Programming Languages and Compilers (CS 421)

Elsa L Gunter 2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

- Build a pair of tables, Action and Goto, from the grammar
 - This is the hardest part, we omit here
 - Rows labeled by states
 - For Action, columns labeled by terminals and "end-of-tokens" marker
 - (more generally strings of terminals of fixed length)
 - For Goto, columns labeled by nonterminals

Action and Goto Tables

- Given a state and the next input, Action table says either
 - shift and go to state n, or
 - reduce by production k (explained in a bit)
 - accept or error
- Given a state and a non-terminal, Goto table says
 - go to state m

- Based on push-down automata
- Uses states and transitions (as recorded in Action and Goto tables)
- Uses a stack containing states, terminals and non-terminals

- O. Insure token stream ends in special "endof-tokens" symbol
- 1. Start in state 1 with an empty stack
- 2. Push **state**(1) onto stack
- →3. Look at next *i* tokens from token stream (toks) (don't remove yet)
 - 4. If top symbol on stack is **state**(*n*), look up action in Action table at (*n*, *toks*)

5. If action = **shift** m,

- a) Remove the top token from token stream and push it onto the stack
- b) Push **state**(*m*) onto stack
- c) Go to step 3

- 6. If action = **reduce** *k* where production *k* is E ::= u
 - a) Remove 2 * length(u) symbols from stack (u and all the interleaved states)
 - b) If new top symbol on stack is **state**(*m*), look up new state *p* in Goto(*m*,E)
 - c) Push E onto the stack, then push **state**(*p*) onto the stack
 - d) Go to step 3

- 7. If action = accept
 - Stop parsing, return success
- 8. If action = error,
 - Stop parsing, return failure

Adding Synthesized Attributes

- Add to each **reduce** a rule for calculating the new synthesized attribute from the component attributes
- Add to each non-terminal pushed onto the stack, the attribute calculated for it
- When performing a reduce,
 - gather the recorded attributes from each nonterminal popped from stack
 - Compute new attribute for non-terminal pushed onto stack

Shift-Reduce Conflicts

- Problem: can't decide whether the action for a state and input character should be shift or reduce
- Caused by ambiguity in grammar
- Usually caused by lack of associativity or precedence information in grammar

Example: <Sum> = 0 | 1 | (<Sum>) | <Sum> + <Sum>

Problem: shift or reduce?

 You can shift-shift-reduce-reduce or reduce-shift-shift-reduce

- Shift first right associative
- Reduce first- left associative

Reduce - Reduce Conflicts

- Problem: can't decide between two different rules to reduce by
- Again caused by ambiguity in grammar
- Symptom: RHS of one production suffix of another
- Requires examining grammar and rewriting it
- Harder to solve than shift-reduce errors

Example

- abc shift
- a bc shift
- ab c shift
- abc •
- Problem: reduce by B ::= bc then by
 - S ::= aB, or by A ::= abc then S ::A?

- Expresses the meaning of syntax
- Static semantics
 - Meaning based only on the form of the expression without executing it
 - Usually restricted to type checking / type inference

Dynamic semantics

- Method of describing meaning of executing a program
- Several different types:
 - Operational Semantics
 - Axiomatic Semantics
 - Denotational Semantics

Dynamic Semantics

- Different languages better suited to different types of semantics
- Different types of semantics serve different purposes

Operational Semantics

- Start with a simple notion of machine
- Describe how to execute (implement)
 programs of language on virtual machine, by
 describing how to execute each program
 statement (ie, following the structure of the
 program)
- Meaning of program is how its execution changes the state of the machine
- Useful as basis for implementations

Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state before execution
- Written:
 {Precondition} Program {Postcondition}
- Source of idea of loop invariant

Denotational Semantics

- Construct a function M assigning a mathematical meaning to each program construct
- Lambda calculus often used as the range of the meaning function
- Meaning function is compositional: meaning of construct built from meaning of parts
- Useful for proving properties of programs

Natural Semantics

- Aka Structural Operational Semantics, aka "Big Step Semantics"
- Provide value for a program by rules and derivations, similar to type derivations
- Rule conclusions look like

```
(C, m) ↓ m'
or
(E, m) ↓ v
```


Simple Imperative Programming Language

- $I \in Identifiers$
- \blacksquare $N \in Numerals$
- B::= true | false | B & B | B or B | not B
 | E < E | E = E
- E::= N | I | E + E | E * E | E E | E
- C::= skip | C; C | I ::= E
 | if B then C else C fi | while B do C od

Natural Semantics of Atomic Expressions

- Identifiers: $(I,m) \Downarrow m(I)$
- Numerals are values: (N,m) ↓ N
- Booleans: (true, m) ↓ true(false , m) ↓ false

Booleans:

$$(B, m)$$

 | false | (B, m)

 | true (B', m)

 | $(B \& B', m)$
 | false | $(B \& B', m)$
 | $(B \& B', m)$
 | $(B \& B', m)$
 | $(B \& B', m)$

$$(B, m)$$
 ↓ true
 $(B \text{ or } B', m)$ ↓ true

$$(B, m)$$
 ↓ true (B, m) ↓ false (B', m) ↓ b $(B \text{ or } B', m)$ ↓ true $(B \text{ or } B', m)$ ↓ b

$$(B, m)$$
 \Downarrow true (B, m) \Downarrow false(not $B, m)$ \Downarrow false(not $B, m)$ \Downarrow true

Relations

$$(E, m) \Downarrow U \quad (E', m) \Downarrow V \quad U \sim V = b$$
$$(E \sim E', m) \Downarrow b$$

- By U ~ V = b, we mean does (the meaning of) the relation ~ hold on the meaning of U and V
- May be specified by a mathematical expression/equation or rules matching *U* and *V*

Arithmetic Expressions

$$(E, m) \Downarrow U \quad (E', m) \Downarrow V \quad U \text{ op } V = N$$

$$(E \text{ op } E', m) \Downarrow N$$
where N is the specified value for $U \text{ op } V$

Commands

Skip:

(skip, m) $\downarrow m$

Assignment:

$$\frac{(E,m) \downarrow V}{(I::=E,m) \downarrow m[I <-- V]}$$

Sequencing:
$$(C,m) \downarrow m'$$
 $(C',m') \downarrow m''$ $(C;C',m) \downarrow m''$

If Then Else Command

(B,m) ↓ true (C,m) ↓ m'(if B then C else C' fi, m) ↓ m'

(B,m)

↓ false (C',m)

↓ m'(if B then C else C' fi, m)

↓ m'

While Command

$$(B,m)$$
 ↓ false
(while B do C od, m) ↓ m

$$(B,m)$$
 \Downarrow true (C,m) \Downarrow m' (while B do C od, m') \Downarrow m' (while B do C od, m) \Downarrow m'

30

4

Example: If Then Else Rule

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,
$$\{x -> 7\}$$
) \downarrow ?

Example: If Then Else Rule

$$(x > 5, \{x -> 7\}) \downarrow ?$$

(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi, $\{x -> 7\}) \downarrow ?$

Example: Arith Relation

```
? > ? = ?

\frac{(x,(x->7)) \|? (5,(x->7)) \|?}{(x > 5, (x -> 7)) \|?}
(if x > 5 then y:= 2 + 3 else y:=3 + 4 fi,

(x -> 7) \|?
```

Example: Identifier(s)

$$7 > 5 = \text{true}$$

 $(x,(x->7)) | 7 (5,(x->7)) | 5$
 $(x > 5, (x -> 7)) | ?$
 $(\text{if } x > 5 \text{ then } y := 2 + 3 \text{ else } y := 3 + 4 \text{ fi},$
 $(x -> 7) | ?$

Example: Arith Relation

7 > 5 = true

$$(x,{x->7})$$
↓7 $(5,{x->7})$ ↓5
 $(x > 5, {x -> 7})$ ↓true
 $(if x > 5 then y:= 2 + 3 else y:= 3 + 4 fi,$
 $(x -> 7)$ ↓?

Example: If Then Else Rule

$$7 > 5 = \text{true}$$

 $(x,(x->7)) \downarrow 7$ $(5,(x->7)) \downarrow 5$ $(y:= 2 + 3, (x-> 7))$
 $(x > 5, (x -> 7)) \downarrow \text{true}$ \downarrow ? .
 $(\text{if } x > 5 \text{ then } y:= 2 + 3 \text{ else } y:= 3 + 4 \text{ fi},$
 $(x -> 7) \downarrow ?$

Example: Assignment

```
7 > 5 = \text{true} (2+3, \{x->7\}) \parallel ? (x,\{x->7\}) \parallel 7 (5,\{x->7\}) \parallel 5 (y:= 2+3, \{x->7\}) (x > 5, \{x -> 7\}) \parallel \text{true} (\text{if } x > 5 \text{ then } y:= 2+3 \text{ else } y:=3+4 \text{ fi}, (x -> 7\}) \parallel ?
```

Example: Arith Op

Example: Numerals

```
2 + 3 = 5

(2,\{x->7\}) \downarrow 2 \quad (3,\{x->7\}) \downarrow 3

7 > 5 = \text{true} \qquad (2+3,\{x->7\}) \downarrow ?

(x,\{x->7\}) \downarrow 7 \quad (5,\{x->7\}) \downarrow 5 \qquad (y:= 2+3,\{x->7\})

(x > 5, \{x -> 7\}) \downarrow \text{true} \qquad \downarrow ?

(if x > 5 \text{ then } y:= 2+3 \text{ else } y:=3+4 \text{ fi,}

\{x -> 7\}) \downarrow ?
```

Example: Arith Op

```
2 + 3 = 5

(2,\{x->7\}) \downarrow 2 \quad (3,\{x->7\}) \downarrow 3

7 > 5 = \text{true} \qquad (2+3,\{x->7\}) \downarrow 5

(x,\{x->7\}) \downarrow 7 \quad (5,\{x->7\}) \downarrow 5 \quad (y:= 2+3,\{x->7\})

(x > 5, \{x -> 7\}) \downarrow \text{true} \qquad \downarrow ?

(if x > 5 \text{ then } y:= 2+3 \text{ else } y:=3+4 \text{ fi,}

\{x -> 7\}) \downarrow ?
```

Example: Assignment

Example: If Then Else Rule

```
2 + 3 = 5
(2,\{x->7\}) \downarrow 2 \quad (3,\{x->7\}) \downarrow 3
7 > 5 = \text{true} \qquad (2+3,\{x->7\}) \downarrow 5
(x,\{x->7\}) \downarrow 7 \quad (5,\{x->7\}) \downarrow 5 \qquad (y:=2+3,\{x->7\})
(x > 5,\{x->7\}) \downarrow \text{true} \qquad \downarrow \{x->7,y->5\}
(if x > 5 \text{ then } y:=2+3 \text{ else } y:=3+4 \text{ fi},
\{x ->7\}) \downarrow \{x->7,y->5\}
```


Let in Command

$$\frac{(E,m) \Downarrow v \ (C,m[I <-v]) \Downarrow m'}{(\text{let } I = E \text{ in } C, m) \Downarrow m'}$$

Where m''(y) = m'(y) for $y \ne I$ and m''(I) = m(I) if m(I) is defined, and m''(I) is undefined otherwise

Example

$$\frac{(x,\{x->5\}) \downarrow 5 \quad (3,\{x->5\}) \downarrow 3}{(x+3,\{x->5\}) \downarrow 8}$$
$$\frac{(5,\{x->17\}) \downarrow 5 \quad (x:=x+3,\{x->5\}) \downarrow \{x->8\}}{(\text{let } x = 5 \text{ in } (x:=x+3), \{x->17\}) \downarrow ?}$$

Example

$$\frac{(x,\{x->5\}) \downarrow 5 \quad (3,\{x->5\}) \downarrow 3}{(x+3,\{x->5\}) \downarrow 8}$$
$$\frac{(5,\{x->17\}) \downarrow 5 \quad (x:=x+3,\{x->5\}) \downarrow \{x->8\}}{(\text{let } x = 5 \text{ in } (x:=x+3), \{x->17\}) \downarrow \{x->17\}}$$

- Simple Imperative Programming Language introduces variables implicitly through assignment
- The let-in command introduces scoped variables explictly
- Clash of constructs apparent in awkward semantics

Interpretation Versus Compilation

- A compiler from language L1 to language L2 is a program that takes an L1 program and for each piece of code in L1 generates a piece of code in L2 of same meaning
- An interpreter of L1 in L2 is an L2 program that executes the meaning of a given L1 program
- Compiler would examine the body of a loop once; an interpreter would examine it every time the loop was executed

Interpreter

- An *Interpreter* represents the operational semantics of a language L1 (source language) in the language of implementation L2 (target language)
- Built incrementally
 - Start with literals
 - Variables
 - Primitive operations
 - Evaluation of expressions
 - Evaluation of commands/declarations

Interpreter

- Takes abstract syntax trees as input
 - In simple cases could be just strings
- One procedure for each syntactic category (nonterminal)
 - eg one for expressions, another for commands
- If Natural semantics used, tells how to compute final value from code
- If Transition semantics used, tells how to compute next "state"
 - To get final value, put in a loop

4

Natural Semantics Example

- compute_exp (Var(v), m) = look_up v m
- compute_exp (Int(n), _) = Num (n)
- **...**
- compute_com(IfExp(b,c1,c2),m) =
 if compute_exp (b,m) = Bool(true)
 then compute_com (c1,m)
 else compute_com (c2,m)

Natural Semantics Example

```
compute_com(While(b,c), m) =
  if compute_exp (b,m) = Bool(false)
  then m
  else compute_com
    (While(b,c), compute_com(c,m))
```

- May fail to terminate exceed stack limits
- Returns no useful information then