
MP 1 – Lists, Structural Recursion and
Higher-Order Functions

CS 421 – Fall 2019
Revision 1.0

Assigned Saturday, September 14, 2019
Due Friday, September 20, 2019 22:00pm
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Objectives and Background
The purpose of this MP is to help the student master:

• pattern matching over lists

• recursion over lists

• forward and tail redcursion

• use of highe-order operators for recursion

3 Instructions
The problems below have sample executions that suggest how to write answers. You have to use the same function
name, but the name of the parameters that follow the function name need not be duplicated. That is, you are free to
choose different names, or patterns, for the arguments to the functions from the ones given in the example execution.
We will sometimes use let rec to begin the definition of a function that is allowed to use rec. You are not required
to start your code with let rec, and you may use let rec when we do not.

For all these problems, you are allowed to write your own auxiliary functions, either internally to the function
being defined or externally as separate functions. In fact, you will find it helpful to do so on several problems. In this
assignment, you may only use library functions from the Pervasives module (the one that is loaded by default),
expect where directly told otherwise. In particular, you must not use any functions from List. Also you may not
use the infixed @ function.

Turn-in is via PrairieLearn. Ther eis no need to go the the CBTF for this.

4 Problems

4.1 Patern-Matching on Lists and Recursion
1. (2 pts) Write a function product : float list -> float to find the product of a list of floats. The

product of an empty list is 1.0.

1

let rec product l = ...
val product : float list -> float = <fun>
product [2.; 3.; 4.];;
- : float = 24.

2. (2 pts) Write a function double all : float list -> float list that takes a list of floats and re-
turns back the list with all of the elements doubled.

let rec double_all l = ...
val double_all : float list -> float list = <fun>
double_all [1.5; -3.0; 0.; 2.2];;
- : float list = [3.; -6.; 0.; 4.4]

3. (3 pts) Write a function pair with all : ’a -> ’b list -> (’a * ’b) list that takes a value
and a list, and creates a list of pairs where the given value is first in every pair, and the elements of the list are
second in the pairs, in the same order as the original list.

let rec pair_with_all x l = ...
val pair_with_all : ’a -> ’b list -> (’a * ’b) list = <fun>
pair_with_all 1 ["a"; "b"; "c"];;
- : (int * string) list = [(1, "a"); (1, "b"); (1, "c")]

4. (5 pts) Write a function interleave : ’a list -> ’a list -> ’a list such that interleave
[x1; x2; . . .] [y1; y2; . . .] returns a list [x1; y1; x2; . . .]. If one list is longer than another, extra
elements will be appended at the end of the interleaved list in the same order as they appear in the original list.
The function is required to use (only) forward recursion (no other form of recursion). You may not use any library
functions.

let rec interleave l1 l2 = ...;;
val interleave : ’a list -> ’a list -> ’a list = <fun>
interleave [1;3;5] [2;4];;
- : int list = [1; 2; 3; 4;5]

5. (5 pts) For two lists L1 and L2, L2 is called a sub-list of L1 if: (a) all the elements of L2 occur in L1, and (b)
their order in L1 is exactly the same as their order in L2. Write a function sub list : ’a list -> ’a
list -> bool that takes two lists as input and determines whether the second list is a sub-list of the first one.
The function is required to use (only) tail recursion (no other form of recursion). You may not use any library
functions.

let rec sub_list l1 l2 = ... ;;
val sub_list : ’a list -> ’a list -> bool = <fun>
sub_list [1;1;2;1;1;4;1] [1;2;1;1;1];;
- : bool = true

2

Patterns of Recursion
Forward Recursion

For the problems in this section, you must use forward recursion.

6. (3 pts) Write a function even count fr : int list -> int such that it returns the number of even in-
tegers found in the input list. The function is required to use (only) forward recursion (no other form of recursion).
You may not use any library functions or problems later in this set. You may use the infix function mod : int
-> int -> int.

let rec even_count_fr l = ... ;;
val even_count_fr : int list -> int = <fun>
even_count_fr [1;2;3];;
- : int = 1

7. (3 pts) Write a function pair sums : (int * int) list -> int list that takes a list of pairs of
integers and returns a list of the sums of those pairs in the same order. The function is required to use (only)
forward recursion (no other form of recursion). You may not use any library functions.

let rec pair_sums l = ...;
val pair_sums : (int * int) list -> int list = <fun>
pair_sums [(1,6);(3,1);(3,2)];;
- : int list = [7; 4; 5]

8. (3 pts) Write a function remove even : int list -> int list that returns a list in the same order as
the input list, but with all the even numbers removed. The function is required to use (only) forward recursion (no
other form of recursion). You may use mod for testing whether an integer is even. You may not use any library
functions.

let rec remove_even list = ... ;;
val remove_even : int list -> int list = <fun>
remove_even [1; 4; 3; 7; 2; 8];;
- : int list = [1; 3; 7]

9. (3 pts) Write a function sift : (’a -> bool) -> ’a list -> ’a list * ’a list such that
sift p l returns a pair of lists, the first containing all the elements of l for which p returns true, and the
second containing all those for which p returns false. The lists should be in the same order as in the input list.
The function is required to use (only) forward recursion (no other form of recursion). You may not use any library
functions.

let rec sift p l = ... ;;
val sift : (’a -> bool) -> ’a list -> ’a list * ’a list = <fun>
sift (fun x -> x mod 2 = 0) [-3; 5; 2; -6];;
- : int list * int list = ([2; -6], [-3; 5])

10. (5 pts) Write a function apply even odd : ’a list -> (’a -> ’b) -> (’a -> ’b) -> ’b
list such that apply even odd [x0; x1; x2; x3; ...] f g returns a list [f x0; g x1; f
x2; g x3; ...]. The function is required to use (only) forward recursion (no other form of recursion). You
may not use any library functions.

3

let rec apply_even_odd l f g = ...;;
val apply_even_odd : ’a list -> (’a -> ’b) -> (’a -> ’b) -> ’b list = <fun>
apply_even_odd [1;2;3] (fun x -> x+1) (fun x -> x - 1);;
- : int list = [2; 1; 4];;

Tail Recursion

For the problems in this section, you must use tail recursion.

11. (3 pts) Write a function even count tr : int list -> int such that it returns the number of even
integers found in the input list. The function is required to use (only) tail recursion (no other form of recursion).
You may not use any library functions or earlier problems in this set. You may use mod.

let rec even_count_tr l = ... ;;
val even_count_tr : int list -> int = <fun>
even_count_tr [1;2;3];;
- : int = 1

12. (3 pts) Write a function count element : ’a list -> ’a -> int such that count element l
m returns the number of elements in the input list l that are equal to m. The function is required to use (only) tail
recursion (no other form of recursion). You may not use any library functions.

let rec count_element l m = ... ;;
val count_element : ’a list -> ’a -> int = <fun>
count_element [0;1;2;4;2;5;4;2] 2;;
- : int = 3

13. (3 pts) Write a function all nonneg : int list -> bool that returns whether every element in the
input list is greater than or equal to 0. The function is required to use (only) tail recursion (no other form of
recursion). You may not use any library functions.

let rec all_nonneg list = ... ;;
val all_nonneg : int list -> bool = <fun>
all_nonneg [4; 7; -3; 5];;
- : bool = false

14. (3 pts) Write a function split sum : int list -> (int -> bool) -> int * int such that it
returns a pair of integers. The first integer in the pair is the sum of all elements in the input list l where the input
function f returns true. The second is the sum of all remaining elements for which f returns false. The function is
required to use (only) tail recursion (no other form of recursion). You may not use any library functions.

let rec split_sum l f = ...;;
val split_sum : int list -> (int -> bool) -> int * int = <fun>
split_sum [1;2;3] (fun x -> x>1);;
- : int * int = (5, 1)

4

15. (5 pts) Write a function concat : string -> string list -> string such that concat s l
creates a string consisting of the strings in the list l concatenated together, with the first string s inserted between.
If the list is empty, you should return the empty string (""). If the list is a singleton, you should return just the
single string in that list. The function is required to use (only) tail recursion (no other form of recursion). You may
not use any library functions.

let rec concat s list = ... ;;
val concat : string -> string list -> string = <fun>
concat " * " ["3"; "6"; "2"];;
- : string = "3 * 6 * 2"

Higher-order Functions
For the problems in this section, you must not use recursion.

16. (3 pts) Write a value even count fr base : int and a function
even count fr rec : int -> int -> int such that
(fun l -> List.fold right even count fr rec l even count fr base) computes the same
function as even count fr in Problem 6. There should be no use of recursion in the solution to this problem.

let even_count_fr_base = ... ;;
val even_count_fr_base : int = ...
let even_count_fr_rec x rec_val = ... ;;
val even_count_fr_rec : int -> int -> int = <fun>
(fun l -> List.fold_right even_count_fr_rec l even_count_fr_base)

[1; 2; 3];;
- : int = 1

17. (3 pts) Write a function pair sums map arg : (int * int) -> int such that
List.map pair sums map arg computes the same results as pair sums defined in Problem 7. There
should be no use of recursion in the solution to this problem.

let pair_sums_map_arg p = ...;
val pair_sums_map_arg : int * int -> int = <fun>
List.map pair_sums_map_arg [(1,6);(3,1);(3,2)];;
- : int list = [7;4;5]

18. (3 pts) Write a value remove even base and function remove even rec : int -> int list ->
int list such that (fun list -> List.fold right remove even rec list remove even base)
computes the same results as remove even of Problem 8. There should be no use of recursion or library func-
tions in defining remove even rec.

let remove_even_base = ... ;;
val remove_even_base : ...
let remove_even_rec n r = ... ;;
val remove_even_rec : int -> int list -> int list = <fun>
(fun list -> List.fold_right remove_even_rec list remove_even_base)
[1; 4; 3; 7; 2; 8];;

- : int list = [1; 3; 7]

5

19. (3 pts) Write a value even count tr start : int and a function
even count tr step : int -> int -> int such that
(List.fold left even count tr step even count tr start) computes the same function as
even count tr in Problem 11. There should be no use of recursion in the solution to this problem.

let even_count_tr_start = ... ;;
val even_count_tr_start : int = ...
let even_count_tr_step acc_val x = ... ;;
val even_count_tr_step : int -> int -> int = <fun>
List.fold_left even_count_tr_step even_count_tr_start [1; 2; 3];;
- : int = 1

20. (5 pts) Write a value split sum start : int * int and function split sum step : (int ->
bool) -> int * int -> int -> int * int such that (fun l -> fun f -> List.fold left
(split sum step f) split sum start l) computes the same solution as split sum defined in Prob-
lem 15. There should be no use of recursion or library functions in the solution to this problem.

let split_sum_start = ...;;
val split_sum_start : int * int = ...
let split_sub_step = ...;;
val split_sum_step : (int -> bool) -> int * int -> int -> int * int = <fun>
(fun l -> fun f -> List.fold_left (split_sum_step f) split_sum_start l)
[1;2;3] (fun x -> x>1);;

- : int * int = (5, 1)

6

