
Continuation Passing Style, Transformation,
letrec
CS 421

Revision 1.0

1 Change Log
1.0 Initial Release.

2 Objectives
Your objectives are:

• Constructing data structures from algebraic data types

• Deconstructing data structures built from algebraic data types

• Implementing continuation passing style transformations

1. In the previous assignment you converted some expressions to use Continuation-Passing Style (CPS). In this sec-
tion you will build a function cps exp : exp -> cps cont -> exp cps to automatically transform
expressions in our language into CPS.

Mathematically, we represent CPS transformation by the function [[e]]κ, which calculates the CPS form of an
expression e when passed the continuation κ, where κ does not represent a programming language variable, but
rather a complex expression describing the current continuation for e.

The defining equations of this function are given below. In these rules f , x, v and vi represent variables in our
programming language, k is a continuation variable, c is a constant, e and ei are expressions and t is a transformed
expression. The variables f and x will represent variables that were already present in the expression to be
transformed. The variables v and vi are used to represent newly introduced variables used to pass a value from the
previous computation forward into the current continuation. The variable k is used to represent a variable (such as
a formal parameter to a function) to be instantiated by an as yet unknown continuation.

By v being fresh for an expression e, we mean that v needs to be some variable that is NOT free in e. In
common.ml, we have supplied a function freshFor : string list -> string that, when given a
list of names, will generate a name that is not in the list. When implementing cps exp, the names you use for
these “fresh” variables do not have be the same as the ones we use, but they do have to satisfy the required freshness
constraint.

a. In PicoML, the only expressions that can be declared with let rec are functions. A (let rec f x =
e1 in e2) expression creates a recursive function binding for f with formal parameter x and body e1. The
binding for f is then available for the evaluation of e2. When e1 is evaluated in the context of a function call in
e2, the environment for e1 will need to be updated with this binding. Since we require let rec expressions
to bind identifiers to functions, we do the CPS transform for this local declaration in a fairly similar way. We
transform the body with respect to the continuation variable and paramaterize by that continuation variable.
We need to convert the CPS transformed expression waiting for the binding into a continuation taking a value
for f . The main difference at the end is that we wrap it all up with a constructor representing a fixed-point
operator. Implement the following rule.

[[let rec f x = e1 in e2]]κ = (FN f -> [[e2]]κ)(µ f. FUN x k -> [[e1]]k)

1



# string_of_exp_cps (cps_exp (LetRecInExp ("f", "x",VarExp "x",
ConstExp (IntConst 4)))

(ContVarCPS Kvar));;
- : string = "(FN f -> _k 4)(FIX f. FUN x _k -> _k x)"

In the text already present in letrec.ml and in the editor provided we have given all cases except the one you
are to implement as calls to auxiliary functions in the precompiled module Plsolution. The recursive function
will be complete once you add the clause for the one case requested in this problem.

2


	Change Log
	Objectives

