
MP 2 – Working with ADTs
CS 421 – Fall 2019

Revision 1.0

Assigned Sep 27, 2019
Due Oct 4, 2019
Extension 48 hours (20% penalty)

1 Change Log
1.0 Initial Release.

2 Caution
This assignment can appear quite complicated at first. It is essential that you understand how all the code you will
write will eventually work together. Please read through all of the instructions and the given code thoroughly before
you start, so you have some idea of the big picture.

3 Objectives
Your objectives are:

• Constructing data structures from algebraic data types

• Deconstructing data structures built from algebraic data types

• Implementing continuation passing style transformations

4 Background
Throughout this ML we will be working with a (very) simple functional language. It is the seed of the language with
which we will be working on MLs throughout the rest of this semester. In this ML, instead of writing our programs in
text files and parsing them, we will represent the structure of our programs via terms made from a set of four algebraic
data types.

5 Given Code
This semester the language for which we shall build an interpreter, which we call PicoML, is mainly a simplification
of OCaml. In this assignment we shall build a translator from abstract syntax (internal data structures) for PicoML
expressions to abstract syntax for a variant that enforces Continuation Passing Style. The file common.cmo contains
compiled code to support your construction of this translator. Its contents are described here.
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5.1 OCaml Types for PicoML AST
Expressions in PicoML are mostly a subset of expressions in OCaml. The Abstract Syntax Trees for PicoML expres-
sions are given by the following OCaml type:

type exp = (* Exceptions will be added in later MPs *)
| VarExp of string (* variables *)
| ConstExp of const (* constants *)
| MonOpAppExp of mon_op * exp (* % exp1

where % is a builtin monadic operator *)
| BinOpAppExp of bin_op * exp * exp (* exp1 % exp2

where % is a builtin binary operator *)
| IfExp of exp * exp * exp (* if exp1 then exp2 else exp3 *)
| AppExp of exp * exp (* exp1 exp2 *)
| FunExp of string * exp (* fun x -> exp1 *)
| LetInExp of string * exp * exp (* let x = exp1 in exp2 *)
| LetRecInExp of string * string * exp * exp

(* let rec f x = exp1 in exp2 *)

This type makes use of the auxiliary types:

type const =
BoolConst of bool (* for true and false *)

| IntConst of int (* 0,1,2, ... *)
| FloatConst of float (* 2.1, 3.0, 5.975, ... *)
| StringConst of string (* "a", "hi there", ... *)
| NilConst (* [ ] *)
| UnitConst (* ( ) *)

for representing the constants. The mon op type represents unary (a.k.a. monadic) operators in PicoML.

type mon_op =
IntNegOp (* integer negation *)

| HdOp (* hd *)
| TlOp (* tl *)
| FstOp (* fst *)
| SndOp (* snd *)

The primitive binary operators are given by the Ocaml data type bin op.

type bin_op =
IntPlusOp (* _ + _ *)

| IntMinusOp (* _ - _ *)
| IntTimesOp (* _ * _ *)
| IntDivOp (* _ / _ *)
| FloatPlusOp (* _ +. _ *)
| FloatMinusOp (* _ -. _ *)
| FloatTimesOp (* _ *. _ *)
| FloatDivOp (* _ /. _ *)
| ConcatOp (* _ ˆ _ *)
| ConsOp (* _ :: _ *)
| CommaOp (* _ , _ *)
| EqOp (* _ = _ *)
| GreaterOp (* _ > _ *)

Any of these types may be expanded in future MLs in order to enrich the language.
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Most of the constructors of exp should be self-explanatory. Names of constants are represented by the type
const. Names of variables are represented by strings. The constructors that take string arguments (VarExp,
FunExp, LetInExp and LetRecInExp) use the strings to represent the names of the variables that they bind.
BinOpAppExp takes the binary operator, represented by the type bin op, together with two operands. Similarly,
MonOpAppExp takes the unary operator of the mon op type and an operand. IfExp is for if then else expres-
sons, FunExp is for function expressions, and AppExp is for the application of one expression to another. LetInExp
and LetRecInExp are for introducing local bindings in expressions.

There are companion functions string of exp, and print exp for viewing expressions in a more readable
form. To see the data structure that results from evaluation of an expression in an empty environment, you may use
eval : exp -> value.

In the file eval.cmo is compiled code for a function print eval:exp -> unit that will execute your code,
printing a string that is what the top-level loop would print as a value if you were to execute the corresponding code in
OCaml. To use print eval in OCaml, execute
#load "common.cmo"
#load "eval.cmo";;
and then import the needed modules:
open Common
open Eval.

5.2 OCaml Types for CPS transformation type
In addition to having abstract syntax trees for the expressions of PicoML, we need to have abstract syntax trees for the
type of continuations and expressions in CPS.

type cont_var = Kvar (* _k *)

type cps_cont =
External

| ContVarCPS of cont_var (* _k *)
| FnContCPS of string * exp_cps (* FN x -> exp_cps *)

and exp_cps =
VarCPS of cps_cont * string (* K x *)

| ConstCPS of cps_cont * const (* K c *)
| MonOpAppCPS of cps_cont * mon_op * string (* K (% x) *)
| BinOpAppCPS of cps_cont * bin_op * string * string (* K (x % y) *)
| IfCPS of string * exp_cps * exp_cps (* IF x THEN exp_cps1 ELSE exp_cps2 *)
| AppCPS of cps_cont * string * string (* x y K *)
| FunCPS of cps_cont * string * cont_var * exp_cps

(* K (FUN x _k -> [[exp]]_k) *)
| FixCPS of cps_cont * string * string * cont_var * exp_cps

(* K (FIX f. FUN x _k -> [[exp]]_k) *)

Each contructor (except FixCPS) in the type exp cps corresponds to one in the direct style represention type
exp. You will note that all local decalarations are now gone. Also you will note that every construct except IfCPS
takes an additional argument of cps cont for the continuation to recieve the result of the expression immediately
being constructed. With IfCPS, this continuation is missing because it is burried one step down in each of the
branches. It is also worth noting that, with the exception of IfCPS and FunCPS, where we had exp arguments
before, now we have only the names of variables. This reflects that fact that in CPS, before you express an operation to
be preformed, you must first compute and store the values of all the components of that operation (with the exception
of IfCPS, which must wait until it tests its boolean guard before touching either of its branches, and FunCPS, which
must protect its function body from being executed until it is applied). The augmentation of the constructors with a
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place for a continuation, and the replacment of general expression arguments by variable arguments are the changes
necessary to guarantee that terms built in this type represent expressions in CPS.

When transforming a function into CPS, it is necessary to expand the arguments to the function to include one that
is for passing the continuation to it. We represent this variable by a special type cont var rather than a string. It
really is a different type of variable because it is always internally generated and it is to supply a continuation and not
the value of an expression. For our purposes, it suffices for there to be only one continuation variable Kvar. Various
ways in which we could extend our functional programming language could require this type to change to allow a
finite or countably infinite collection of continuation variable names.

6 Problems
The problems below have sample executions that suggest how to write answers. Students have to use the same function
name, but the name and number of the parameters that follow the function name need not be the same as the ones we
give. Students are free to choose different names for the arguments to the functions from the ones given in the example
execution. Throughout this assignment you may use any library functions you wish.

1. (4 pts) Write a function import list: (int * int) list -> exp, that takes a list of pairs and con-
verts it into an expression in our language that is equivalent to it.

# let rec import_list lst = ...;;
val import_list : (int * int) list -> Common.exp = <fun>
# import_list [(7,1);(4,2);(6,3)];;
- : Common.exp =
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 7), ConstExp (IntConst 1)),
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 4), ConstExp (IntConst 2)),
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (IntConst 3)),
ConstExp NilConst)))

2. (4 pts) Write a term in our language (an abstract syntax tree) that represents the function declaration that imple-
ments the following PicoML function pair sums:

let rec pair_sums lst =
if lst = [] then []
else let x = (hd lst) in (fst x + snd x) :: (pair_sums (tl lst))

in pair_sums [(7,1);(4,2);(6,3)]

# let pair_sums = ...
val pair_sums : exp =
# string_of_exp pair_sums;;
- : string =
"let rec pair_sums lst = if lst = [] then [] else let x = hd lst
in ((fst x) + (snd x)) :: (pair_sums (tl lst))
in pair_sums (((7,1)) :: (((4,2)) :: (((6,3)) :: [])))"

You can test out your implementation by evaluating it as follows:
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# #load "common.cmo";;
# #load "eval.cmo";;
# open Eval;;
# open Common;;
# #use "mp2.ml";;
# print_eval pair_sums;;
Result: [8; 6; 9]
- : unit = ()

To be able to see what the internal data structure for you result is, you can use eval:

# eval pair_sums;;
- : Eval.value = ListVal [IntVal 8; IntVal 6; IntVal 9]

3. (5 pts) Write a function count const in exp : exp -> int that counts the number of occurrences of
constants there are in an expression. The same constant occurring in twice in the expression is counted twice.

# let rec count_const_in_exp exp = ...
val count_const_in_exp : Common.exp -> int = <fun>

# count_const_in_exp (BinOpAppExp (CommaOp,
BinOpAppExp (CommaOp, ConstExp (FloatConst 7.3), ConstExp UnitConst),
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 4), ConstExp (StringConst "a")),
BinOpAppExp (ConsOp,
BinOpAppExp (CommaOp, ConstExp (IntConst 6), ConstExp (StringConst "b")),
ConstExp NilConst))));;

- : int = 7

4. (20 pts total) A free variable in an expression is a variable that has an occurrence that isn’t bound in that expression.
In our setting, free variables are the variables that had to be given a value previously for the expression to be able
to be evaluated. As an example, in (let x = y in fun s -> a x s) the variables a and y are free but x
and s are not. Notice that to understand the free variables in the previous example, we also need to know for the
inner declaration both the free variables of the expression in it, but also the variables that are being bound by it.

Write a function freeVarsInExp : exp -> string list that calculates the names of the free vari-
ables of an expression (where we represent sets via lists). The grader will cope with answers that have duplicate
entries or the result list in a different order than our reference solution.

To assist you in writing this function, we have broken the problem down into groups of similar cases. We also give
the precise mathematical definition (in cases) for a function ϕ calculating the free variables of an expression e.

In common.ml, we have supplied you with a related pair of functions freeVarsInContCPS : cps cont
-> string list and freeVarsInExpCPS : exp cps -> string list for calculating the free vari-
ables in a continuation and CPS-transformed expression respectively. You should feel free to examine these defi-
nitions for inspiration in writing the code for this problem.

a. (1 pt.) We can define a function ϕ(e) that calculates the free variables of an expression, where the expression
is a variable v, by

ϕ(v) = {v}
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The function freeVarsInExp should behave in a similar manner, returning the singleton name of the
variable for a variable. Write the appropriate clause for freeVarsInExp to return the free variables of
expressions that are variables.

# let rec freeVarsInExp = ... ;;
val freeVarsInExp : Common.exp -> string list = <fun>
# freeVarsInExp (VarExp "x");;
- : string list = ["x"]

b. (1 pt.) We can define the value of the function ϕ(e) that calculates the free variables of an expression, where
the expression is a a constant c by

ϕ(c) = { }

The function freeVarsInExp should behave in a similar manner, returning no names for a constant. Write
the appropriate clause for freeVarsInExp to return the free variables of expressions that are constants.

# let rec freeVarsInExp = ... ;;
val freeVarsInExp : Common.exp -> string list = <fun>
# List.length (freeVarsInExp (ConstExp (StringConst "hi")));;
- : int = 0

c. (2 pts.) The set of free variables of the use of a unary operator is just thef the free variables the immediate
subexpression.

ϕ(⊕e) = ϕ(e) For unary operator ⊕

Write the clause for freeVarsInExp for expressions that are top-most the use of a unary operator.

# freeVarsInExp (MonOpAppExp(IntNegOp, VarExp "x"));;
- : string list = ["x"]

d. (2 pts.) The set of free variables of the use of a binary operator is just the union of the free variables of the
two immediate subexpressions.

ϕ(e1 ⊕ e2) = ϕ(e1) ∪ ϕ(e2) For binary operator ⊕

Write the clause for freeVarsInExp for the use of a binary operator.

# freeVarsInExp (BinOpAppExp(IntTimesOp, VarExp "x", ConstExp(IntConst 3)));;
- : string list = ["x"]

e. (2 pts.) The set of free variables of an expression that is at the top-most level an if-then-else expression is
just the union of the free variables of the three immediate subexpressions.

ϕ(if e1 then e2 else e3) = ϕ(e1) ∪ ϕ(e2) ∪ ϕ(e3)

Write the clause for freeVarsInExp for expressions that are top-most an if-then-else expression. Please
remember that it is alright for you code to return the variables in a different order.

# freeVarsInExp (IfExp(ConstExp (BoolConst true), VarExp "x", VarExp "y"));;
- : string list = ["x"; "y"]
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f. (2 pts.) The set of free variables of an expression that is at the top-most level an application of one expression
to another is just the union of the free variables of the two immediate subexpressions.

ϕ(e1 e2) = ϕ(e1) ∪ ϕ(e2)

Write the clauses for freeVarsInExp for expressions that are top-most an application of one expression
to another.

# freeVarsInExp (AppExp(VarExp "f", VarExp "y"));;
- : string list = ["f"; "y"]

g. (3 pts.) The free variables of a function expression are all the free variables in the body of the expression
except the variable that is the formal parameter. Any occurrence of that variable in the body of the function
is bound by the formal parameter, and not free.

ϕ(fun x -> e) = ϕ(e)− {x}

Add clauses to freeVarsInExp to compute the free variables of a function expression.

# freeVarsInExp (FunExp("x", VarExp "x"));;
- : string list = []

Note: You can implement set subtraction using the library function List.filter : (’a -> bool)
-> ’a list -> ’a list.

h. (3 pts.) The free variables of a let-expression are restricted by the variable being locally declared, and
hence bound. In let x = e1 in e2 the x in the let part binds any occurrence of x in e2, but not in e1.

ϕ(let x = e1 in e2) = ϕ(e1) ∪ (ϕ(e2)− {x})

Add the clause to freeVarsInExp to compute the free variables of let-expressions.

# freeVarsInExp (LetInExp("x", VarExp "y", VarExp "x"));;
- : string list = ["y"]

i. (4 pts) The most complicated case for computing the free variables of an expression is that of a let rec-
expression. In let rec-expressions, there are two bindings taking place, and they have two different
scopes. In let rec f x = e1 in e2, the f binds all the occurrences of f in both e1 and e2, but the x
only binds occurrences of x in e1; if x is a free variable of e2 it will be a free variable of let rec f x =
e1 in e2).

ϕ(let rec f x = e1 in e2) = (ϕ(e1)− {f, x}) ∪ (ϕ(e2)− {f})

Write the clause for freeVarsInExp for let rec-expressions.

# freeVarsInExp (LetRecInExp("f","x",AppExp(VarExp "f",VarExp "x"),
AppExp(VarExp "f",VarExp "y")));;

- : string list = ["y"]

5. (28 pts total) In the previous assignment you converted some expressions to use Continuation-Passing Style (CPS).
In this section you will build a function cps exp : exp -> cps cont -> exp cps to automatically
transform expressions in our language into CPS.

Mathematically, we represent CPS transformation by the function [[e]]κ, which calculates the CPS form of an
expression e when passed the continuation κ, where κ does not represent a programming language variable, but
rather a complex expression describing the current continuation for e.
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The defining equations of this function are given below. In these rules f , x, v and vi represent variables in our
programming language, k is a continuation variable, c is a constant, e and ei are expressions and t is a transformed
expression. The variables f and x will represent variables that were already present in the expression to be
transformed. The variables v and vi are used to represent newly introduced variables used to pass a value from the
previous computation forward into the current continuation. The variable k is used to represent a variable (such as
a formal parameter to a function) to be instantiated by an as yet unknown continuation.

By v being fresh for an expression e, we mean that v needs to be some variable that is NOT free in e. In
common.ml, we have supplied a function freshFor : string list -> string that, when given a
list of names, will generate a name that is not in the list. When implementing cps exp, the names you use for
these “fresh” variables do not have be the same as the ones we use, but they do have to satisfy the required freshness
constraint.

a. (2 pts) The CPS transformation of a variable just applies the continuation to the variable, since during exe-
cution, when this point in the code is reached, variables are already fully evaluated (except for being looked
up).

[[v]]κ = κ v

The code for the function cps exp should behave in a similar manner, creating the application of the con-
tinuation to the variable or constant. Add the clause to cps exp to implement the CPS-transformation of an
expression that is a variable.
# string_of_exp_cps (cps_exp (VarExp "x") (ContVarCPS Kvar));;
- : string = "_k x"

b. (2 pts) The CPS transformation of a constant expression just applies the continuation to the constant, since
constants are always already fully evaluated.

[[c]]κ = κ c

The code for the function cps exp should behave in a similar manner, creating the application of the con-
tinuation to the constant. Add code to cps exp to implement the CPS-transformation of an expression that
is a constant.
# string_of_exp_cps (cps_exp (ConstExp (BoolConst true)) (ContVarCPS Kvar));;
- : string = "_k true"

c. (3 pts) Each CPS transformation should make explicit the order of evaluation of each subexpression. For
if-then-else expressions, the first thing to be done is to evaluate the boolean guard. The resulting boolean
value needs to be passed to an if-then-else that will choose a branch. When the boolean value is true, we need
to evaluate the transformed then-branch, which will pass its value to the final continuation for the if-then-else
expression. Similarly, when the boolean value is false we need to evaluate the transformed else-branch, which
will pass its value to the final continuation for the if-then-else expression. To accomplish this, we recursively
CPS-transform e1 with the continuation with a formal parameter v that is fresh for e2, e3 and κ, where, based
on the value of v, the continuation chooses either the CPS-transform of e2 with the original continuation κ,
or the CPS-transform of e3, again with the original continuation κ.

[[if e1 then e2 else e3]]κ = [[e1]]FN v -> IF v THEN [[e2]]κ ELSE [[e3]]κ

Where v is fresh for e2, e3, and κ

With FN v -> IF v THEN [[e2]]κ ELSE [[e3]]κ we are creating a new continutation from our old. This
is not a function at the level of expressions, but rather at the level of continuations, and, as a result, should
use the constructor FnContCPS.
Add a clause to cps exp for the case for if-then-else operators.
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# string_of_exp_cps (cps_exp (IfExp (VarExp "b", ConstExp (IntConst 2),
ConstExp (IntConst 5)))

(ContVarCPS Kvar));;
- : string = "(FN a -> IF a THEN _k 2 ELSE _k 5) b"

d. (3 pts) The CPS transformation for application mirrors its evaluation order. In PicoML, we will uniformly
use right-to-left evaluation. Therefore, to evaluate an application, first evaluate e2 to a value, then evaluate
the function, e1, to a closure, and finally, evaluate the application of the closure to the value. To transform
the application of e1 to e2, we create a new continuation that takes the result of e2 and binds it to v2, then
evaluates e1 and binds it to v1, then finally, applies v1 to v2 and, since the CPS transformation makes all
functions take a continuation, it is also applied to the current continuation κ. This is the continuation that is
used in transforming e2. Implement this rule:

[[e1 e2]]κ = [[e2]]FN v2 -> [[e1]]FN v1 -> v1 v2 κ
Where v2 is fresh for e1 and κ

v1 is fresh for v2 and κ

# string_of_exp_cps (cps_exp (AppExp (VarExp "f", VarExp "x"))
(ContVarCPS Kvar));;

- : string = "(FN a -> (FN b -> (b a _k)) f) x"

e. (3 pts) The CPS transformation for a binary operator mirrors its evaluation order. It first evaluates its second
argument, then its first before evaluating the binary operator applied to those two values. We create a new
continuation that takes the result of the second argument, e2, binds it to v2 then evaluates the first argument,
e1, and binds that result to v1. As a last step it applies the current continuation to the result of v1 ⊕ v2.
Implement the following rule.

[[e1 ⊕ e2]]κ = [[e2]]FN v2 -> [[e1]]FN v1 -> κ (v1 ⊕ v2)
Where v2 is fresh for e1 and κ

v1 is fresh for κ, and v2

# string_of_exp_cps (cps_exp (BinOpAppExp
(IntPlusOp, ConstExp(IntConst 5),

ConstExp(IntConst 1)))
(ContVarCPS Kvar));;

- : string = "(FN a -> (FN b -> _k(b + a)) 5) 1"

f. (3 pts) The CPS transformation for a unary operator mirrors its evaluation order. It first evaluates the argument
of the operator and then applies the continuation to the result of applying that operator to the value. Thus
we create a continuation that takes the result of evaluating the argument, e, and binds it to v then applies the
continuation to the result of ⊕v. Implement the following rule.

[[⊕e]]κ = [[e]]FN v -> κ (⊕v) Where v is fresh for κ

# string_of_exp_cps (cps_exp (MonOpAppExp (HdOp, ConstExp NilConst))
(ContVarCPS Kvar));;

- : string = "(FN a -> _k(hd a)) []"

g. (3 pts) A function expression by itself does not get evaluated (well, it gets turned into a closure), so it needs to
be handed to the continuation directly, except that, when it eventually gets applied, it will need to additionally
take a continuation as another argument, and its body will need to have been transformed with respect to this
additional argument. Therefore, we need to use the continuation variable k (that is, ContVarCPS Kvar)to
be the formal parameter for passing a continuation into the function. Then, we need to transform the body
with k as its continuation, and put it inside a continuation function with the same original formal parameter
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together with k. The original continuation κ is then applied to the result.

[[fun x -> e]]κ = κ (FUN x k -> [[e]]k) Where k is ContVarCPS Kvar

The syntax for a function in PicoML, as in OCaml is (fun -> ). Write the clause for the case for
functions.

# string_of_exp_cps (cps_exp (FunExp ("x", VarExp "x"))
(ContVarCPS Kvar));;

- : string = "_k (FUN x _k -> _k x)"

h. (3 pts) A (let x = e1 in e2) expression first evaluates the expression e1 generating a local binding, and
then evaluates e2 in the context of that new binding. Note that, in order to transform e2 into CPS, we already
have the necessary continuation κ because e2 computes the value to be given as the final result. To transform
the (let x = e1 in e2) expression, we create a continuation that takes the result of e1, binds it to x, the
locally bound variable, and calculates e2 with the current continuation. This new continuation is then used to
transform e1. Implement the following rule.

[[let x = e1 in e2]]κ = [[e1]]FN x -> [[e2]]κ

# string_of_exp_cps (cps_exp (LetInExp ("x", ConstExp(IntConst 2),
VarExp "x"))

(ContVarCPS Kvar));;
- : string = "(FN x -> _k x) 2"

6.1 Extra Credit

i. (3 pts) In PicoML, the only expressions that can be declared with let rec are functions. A (let rec
f x = e1 in e2) expression creates a recursive function binding for f with formal parameter x and body
e1. The binding for f is then available for the evaluation of e2. When e1 is evaluated in the context of
a function call in e2, the environment for e1 will need to be updated with this binding. Since we require
let rec expressions to bind identifiers to functions, we do the CPS transform for this local declaration in
a fairly similar way. We transform the body with respect to the continuation variable and paramaterize by
that continuation variable. We need to convert the CPS transformed expression waiting for the binding into a
continuation taking a value for f . The main difference at the end is that we wrap it all up with a constructor
representing a fixed-point operator. Implement the following rule.

[[let rec f x = e1 in e2]]κ = (FN f -> [[e2]]κ)(µ f. FUN x k -> [[e1]]k)

# string_of_exp_cps (cps_exp (LetRecInExp ("f", "x",VarExp "x",
ConstExp (IntConst 4)))

(ContVarCPS Kvar));;
- : string = "(FN f -> _k 4)(FIX f. FUN x _k -> _k x)"

10


