∪ C ′.

(c) Decompose rule: If s = TyConst(name, [s1; . . . ; sn]) and t = TyConst(name, [t1; . . . ; tn]), then
discard (s, t), and unify C ′ ∪

⋃n
i=1{(si, ti)}.

(d) Eliminate rule: If s is a variable, and s does not occur in t, substitute s with t in C ′ to get C ′′. Let φ be
the substitution resulting from unifying C ′′. Return φ updated with s 7→ φ(t).

(e) If none of the above cases apply, it is a unification error (your unify function should return the None
option in this case).

In our system, function, integer, list, etc. types are the terms; TyVars are the variables.

3

7 Problems
1. (0 pts) Make sure that you understand the monoTy data type. You should be comfortable with how to represent a

type using monoTy. ML4 should have given you enough practice of this. If you still do not feel fluent enough, do
the exercise below. This exercise will not be graded; it is intended to warm you up.

In each item below, define a function asMonoTyX:unit -> monoTy that returns the monoTy representation
of the given type. In these types, α, β, γ, δ, ... are type variables.

• bool→ int list

let asMonoTy1 () = ...
val asMonoTy1 : unit -> monoTy = <fun>
string_of_monoTy(asMonoTy1());;
- : string = "bool -> int list"

• α→ β → δ → γ

let asMonoTy2 () = ...
val asMonoTy2 : unit -> monoTy = <fun>
string_of_monoTy(asMonoTy2());;
- : string = "’d -> ’c -> ’b -> ’a"

• α→ (β ∗ int)list
let asMonoTy3 () = ...
val asMonoTy3 : unit -> monoTy = <fun>
string_of_monoTy(asMonoTy3());;
- : string = "’f -> (’e * int) list"

• (string ∗ (β list→ α))

let asMonoTy4 () = ...
val asMonoTy4 : unit -> monoTy = <fun>
string_of_monoTy(asMonoTy4());;
- : string = "string * ’h list -> ’g"

2. (4 pts) Implement the subst fun function as described in Section 5.

let subst_fun s = ...
val subst_fun : (typeVar * monoTy) list -> typeVar -> monoTy = <fun>
let subst = subst_fun [(5, mk_fun_ty bool_ty (TyVar(2)))];;
val subst : typeVar -> monoTy = <fun>
subst 1;;
- : monoTy = TyVar 1
subst 5;;
- : monoTy = TyConst ("->", [TyConst ("bool", []); TyVar 2])

3. (4 pts) Implement the monoTy lift subst function as described in Section 5.

let rec monoTy_lift_subst s = ...
val monoTy_lift_subst : (typeVar * monoTy) list -> monoTy -> monoTy = <fun>
monoTy_lift_subst [(5, mk_fun_ty bool_ty (TyVar(2)))]

(TyConst ("->", [TyVar 1; TyVar 5]));;
- : monoTy =
TyConst ("->", [TyVar 1; TyConst ("->", [TyConst ("bool", []); TyVar 2])])

4

4. (5 pts) Write a function occurs : typeVar -> monoTy -> bool. The first argument is the integer com-
ponent of a TyVar. The second is a target expression. The output indicates whether the variable occurs within the
target.

let rec occurs v ty = ...
val occurs : typeVar -> monoTy -> bool = <fun>
occurs 0 (TyConst ("->", [TyVar 0; TyVar 0]));;
- : bool = true
occurs 0 (TyConst ("->", [TyVar 1; TyVar 2]));;
- : bool = false

5. (64 pts) Now you are ready to write the unification function. We will represent constraint sets simply by lists. If
there exists a solution to a set of constraints (i.e., a substitution that solves the set), your function should return
Some of that substitution. Otherwise it should return None. Here’s a sample run.

let rec unify eqlst = ...
val unify : (monoTy * monoTy) list -> substitution option = <fun>
let Some(subst) =

unify [(TyVar 0,
TyConst ("list",

[TyConst ("int", [])]));
(TyConst ("->", [TyVar 0; TyVar 0]),
TyConst ("->", [TyVar 0; TyVar 1]))];;

... (* Warning message suppressed *)
val subst : substitution =

[(0, TyConst ("list", [TyConst ("int", [])]));
(1, TyConst ("list", [TyConst ("int", [])]))]

subst_fun subst 0;;
- : monoTy = TyConst ("list", [TyConst ("int", [])])
subst_fun subst 1;;
- : monoTy = TyConst ("list", [TyConst ("int", [])])
subst_fun subst 2;;
- : monoTy = TyVar 2

Hint: You will find the functions you implemented in Problems 2,3,4 very useful in some rules.

Point distribution: Delete is 6 pts, Orient is 6 pts, Decompose is 16 pts, Eliminate is 36 pts. This distribution is
approximate. Correctness of one part impacts the functioning of other parts. We will handle this problem in the
testing center in a manner similar to what we did in previous assessments.

6. Extra Credit (10 pts) Two types τ1 and τ2 are equivalent if there exist two substitutions φ1, φ2 such that φ1(τ1) =
τ2 and φ2(τ2) = τ1. Write a function equiv_types : monoTy -> monoTy -> bool to indicate whether
the two input type expressions are equivalent.

Hint: find τ3 such that τ1 is equivalent to τ3 and τ2 is also equivalent to τ3 by reducing τ1 and τ2 to a canonical
form.

let equiv_types ty1 ty2 = ...
val equiv_types : monoTy -> monoTy -> bool = <fun>

5

equiv_types
(TyConst ("->", [TyVar 4; TyConst ("->", [TyVar 3; TyVar 4])]))
(TyConst ("->", [TyVar 3; TyConst ("->", [TyVar 4; TyVar 3])]));;

- : bool = true
equiv_types

(TyConst ("->", [TyVar 4; TyConst ("->", [TyVar 3; TyVar 4])]))
(TyConst ("->", [TyVar 4; TyConst ("->", [TyVar 3; TyVar 2])]));;

- : bool = false

6

	Change Log
	Objectives
	Preliminaries
	Datatypes for Type Inference
	Substitutions
	Unification
	Problems

