Programming Languages and Compilers (CS 421)

Elsa L Gunter
 2112 SC, UIUC http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

LR Parsing Tables

- Build a pair of tables, Action and Goto, from the grammar
- This is the hardest part, we omit here
- Rows labeled by states
- For Action, columns labeled by terminals and "end-of-tokens" marker
- (more generally strings of terminals of fixed length)
- For Goto, columns labeled by nonterminals

Action and Goto Tables

- Given a state and the next input, Action table says either
- shift and go to state n, or
- reduce by production k (explained in a bit)
- accept or error
- Given a state and a non-terminal, Goto table says
- go to state m

LR(i) Parsing Algorithm

- Based on push-down automata
- Uses states and transitions (as recorded in Action and Goto tables)
- Uses a stack containing states, terminals and non-terminals

LR(i) Parsing Algorithm

0 . Insure token stream ends in special "end-of-tokens" symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack
$\rightarrow 3$. Look at next i tokens from token stream (toks) (don't remove yet)
3. If top symbol on stack is state(n), look up action in Action table at (n, toks)

LR(i) Parsing Algorithm

5. If action = shift m,
a) Remove the top token from token stream and push it onto the stack
b) Push state (m) onto stack
c) Go to step 3

LR(i) Parsing Algorithm

6. If action $=$ reduce k where production k is
$\mathrm{E}::=\mathrm{u}$
a) Remove 2 * length(u) symbols from stack (u and all the interleaved states)
b) If new top symbol on stack is state(m), look up new state p in Goto (m, E)
c) Push E onto the stack, then push state (p) onto the stack
d) Go to step 3

LR(i) Parsing Algorithm

7. If action = accept

- Stop parsing, return success

8. If action = error,

- Stop parsing, return failure

Adding Synthesized Attributes

- Add to each reduce a rule for calculating the new synthesized attribute from the component attributes
- Add to each non-terminal pushed onto the stack, the attribute calculated for it
- When performing a reduce,
- gather the recorded attributes from each nonterminal popped from stack
- Compute new attribute for non-terminal pushed onto stack

Shift-Reduce Conflicts

- Problem: can' t decide whether the action for a state and input character should be shift or reduce
- Caused by ambiguity in grammar
- Usually caused by lack of associativity or precedence information in grammar

Example: <Sum> = 0 | 1 ($<$ Sum>) <Sum> + <Sum>

$0+1+0 \quad$ shift
$->0+1+0$
-> <Sum> $+1+0$ shift
$-><$ Sum $>+1+0$ shift
-> <Sum> + 1 + 0 reduce
-> <Sum> + <Sum> +0

Example - cont

- Problem: shift or reduce?
- You can shift-shift-reduce-reduce or reduce-shift-shift-reduce
- Shift first - right associative
- Reduce first- left associative

Reduce - Reduce Conflicts

- Problem: can' t decide between two different rules to reduce by
- Again caused by ambiguity in grammar
- Symptom: RHS of one production suffix of another
- Requires examining grammar and rewriting it
- Harder to solve than shift-reduce errors

Example

- $S::=A \mid a B \quad A::=a b c \quad B::=b c$
- abc
$a-b c$
$a b-c$ abc
shift shift shift
- Problem: reduce by $\mathrm{B}::=\mathrm{bc}$ then by $S::=a B$, or by $A::=a b c$ then $S:: A$?

Semantics

- Expresses the meaning of syntax
- Static semantics
- Meaning based only on the form of the expression without executing it
- Usually restricted to type checking / type inference

Dynamic semantics

- Method of describing meaning of executing a program
- Several different types:
- Operational Semantics
- Axiomatic Semantics
- Denotational Semantics

Dynamic Semantics

- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes

Operational Semantics

- Start with a simple notion of machine
- Describe how to execute (implement) programs of language on virtual machine, by describing how to execute each program statement (ie, following the structure of the program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations

Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state before execution
- Written :
\{Precondition\} Program \{Postcondition\}
- Source of idea of loop invariant

Denotational Semantics

- Construct a function \mathcal{M} assigning a mathematical meaning to each program construct
- Lambda calculus often used as the range of the meaning function
- Meaning function is compositional: meaning of construct built from meaning of parts
- Useful for proving properties of programs

Natural Semantics

- Aka Structural Operational Semantics, aka "Big Step Semantics"
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like

$$
\begin{gathered}
(\mathrm{C}, \mathrm{~m}) \Downarrow \mathrm{m}^{\prime} \\
\text { or } \\
(\mathrm{E}, \mathrm{~m}) \Downarrow v
\end{gathered}
$$

Simple Imperative Programming Language

- I \in Identifiers
- $N \in$ Numerals
- $B::=$ true \mid false $|B \& B| B$ or $B \mid$ not B
| $E<E \mid E=E$
- $E::=N / I / E+E / E * E / E-E /-E$
- C: $:=\operatorname{skip}|C ; C| I::=E$
| if B then C else C fi \mid while B do C od

Natural Semantics of Atomic Expressions

- Identifiers: $(I, m) \Downarrow m(I)$
- Numerals are values: $(N, m) \Downarrow N$
- Booleans: (true, m) \downarrow true
(false,m) \Downarrow false

Booleans:

$\frac{(B, m) \Downarrow \text { false }}{\left(B \& B^{\prime}, m\right) \Downarrow \text { false }} \frac{(B, m) \Downarrow \text { true }\left(B^{\prime}, m\right) \Downarrow b}{\left(B \& B^{\prime}, m\right) \Downarrow b}$
$\frac{(B, m) \Downarrow \text { true }}{\left(B \text { or } B^{\prime}, m\right) \Downarrow \text { true }} \frac{(B, m) \Downarrow \text { false }\left(B^{\prime}, m\right) \Downarrow}{\left(B \text { or } B^{\prime}, m\right) \Downarrow b}$
$\frac{(B, m) \Downarrow \text { true }}{\text { (not } B, m) \Downarrow \text { false }}$

$(B, m) \Downarrow$ false
(not B, m) \downarrow true

Relations

$$
\frac{(E, m) \Downarrow U\left(E^{\prime}, m\right) \Downarrow V \quad U \sim V=b}{\left(E \sim E^{\prime}, m\right) \Downarrow b}
$$

- By $U \sim V=b$, we mean does (the meaning of) the relation \sim hold on the meaning of U and V
- May be specified by a mathematical expression/equation or rules matching U and V

Arithmetic Expressions

$$
\frac{(E, m) \Downarrow U \quad\left(E^{\prime}, m\right) \Downarrow V \quad U \text { op } V=N}{\left(E \text { op } E^{\prime}, m\right) \Downarrow N}
$$

where N is the specified value for U op V

Commands

Skip:
(skip, m) $\Downarrow m$

Assignment:

$$
\frac{(E, m) \Downarrow V}{(I::=E, m) \Downarrow m[I<--V]}
$$

Sequencing: $\frac{(C, m) \Downarrow m^{\prime} \quad\left(C^{\prime}, m^{\prime}\right) \Downarrow m^{\prime}}{\left(C ; C^{\prime}, m\right) \Downarrow m^{\prime}}$

If Then Else Command

$\frac{(B, m) \Downarrow \text { true } \quad(C, m) \Downarrow m^{\prime}}{\text { (if } B \text { then } C \text { else } C^{\prime} \text { fi, } m \text {) } \Downarrow m^{\prime}}$
$\frac{(B, m) \Downarrow \text { false } \quad\left(C^{\prime}, m\right) \Downarrow m^{\prime}}{\left.\text { (if } B \text { then } C \text { else } C^{\prime} \text { fi, } m\right) \Downarrow m^{\prime}}$

While Command

$(B, m) \Downarrow$ false
 (while B do C od, m) $\Downarrow m$

$\frac{(B, m) \Downarrow \text { true }(C, m) \Downarrow m^{\prime} \text { (while } B \text { do } C \text { od, }}{\left.m^{\prime}\right) \Downarrow m^{\prime}}$
(while B do C od, m) $\Downarrow m^{\prime}$ '

Example: If Then Else Rule

(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}) \Downarrow$?

Example: If Then Else Rule

$(x>5,\{x->7\}) \Downarrow ?$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi, $\{x->7\}) \Downarrow$?

Example: Arith Relation

$$
?>?=?
$$

$$
\underline{(x,\{x->7\}) \Downarrow ? \quad(5,\{x->7\}) \Downarrow ?}
$$

$$
(x>5,\{x->7\}) \Downarrow ?
$$

(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,

$$
\{x->7\}) \Downarrow ?
$$

Example: Identifier(s)

$7>5=$ true
$(x,\{x->7\})\|7 \quad(5,\{x->7\})\| 5$
$(x>5,\{x->7\}) \Downarrow ?$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,

$$
\{x->7\}) \Downarrow ?
$$

Example: Arith Relation

$$
7>5 \text { = true }
$$

$$
\underline{(x,\{x->7\}) \Downarrow 7 \quad(5,\{x->7\}) \Downarrow 5}
$$

$$
(x>5,\{x->7\}) \downarrow \text { true }
$$

(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,

$$
\{x->7\}) \Downarrow ?
$$

Example: If Then Else Rule

$7>5=$ true
$(x,\{x->7\})\|7 \quad(5,\{x->7\})\| 5$
$(y:=2+3,\{x->7\}$
(x>5, $\{x->7\}) \Downarrow$ true
(if $x>5$ then $y:=2+3$ else $y:=3+4$ fi,

$$
\{x->7\}) \Downarrow ?
$$

Example: Assignment

$$
\begin{aligned}
& 7>5=\text { true } \\
& (x,\{x->7\})\|7 \quad(5,\{x->7\})\| 5 \\
& (2+3,\{x->7\}) \downarrow \text { ? } \\
& \text { (} y:=2+3,\{x->7\} \\
& \text { (} x>5 \text {, }\{x->7\} \text {) لtrue } \\
& \downarrow \text { ? } \\
& \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fi, } \\
& \{x->7\}) \downarrow \text { ? }
\end{aligned}
$$

Example: Arith Op

$$
\begin{aligned}
& \text { ? }+ \text { ? = ? } \\
& (2,\{x->7\}) \downarrow ? \quad(3,\{x->7\}) \downarrow ? \\
& 7>5=\text { true } \\
& (x,\{x->7\})\|7 \quad(5,\{x->7\})\| 5 \\
& (2+3,\{x->7\}) \downarrow \text { ? } \\
& \text { (} y:=2+3,\{x->7\} \\
& \text { (} x>5,\{x->7\}) \downarrow \text { true } \\
& \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fi, } \\
& \{x->7\}) \downarrow \text { ? }
\end{aligned}
$$

Example: Numerals

$$
\begin{aligned}
& 2+3=5 \\
& (2,\{x->7\}) \Downarrow 2 \quad(3,\{x->7\}) \Downarrow 3 \\
& 7>5=\text { true } \\
& (x,\{x->7\})\|7 \quad(5,\{x->7\})\| 5 \\
& (2+3,\{x->7\}) \downarrow \text { ? } \\
& \text { (} y:=2+3,\{x->7\} \\
& (x>5,\{x->7\}) \text { true } \\
& \downarrow \text { ? } \\
& \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fin, } \\
& \{x->7\}) \Downarrow \text { ? }
\end{aligned}
$$

Example: Arith Op

$$
\begin{aligned}
& 2+3=5 \\
& (2,\{x->7\}) \Downarrow 2 \quad(3,\{x->7\}) \Downarrow 3 \\
& 7>5=\text { true } \\
& (x,\{x->7\}) \| 7 \quad(5,\{x->7\}) \downarrow 5 \quad(y:=2+3,\{x->7\} \\
& (x>5,\{x->7\}) \Downarrow \text { true } \\
& \Downarrow \text { ? } \\
& \text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { fin, } \\
& \{x->7\}) \Downarrow \text { ? }
\end{aligned}
$$

Example: Assignment

$$
2+3=5
$$

$$
(2,\{x->7\}) \Downarrow 2 \quad(3,\{x->7\}) \Downarrow 3
$$

$7>5=$ true
$(x,\{x->7\})\|7 \quad(5,\{x->7\})\| 5$ $(2+3,\{x->7\}) \Downarrow 5$

$$
(y:=2+3,\{x->7\}
$$

($x>5,\{x->7\}$) true
$\Downarrow\{x->7, y->5\}$
(if $x>5$ then $y:=2+3$ else $y:=3+4$ ii,

$$
\{x->7\}) \downarrow ?
$$

Example: If Then Else Rule

$$
\begin{aligned}
& 2+3=5 \\
& (2,\{x->7\}) \Downarrow 2 \quad(3,\{x->7\}) \Downarrow 3 \\
& 7>5=\text { true } \\
& (x,\{x->7\})\|7 \quad(5,\{x->7\})\| 5 \quad(y:=2+3,\{x->7\} \\
& \frac{(x>5,\{x->7\}) \Downarrow \text { true }}{\text { (if } x>5 \text { then } y:=2+3 \text { else } y:=3+4 \text { ff, }} \\
& \{x->7\}) \Downarrow\{x->7, y->5\}
\end{aligned}
$$

Let in Command

$$
\frac{(E, m) \Downarrow \vee(C, m[I<-v]) \Downarrow m^{\prime}}{(\text { let } I=E \text { in } C, m) \Downarrow m^{\prime}}
$$

Where $m^{\prime}(y)=m^{\prime}(y)$ for $y \neq I$ and $m^{\prime}(I)=m(I)$ if $m(I)$ is defined, and $m^{\prime}(I)$ is undefined otherwise

Example

$$
\begin{array}{r}
\frac{(x,\{x->5\}) \Downarrow 5 \quad(3,\{x->5\}) \Downarrow 3}{\frac{(x+3,\{x->5\}) \Downarrow 8}{(x:=x+3,\{x->5\}) \Downarrow\{x->8\}}} \\
\frac{(5,\{x->17\}) \Downarrow 5}{(\text { let } x=5 \text { in }(x:=x+3),\{x->17\}) \Downarrow ?}
\end{array}
$$

Example

$$
\begin{array}{r}
\frac{(x,\{x->5\}) \Downarrow 5 \quad(3,\{x->5\}) \Downarrow 3}{\frac{(x+3,\{x->5\}) \Downarrow 8}{(x:=x+3,\{x->5\}) \Downarrow\{x->8\}}} \\
\frac{(5,\{x->17\}) \Downarrow 5}{(\text { let } x=5 \text { in }(x:=x+3),\{x->17\}) \Downarrow\{x->17\}}
\end{array}
$$

Comment

- Simple Imperative Programming Language introduces variables implicitly through assignment
- The let-in command introduces scoped variables explictly
- Clash of constructs apparent in awkward semantics

Interpretation Versus Compilation

- A compiler from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An Interpreter represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
- Built incrementally
- Start with literals
- Variables
- Primitive operations
- Evaluation of expressions
- Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
- eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next "state"
- To get final value, put in a loop

Natural Semantics Example

- compute_exp (Var(v), m) = look_up v m
- compute_exp (Int(n), _) = Num (n)
- compute_com(IfExp(b,c1,c2),m) =
if compute_exp (b,m) = Bool(true) then compute_com ($\mathrm{c} 1, \mathrm{~m}$) else compute_com (c2,m)

Natural Semantics Example

- compute_com(While(b,c), m) =
if compute_exp (b,m) = Bool(false) then m else compute_com (While(b,c), compute_com(c,m))
- May fail to terminate - exceed stack limits
- Returns no useful information then

