
10/31/17 1

Programming Languages and
Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve and Gul Agha

10/31/17 2

BNF Grammars

n  Start with a set of characters, a,b,c,…
n  We call these terminals

n  Add a set of different characters, X,Y,Z,
…
n  We call these nonterminals

n  One special nonterminal S called start
symbol

10/31/17 3

BNF Grammars

n  BNF rules (aka productions) have form
 X ::= y
 where X is any nonterminal and y is a string

of terminals and nonterminals
n  BNF grammar is a set of BNF rules such that

every nonterminal appears on the left of
some rule

10/31/17 4

Sample Grammar

n  Terminals: 0 1 + ()
n  Nonterminals: <Sum>
n  Start symbol = <Sum>

n  <Sum> ::= 0
n  <Sum >::= 1
n  <Sum> ::= <Sum> + <Sum>
n  <Sum> ::= (<Sum>)
n  Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | ()

10/31/17 5

BNF Deriviations

n  Given rules
X::= yZw and Z::=v

we may replace Z by v to say
X => yZw => yvw

n  Sequence of such replacements called
derivation

n  Derivation called right-most if always
replace the right-most non-terminal

10/31/17 6

BNF Semantics

n  The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

10/31/17 7

BNF Derivations

n  Start with the start symbol:

<Sum> =>

10/31/17 8

BNF Derivations

n  Pick a non-terminal

<Sum> =>

10/31/17 9

n  Pick a rule and substitute:
n  <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

10/31/17 10

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

10/31/17 11

n  Pick a rule and substitute:
n  <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

10/31/17 12

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>

BNF Derivations

10/31/17 13

n  Pick a rule and substitute:
n  <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

10/31/17 14

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>

BNF Derivations

10/31/17 15

n  Pick a rule and substitute:
n  <Sum >::= 1

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

10/31/17 16

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>

BNF Derivations

10/31/17 17

n  Pick a rule and substitute:
n  <Sum >::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

10/31/17 18

n  Pick a non-terminal:

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0

BNF Derivations

10/31/17 19

n  Pick a rule and substitute
n  <Sum> ::= 0

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) 0
 => (0 + 1) + 0

BNF Derivations

10/31/17 20

n  (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >
 => (<Sum>) + <Sum>
 => (<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) + 0
 => (0 + 1) + 0

BNF Derivations

10/31/17 21

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

<Sum> =>

10/31/17 22

Regular Grammars

n  Subclass of BNF
n  Only rules of form

<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=ε

n  Defines same class of languages as regular
expressions

n  Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

10/31/17 23

Example

n  Regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= 1<ZeroAndMore>
<OneAndMore> ::= 1<Balanced>
<ZeroAndMore> ::= 0<Balanced>

n  Generates even length strings where every
initial substring of even length has same
number of 0’s as 1’s

10/31/17 24

Extended BNF Grammars

n  Alternatives: allow rules of from X::=y|z
n  Abbreviates X::= y, X::= z

n  Options: X::=y[v]z
n  Abbreviates X::=yvz, X::=yz

n  Repetition: X::=y{v}*z
n  Can be eliminated by adding new

nonterminal V and rules X::=yz, X::=yVz,
V::=v, V::=vV

10/31/17 25

n  Graphical representation of derivation
n  Each node labeled with either non-terminal

or terminal
n  If node is labeled with a terminal, then it is a

leaf (no sub-trees)
n  If node is labeled with a non-terminal, then

it has one branch for each character in the
right-hand side of rule used to substitute for
it

Parse Trees

10/31/17 26

Example

n  Consider grammar:
 <exp> ::= <factor>
 | <factor> + <factor>
 <factor> ::= <bin>
 | <bin> * <exp>
 <bin> ::= 0 | 1

n  Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

10/31/17 27

Example cont.

n  1 * 1 + 0: <exp>

<exp> is the start symbol for this parse

tree

10/31/17 28

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

Use rule: <exp> ::= <factor>

10/31/17 29

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

10/31/17 30

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

Use rules: <bin> ::= 1 and
 <exp> ::= <factor> +

<factor>

10/31/17 31

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

Use rule: <factor> ::= <bin>

10/31/17 32

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0
Use rules: <bin> ::= 1 | 0

10/31/17 33

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0
Fringe of tree is string generated by grammar

10/31/17 34

Your Turn: 1 * 0 + 0 * 1

10/31/17 35

Parse Tree Data Structures

n  Parse trees may be represented by OCaml
datatypes

n  One datatype for each nonterminal
n  One constructor for each rule
n  Defined as mutually recursive collection of

datatype declarations

10/31/17 36

Example

n  Recall grammar:
<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

n  type exp = Factor2Exp of factor
 | Plus of factor * factor
 and factor = Bin2Factor of bin
 | Mult of bin * exp
 and bin = Zero | One

10/31/17 37

Example cont.

n  1 * 1 + 0: <exp>

 <factor>

 <bin> * <exp>

 1 <factor> + <factor>

 <bin> <bin>

 1 0

10/31/17 38

Example cont.

n  Can be represented as

Factor2Exp
(Mult(One,
 Plus(Bin2Factor One,
 Bin2Factor Zero)))

10/31/17 39

Ambiguous Grammars and Languages

n  A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

n  If all BNF’s for a language are ambiguous
then the language is inherently ambiguous

10/31/17 40

Example: Ambiguous Grammar

n  0 + 1 + 0
 <Sum> <Sum>

 <Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

 0 1 1 0

10/31/17 41

Example

n  What is the result for:
3 + 4 * 5 + 6

10/31/17 42

Example

n  What is the result for:
3 + 4 * 5 + 6

n  Possible answers:
n  41 = ((3 + 4) * 5) + 6
n  47 = 3 + (4 * (5 + 6))
n  29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)
n  77 = (3 + 4) * (5 + 6)

10/31/17 43

Example

n  What is the value of:
7 – 5 – 2

10/31/17 44

Example

n  What is the value of:
7 – 5 – 2

n  Possible answers:
n  In Pascal, C++, SML assoc. left
 7 – 5 – 2 = (7 – 5) – 2 = 0
n  In APL, associate to right
 7 – 5 – 2 = 7 – (5 – 2) = 4

10/31/17 45

Two Major Sources of Ambiguity

n  Lack of determination of operator
precedence

n  Lack of determination of operator
assoicativity

n  Not the only sources of ambiguity

Disambiguating a Grammar

n  Given ambiguous grammar G, with start
symbol S, find a grammar G’ with same start
symbol, such that

language of G = language of G’
n  Not always possible
n  No algorithm in general

10/31/17 46

Disambiguating a Grammar

n  Idea: Each non-terminal represents all
strings having some property

n  Identify these properties (often in terms of
things that can’t happen)

n  Use these properties to inductively
guarantee every string in language has a
unique parse

10/31/17 47

Steps to Grammar Disambiguation

n  Identify the rules and a smallest use that display
ambiguity

n  Decide which parse to keep; why should others be
thrown out?

n  What syntactic restrictions on subexpressions are
needed to throw out the bad (while keeping the
good)?

n  Add a new non-terminal and rules to describe this set
of restricted subexpressions (called stratifying, or
refactoring)

n  Replace old rules to use new non-terminals
n  Rinse and repeat

10/31/17 48

10/31/17 49

Example

n  Ambiguous grammar:
<exp> ::= 0 | 1 | <exp> + <exp>
 | <exp> * <exp>

n  String with more then one parse:
0 + 1 + 0
1 * 1 + 1

n  Sourceof ambiuity: associativity and
precedence

10/4/07 50

Two Major Sources of Ambiguity

n  Lack of determination of operator
precedence

n  Lack of determination of operator
assoicativity

n  Not the only sources of ambiguity

10/4/07 51

How to Enforce Associativity

n  Have at most one recursive call per
production

n  When two or more recursive calls would
be natural leave right-most one for
right assoicativity, left-most one for left
assoiciativity

10/4/07 52

Example

n  <Sum> ::= 0 | 1 | <Sum> + <Sum>
 | (<Sum>)
n  Becomes

n  <Sum> ::= <Num> | <Num> + <Sum>
n  <Num> ::= 0 | 1 | (<Sum>)

10/4/07 53

Operator Precedence

n  Operators of highest precedence
evaluated first (bind more tightly).

n  Precedence for infix binary operators
given in following table

n  Needs to be reflected in grammar

10/4/07 54

Precedence Table - Sample

Fortan Pascal C/C++

Ada SML

highest ** *, /,
div,
mod

++, -- ** div,
mod, /

, *
*, / +, - *, /,

%
*, /,
mod

+, -,
^

+, - +, - +, - ::

10/4/07 55

First Example Again

n  In any above language, 3 + 4 * 5 + 6
= 29

n  In APL, all infix operators have same
precedence
n  Thus we still don’t know what the value is

(handled by associativity)
n  How do we handle precedence in

grammar?

10/4/07 56

Predence in Grammar

n  Higher precedence translates to longer
derivation chain

n  Example:
<exp> ::= 0 | 1 | <exp> + <exp>
 | <exp> * <exp>
n  Becomes

<exp> ::= <mult_exp>
 | <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>

<id> ::= 0 | 1

10/31/17 57

Parser Code

n  <grammar>.ml defines one parsing
function per entry point

n  Parsing function takes a lexing function
(lexer buffer to token) and a lexer
buffer as arguments

n  Returns semantic attribute of
corresponding entry point

10/31/17 58

Ocamlyacc Input

n  File format:
%{
 <header>
%}
 <declarations>
%%
 <rules>
%%
 <trailer>

10/31/17 59

Ocamlyacc <header>

n  Contains arbitrary Ocaml code
n  Typically used to give types and

functions needed for the semantic
actions of rules and to give specialized
error recovery

n  May be omitted
n  <footer> similar. Possibly used to call

parser

10/31/17 60

Ocamlyacc <declarations>

n  %token symbol … symbol
n  Declare given symbols as tokens
n  %token <type> symbol … symbol
n  Declare given symbols as token

constructors, taking an argument of type
<type>

n  %start symbol … symbol
n  Declare given symbols as entry points;

functions of same names in <grammar>.ml

10/31/17 61

Ocamlyacc <declarations>

n  %type <type> symbol … symbol
 Specify type of attributes for given symbols.

Mandatory for start symbols
n  %left symbol … symbol
n  %right symbol … symbol
n  %nonassoc symbol … symbol
 Associate precedence and associativity to

given symbols. Same line,same precedence;
earlier line, lower precedence (broadest
scope)

10/31/17 62

Ocamlyacc <rules>

n  nonterminal :
 symbol ... symbol { semantic_action }
 | ...
 | symbol ... symbol { semantic_action }
 ;
n  Semantic actions are arbitrary Ocaml

expressions
n  Must be of same type as declared (or inferred)

for nonterminal
n  Access semantic attributes (values) of symbols

by position: $1 for first symbol, $2 to second …

10/31/17 63

Example - Base types

(* File: expr.ml *)
type expr =
 Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)
and term =
 Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)
and factor =
 Id_as_Factor of string
 | Parenthesized_Expr_as_Factor of expr

10/31/17 64

Example - Lexer (exprlex.mll)

{ (*open Exprparse*) }
let numeric = ['0' - '9']
let letter =['a' - 'z' 'A' - 'Z']
rule token = parse
 | "+" {Plus_token}
 | "-" {Minus_token}
 | "*" {Times_token}
 | "/" {Divide_token}
 | "(" {Left_parenthesis}
 | ")" {Right_parenthesis}
 | letter (letter|numeric|"_")* as id {Id_token id}
 | [' ' '\t' '\n'] {token lexbuf}
 | eof {EOL}

10/31/17 65

Example - Parser (exprparse.mly)

%{ open Expr
%}
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL
%start main
%type <expr> main
%%

10/31/17 66

Example - Parser (exprparse.mly)

expr:
 term

 { Term_as_Expr $1 }
 | term Plus_token expr

 { Plus_Expr ($1, $3) }
 | term Minus_token expr

 { Minus_Expr ($1, $3) }

10/31/17 67

Example - Parser (exprparse.mly)

term:
 factor

 { Factor_as_Term $1 }
 | factor Times_token term

 { Mult_Term ($1, $3) }
 | factor Divide_token term

 { Div_Term ($1, $3) }

10/31/17 68

Example - Parser (exprparse.mly)

factor:
 Id_token

 { Id_as_Factor $1 }
 | Left_parenthesis expr Right_parenthesis

 {Parenthesized_Expr_as_Factor $2 }
main:
 | expr EOL

 { $1 }

10/31/17 69

Example - Using Parser

#use "expr.ml";;
…
#use "exprparse.ml";;
…
#use "exprlex.ml";;
…
let test s =
 let lexbuf = Lexing.from_string (s^"\n") in
 main token lexbuf;;

10/31/17 70

Example - Using Parser

test "a + b";;
- : expr =
Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Term_as_Expr (Factor_as_Term

(Id_as_Factor "b")))

10/31/17 71

LR Parsing

n  Read tokens left to right (L)
n  Create a rightmost derivation (R)
n  How is this possible?
n  Start at the bottom (left) and work your way up
n  Last step has only one non-terminal to be

replaced so is right-most
n  Working backwards, replace mixed strings by

non-terminals
n  Always proceed so that there are no non-

terminals to the right of the string to be replaced

10/31/17 72

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 = ● (0 + 1) + 0 shift

10/31/17 73

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 74

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 75

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 76

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 77

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 78

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 => (<Sum> + <Sum> ●) + 0 reduce
 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 79

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 = (<Sum> ●) + 0 shift
 => (<Sum> + <Sum> ●) + 0 reduce
 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 80

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 => (<Sum>) ● + 0 reduce
 = (<Sum> ●) + 0 shift
 => (<Sum> + <Sum> ●) + 0 reduce
 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 81

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 = <Sum> ● + 0 shift
 => (<Sum>) ● + 0 reduce
 = (<Sum> ●) + 0 shift
 => (<Sum> + <Sum> ●) + 0 reduce
 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 82

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>

 = <Sum> + ● 0 shift
 = <Sum> ● + 0 shift
 => (<Sum>) ● + 0 reduce
 = (<Sum> ●) + 0 shift
 => (<Sum> + <Sum> ●) + 0 reduce
 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 83

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● =>
 => <Sum> + 0 ● reduce
 = <Sum> + ● 0 shift
 = <Sum> ● + 0 shift
 => (<Sum>) ● + 0 reduce
 = (<Sum> ●) + 0 shift
 => (<Sum> + <Sum> ●) + 0 reduce
 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 84

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● => <Sum> + <Sum > ● reduce
 => <Sum> + 0 ● reduce
 = <Sum> + ● 0 shift
 = <Sum> ● + 0 shift
 => (<Sum>) ● + 0 reduce
 = (<Sum> ●) + 0 shift
 => (<Sum> + <Sum> ●) + 0 reduce
 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 85

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

<Sum> ● => <Sum> + <Sum > ● reduce
 => <Sum> + 0 ● reduce
 = <Sum> + ● 0 shift
 = <Sum> ● + 0 shift
 => (<Sum>) ● + 0 reduce
 = (<Sum> ●) + 0 shift
 => (<Sum> + <Sum> ●) + 0 reduce
 => (<Sum> + 1 ●) + 0 reduce
 = (<Sum> + ● 1) + 0 shift
 = (<Sum> ● + 1) + 0 shift
 => (0 ● + 1) + 0 reduce
 = (● 0 + 1) + 0 shift
 = ● (0 + 1) + 0 shift

10/31/17 86

Example

 (0 + 1) + 0

10/31/17 87

Example

 (0 + 1) + 0

10/31/17 88

Example

 (0 + 1) + 0

10/31/17 89

Example

 <Sum>

 (0 + 1) + 0

10/31/17 90

Example

 <Sum>

 (0 + 1) + 0

10/31/17 91

Example

 <Sum>

 (0 + 1) + 0

10/31/17 92

Example

 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 93

Example

 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 94

Example

 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 95

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 96

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 97

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 98

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 99

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 100

Example

 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>
 <Sum>

 (0 + 1) + 0

10/31/17 101

LR Parsing Tables

n  Build a pair of tables, Action and Goto, from
the grammar
n  This is the hardest part, we omit here
n  Rows labeled by states
n  For Action, columns labeled by terminals

and “end-of-tokens” marker
n  (more generally strings of terminals of fixed

length)
n  For Goto, columns labeled by non-

terminals

10/31/17 102

Action and Goto Tables

n  Given a state and the next input, Action
table says either
n  shift and go to state n, or
n  reduce by production k (explained in a

bit)
n  accept or error

n  Given a state and a non-terminal, Goto table
says
n  go to state m

10/31/17 103

LR(i) Parsing Algorithm

n  Based on push-down automata
n  Uses states and transitions (as recorded

in Action and Goto tables)

n  Uses a stack containing states,
terminals and non-terminals

10/31/17 104

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-
of-tokens” symbol

1.  Start in state 1 with an empty stack
2.  Push state(1) onto stack
3.  Look at next i tokens from token stream

(toks) (don’t remove yet)
4.  If top symbol on stack is state(n), look

up action in Action table at (n, toks)

10/31/17 105

LR(i) Parsing Algorithm

5. If action = shift m,
a)  Remove the top token from token

stream and push it onto the stack
b)  Push state(m) onto stack
c)  Go to step 3

10/31/17 106

LR(i) Parsing Algorithm

6. If action = reduce k where production k is
E ::= u

a)  Remove 2 * length(u) symbols from
stack (u and all the interleaved states)

b)  If new top symbol on stack is state(m),
look up new state p in Goto(m,E)

c)  Push E onto the stack, then push
state(p) onto the stack

d)  Go to step 3

10/31/17 107

LR(i) Parsing Algorithm

7. If action = accept
n Stop parsing, return success

8. If action = error,
n Stop parsing, return failure

10/31/17 108

Adding Synthesized Attributes

n  Add to each reduce a rule for calculating
the new synthesized attribute from the
component attributes

n  Add to each non-terminal pushed onto the
stack, the attribute calculated for it

n  When performing a reduce,
n  gather the recorded attributes from each non-

terminal popped from stack
n  Compute new attribute for non-terminal pushed

onto stack

10/31/17 109

Shift-Reduce Conflicts

n  Problem: can’t decide whether the
action for a state and input character
should be shift or reduce

n  Caused by ambiguity in grammar
n  Usually caused by lack of associativity

or precedence information in grammar

10/31/17 110

Example: <Sum> = 0 | 1 | (<Sum>)
 | <Sum> + <Sum>

 ● 0 + 1 + 0 shift
 -> 0 ● + 1 + 0 reduce
 -> <Sum> ● + 1 + 0 shift
 -> <Sum> + ● 1 + 0 shift
 -> <Sum> + 1 ● + 0 reduce
 -> <Sum> + <Sum> ● + 0

10/31/17 111

Example - cont

n  Problem: shift or reduce?

n  You can shift-shift-reduce-reduce or
reduce-shift-shift-reduce

n  Shift first - right associative
n  Reduce first- left associative

10/31/17 112

Reduce - Reduce Conflicts

n  Problem: can’t decide between two
different rules to reduce by

n  Again caused by ambiguity in grammar
n  Symptom: RHS of one production

suffix of another
n  Requires examining grammar and

rewriting it
n  Harder to solve than shift-reduce errors

10/31/17 113

Example

n  S ::= A | aB A ::= abc B ::= bc

 ● abc shift
 a ● bc shift
 ab ● c shift
 abc ●
n  Problem: reduce by B ::= bc then by

S ::= aB, or by A::= abc then S::A?

