```
Programming Languages and Compilers (CS 42I)
Sasa Misailovic 4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A
Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, and Elsa L Gunter
```


## Axiomatic Semantics

- Used to formally prove a property (postcondition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state holds before execution


## Axiomatic Semantics

- Approach: For each kind of language statement, give an axiom or inference rule stating how to derive assertions of form $\{P\} \subset\{Q\}$
where $C$ is a statement of that kind
- Compose axioms and inference rules to build proofs for complex programs


## Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages
- Goal: Derive statements of form
$\{P\} C\{Q\}$
- P , Q logical statements about state, P precondition, Q postcondition, C program
- Example: $\{x>1\} x:=x+1\{x>2\}$

12/4/2018

## Language

- We will give rules for simple imperative language
<command> ::=
<variable> := <term>
| <command>; ...;<command>
| if <expression> then <command> else <command> fi
| while <expression> do <command> od
- Could add more features, like for-loops


## The Assignment Rule

$$
\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}
$$

## Example:

$$
\{? \quad\} x:=y\{x=2\}
$$

Substitution

- Notation: $\mathrm{P}[\mathrm{e} / \mathrm{v}]$ (sometimes $\mathrm{P}[\mathrm{v}<-\mathrm{e}]$ )
- Meaning: Replace every v in P by e
- Example:

$$
(x+2)[y-1 / x]=((y-1)+2)
$$

## The Assignment Rule

$$
\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}
$$

Example:

$$
\{\square=2\} x:=y\{\sqrt{x}=2\}
$$

The Assignment Rule

$$
\{\mathrm{P}[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}
$$

Example:

$$
\{\bar{y}=2\} x:=y\{x=2\}
$$

The Assignment Rule

$$
\overline{\{P[e / x]\} x:=e\{P\}}
$$

Examples:
$\overline{\{y=2\} x:=y\{x=2\}}$
$\overline{\{y=2\} \times:=2\{y=x\}}$
$\{x+1=n+1\} x:=x+1\{x=n+1\}$
$\overline{\{2=2\} \times:=2\{x=2\}}$

The Assignment Rule - Your Turn

- What is a valid precondition of

$$
\begin{gathered}
x:=x+y\{x+y=w-x\} ? \\
\left\{\begin{array}{c}
? \\
x:=x+y \\
\{x+y=w-x\}
\end{array}\right.
\end{gathered}
$$

The Assignment Rule - Your Turn

- What is a valid precondition of

$$
x:=x+y\{x+y=w-x\} ?
$$

$$
\begin{gathered}
\{(x+y)+y=w-(x+y)\} \\
x:=x+y \\
\{x+y=w-x\}
\end{gathered}
$$

Precondition Strengthening

- Examples:

$$
\frac{x=3 \Rightarrow x<7\{x<7\} x:=x+3\{x<10\}}{\{x=3\} x:=x+3\{x<10\}}
$$

$\underline{\text { True } \Rightarrow 2=2 \quad\{2=2\} x:=2\{x=2\}}$
$\{$ True $\} \quad x:=2\{x=2\}$
$\frac{x=n \rightarrow x+1=n+1 \quad\{x+1=n+1\} \quad x:=x+1\{x=n+1\}}{\{x=n\} \quad x:=x+1\{x=n+1\}}$
-P is stronger than $\mathrm{P}^{\prime}$ means $\mathrm{P} \rightarrow \mathrm{P}^{\prime}$

Which Inferences Are Correct?

$$
\begin{gathered}
\frac{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}{\{x=3\} x:=x^{*} x\{x<25\}} \\
\frac{\{x=3\} x:=x^{*} x\{x<25\}}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}} \\
\frac{\left\{x^{*} x<25\right\} x:=x^{*} x\{x<25\}}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}{\{x=3\} x:=x^{*} x\{x<25\}} \\
& \frac{\left\{x=31 x:=x^{*} x\{x<25\}\right.}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}} \\
& \frac{\left\{x^{*} x<25\right\} x:=x^{*} x\{x<25\}}{\{x>0 \& x<5\} x:=x^{*} x\{x<25\}}
\end{aligned}
$$

$\frac{\{P\} C_{1}\{Q\} \quad\{Q\} C_{2}\{R\}}{\{P\} C_{1} ; C_{2}\{R\}}$

## - Example:

$$
\begin{gathered}
\{z=z \& z=z\} x:=z\{x=z \& z=z\} \\
\{x=z \& z=z\} y:=z\{x=z \& y=z\} \\
\hline\{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\}
\end{gathered}
$$

$$
\frac{\{P\} C\left\{Q^{\prime}\right\} \quad Q^{\prime} \rightarrow Q}{\{P\} C\{Q\}}
$$

Example:

$$
\begin{gathered}
\{z=z \& z=z\} x:=z ; y:=z\{x=z \& y=z\} \\
(x=z \& y=z) \rightarrow(x=y) \\
\{z=z \& z=z\} x:=z ; y:=z\{x=y\}
\end{gathered}
$$

$$
\{y=a \& x<0\} \quad y:=y-x \quad\{y=a+|x|\}
$$

(3) $\quad(y=a \& x<0) \rightarrow \quad y-x=a+|x|$
(2) $\frac{\{y-x=a+|x|\} \quad y:=y-x \quad\{y=a+|x|\}}{\{y=a \& x<0\} y:=y-x \quad\{y=a+|x|\}}$
(1) Reduces to (2) and (3) by Precondition Strengthening
(2) Follows from assignment axiom
(3) Because from algebra: $x<0 \rightarrow|x|=-x$
$\{y=a \& \operatorname{not}(x<0)\} y:=y+x\{y=a+|x|\}$
(6) $\quad(y=a \& \operatorname{not}(x<0)) \rightarrow(y+x=a+|x|)$
(5) $\quad\{y+x=a+|x|\} \quad y:=y+x \quad\{y=a+\mid x\}\}$
(4) $\{y=a \& \operatorname{not}(x<0)\} \quad y:=y+x \quad\{y=a+|x|\}$
(4) Reduces to (5) and (6) by Precondition Strengthening
(5) Follows from assignment axiom
(6) Because not $(x<0) \rightarrow|x|=x$

## While

- We need a rule to be able to make assertions about while loops.
- Inference rule because we can only draw conclusions if we know something about the body
- Let's start with:


While

- If all we know is $P$ when we enter the while loop, then we all we know when we enter the body is ( P and B )
- If we need to know $P$ when we finish the while loop, we had better know it when we finish the loop body:

$$
\frac{\{P \text { and } B\} C\{P\}}{\{P\} \text { while } B \text { do } C \text { od }\{P\}}
$$

$\{P$ and $B\} C\{P\}$<br>$\overline{\{P\} \text { while } B \text { do } C \text { od }\{P \text { and not } B\}}$

- P satisfying this rule is called a loop invariant because it must hold before and after each iteration of the loop

- P satisfying this rule is called a
loop invariant because it must hold before and after the each iteration of the loop
x := 0;
while ( $\mathrm{x}<\mathrm{n}$ )
$P \equiv x \leq n \wedge 0 \leq n$
$x:=x+1$
\}

Want to show: x >= n \&\& $\mathrm{n}>=0$

- While rule generally needs to be used together with precondition strengthening and postcondition weakening
- There is NO algorithm for computing the correct $P$; it requires intuition and an understanding of why the program works

```
\(x:=0\)
\(y:=0\)
while \(\mathrm{y}<\mathrm{n}\) \{
    \(y:=y+1\);
    \(x:=x+y\)
\}
```

Want to show: $x=1+\ldots+n$

List Length
$x=1$ st; $y=0$
while ( $x \neq[]$ ) \{
$x:=t l x ; \quad P \equiv y+$ len $x=$ len Ist
$y:=y+1$
\}

Want to show: $\mathrm{y}=$ len lst

## Example (Use of Loop Invariant in Full Proof)

- Let us prove
$\{x>=0$ and $x=a\}$
fact := 1;
while $x>0$ do (fact $:=$ fact $* x ; x:=x-1$ ) od $\{$ fact $=a!\}$

Example

By post-condition weakening suffices to show

$$
\begin{aligned}
& \text { 1. }\{x>=0 \text { and } x=a\} \\
& \text { fact }:=1 \text {; } \\
& \text { while } x>0 \text { do (fact }:=\text { fact } * x ; x:=x-1 \text { ) od } \\
& \left\{a!=\text { fact }^{*}(x!) \text { and not }(x>0)\right\}
\end{aligned}
$$

And
2. a! = fact * $(x!)$ and not $(x>0)$ ) fact $=a!$

12/4/2018

## Example

- We need to find a condition $P$ that is true both before and after the loop is executed, and such that

$$
(P \text { and not } x>0)=>(\text { fact }=a!)
$$

## Problem!! (Dead End)

2. $a!=$ fact * $(x!)$ and not $(x>0)=>$ fact $=a$ !

- Don't know this if $x<0$ !!
- Need to know that $\mathrm{x}=0$ when loop terminates


## - Need a new loop invariant

- Try adding $x>=0$
- Then will have $x=0$ when loop is done


## Example

- First attempt:

$$
P=\{a!=\text { fact * }(x!)\}
$$

- Motivation:
- What we want to compute: a!
- What we have computed: fact which is the sequential product of a down through ( $\mathbf{x}+1$ )
- What we still need to compute: $\mathbf{x}$ !

Example
Second try, let us combine the two:

$$
P \equiv a!=\text { fact * }(x!) \text { and } x>=0
$$

We need to show:

1. $\{x>=0$ and $x=a\}$
fact := 1;
\{P\}
while x > 0 do (fact := fact * x ; $\mathrm{x}:=\mathrm{x}-1$ ) od
$\{P$ and not $x>0\}$
And
2. $P$ and not $x>0 \rightarrow$ fact $=a$ !

## Example

```
\(\{x>=0\) and \(x=a\}\) (*this was part 1 to prove*)
    fact := 1;
    while \(x>0\) do (fact := fact \(* x ; x:=x-1\) ) od
\(\{a!=\) fact * \((x!)\) and \(x>=0\) and not \((x>0)\}\)
```

- For Part 1 , by sequencing rule it suffices to show

3. $\{x>=0$ and $x=a\}$

$$
\{a!=\text { fact * }(x!) \text { and } x>=0\}
$$

And
4. $\{a!=$ fact * $(x!)$ and $x>=0\}$
while $x>0$ do
(fact := fact * x; x := x -1) od
$\{a!=$ fact * $(x!)$ and $x>=0$ and not $(x>0)\}$

Example

| 3. $\begin{aligned} & \{x>=0 \text { and } x=a\} \\ & \text { fact }:=1 \\ & \left\{\mathrm{a}!=\text { fact }{ }^{*}(x!)^{2} \text { and } x>=0\right\} \end{aligned}$ | Precondition Strengthening $\xrightarrow{p \rightarrow P^{+}\left\|P^{2}\right\| c\|c\|(0)}$ |
| :---: | :---: |


(Part 3) By the assignment rule, we have

$$
\begin{gathered}
\{\mathrm{a}!=1 \text { * }(\mathrm{x}!) \text { and } \mathrm{x}>=0\} \\
\text { fact }:=1 \\
\{\mathrm{a}!=\text { fact * }(\mathrm{x}!) \text { and } x>=0\}
\end{gathered}
$$

Therefore, to show (3), by precondition strengthening, it suffices to show

$$
(x>=0 \text { and } x=a) \rightarrow\left(a!=1^{*}(x!) \text { and } x>=0\right)
$$

It holds because $\mathrm{x}=\mathrm{a} \rightarrow \mathrm{x}$ ! $=\mathrm{a}$ ! .

- So, we have that a! = fact * ( $x$ !) and $x>=0$ holds at the start of the while loop!

- We look into the loop body:

$$
\text { . (fact := fact }{ }^{*} x \text {; } x \text { := x - 1) }
$$

- By the sequencing rule, we need to show 2 things: - By the assignment rule, show

$$
\begin{gathered}
\{(\mathrm{a}!=\text { fact * }(\mathrm{x}!)) \text { and } x>=0 \text { and } x>0\} \\
\text { fact }=\text { fact * } x \\
\{Q\}
\end{gathered}
$$

## - By the assignment rule, show

\{Q\}

$$
x:=x-1
$$

12/4/2018

$$
\left\{\left(\mathrm{a}!=\text { fact }^{*}(\mathbf{x}!)\right) \text { and } \mathbf{x}>=0\right\}
$$

## Example

- (Part 3 - Assignment) Suffices to show that

$$
a!=\text { fact * }(x!) \text { and } x>=0
$$

holds before the while loop is entered

- (Part 4 - While Loop) And that if

$$
(\mathrm{a}!=\text { fact * }(\mathrm{x}!)) \text { and } \mathrm{x}>=0 \text { and } \mathrm{x}>0
$$

holds before we execute the body of the loop, then

$$
(\mathrm{a}!=\text { fact * }(\mathrm{x}!)) \text { and } \mathrm{x}>=0
$$

holds after we execute the body (part 4)

## Example

To prove (Part 4):

$$
\begin{aligned}
& \{\mathrm{a}!=\text { fact * }(\mathrm{x}!) \text { and } \mathrm{x}>=0\} \\
& \text { while } \mathrm{x}>0 \text { do } \\
& \quad \text { (fact := fact * } \mathrm{x} \text {; x := x-1) } \\
& \text { od } \\
& \{\mathrm{a!}=\text { fact * }(\mathrm{x}!) \text { and } \mathrm{x}>=0 \text { and not }(\mathrm{x}>0)\}
\end{aligned}
$$

we need to show that (a! = fact * (x!)) and $x>=0$ is a loop invariant

- We will use assignment rule, sequencing rule and precondition strengthening rule

12/4/2018
46

## Example

- We look into the loop body:

The Assignment Rule
$\{P[\mathrm{e} / \mathrm{x}]\} \mathrm{x}:=\mathrm{e}\{\mathrm{P}\}$
. (fact $:=$ fact $^{*} x ; x$ := x - 1)

- By the sequencing rule, we need to show 2 things:
- By the assignment rule, show

$$
\begin{gathered}
\{(\text { a! }=\text { fact * }(x!)) \text { and } x>=0 \text { and } x>0\} \\
\text { fact }=\text { fact * } x
\end{gathered}
$$

\{Q\}

- From the assignment rule, we know:

$$
\begin{gathered}
\left\{\left(\mathrm{a}!=\text { fact }^{*}((\mathrm{x}-1)!)\right) \text { and } \mathrm{x}-1>=0\right\} \\
\mathrm{x}:=\mathrm{x}-1
\end{gathered}
$$

12/4/2018

## Example

- We look into the loop body:
- (fact := fact * $x$; $x$ := $x$ - 1 )
- By the sequencing rule, we need to show 2 things:
- By the assignment rule, show

$$
\begin{aligned}
& \left\{\left(a!=\text { fact }^{*}(x!)\right) \text { and } x>=0 \text { and } x>0\right\} \\
& \text { fact }=\text { fact }^{*} x \\
& \left\{\left(a!=\text { fact }^{*}((x-1)!)\right) \text { and } x-1>=0\right\}
\end{aligned}
$$

- From the assignment rule, we know:

$$
\begin{gathered}
\left\{\left(a!=\text { fact }^{*}((x-1)!)\right) \text { and } x-1>=0\right\} \\
x:=x-1 \\
\left\{\left(a!=\text { fact }^{*}(x!)\right) \text { and } x>=0\right\}
\end{gathered}
$$

12/4/2018

## Example

Second try, let us combine the two:

$$
P \equiv a!=\text { fact }^{*}(x!) \text { and } x>=0
$$

We need to show:

```
1. \(\{x>=0\) and \(x=a\}\)
    fact := 1;
    \(\{P\}\)
    while \(x>0\) do (fact := fact \(* x\); \(x:=x-1\) ) od
    \(\{P\) and not \(x>0\}\)
```

And
2. $P$ and not $x>0 \rightarrow$ fact $=a$ !

## Example

- We proved that $\left(\mathbf{a}!=\right.$ fact $\left.^{*}(\mathbf{x}!)\right)$ and $x>=0$ is the loop invariant
- We proved the sequence rule for the assignment and wile statements
- We applied postcondition weakening to prove the final predicate


## This finishes the proof!

$\{x>=0$ and $x=a\}$
fact := 1;
while $x>0$ do (fact $:=$ fact $* x ; x:=x-1$ ) od $\{$ fact $=a!\}$

Example
Precondition Strengthening
$\xrightarrow{P \rightarrow P^{\prime}\{P\} C(Q)} \mid$

- By the assignment rule, we have that

$$
\begin{gathered}
\left\{\left(\mathrm{a}!=\left(\text { fact }^{*} \text { x }\right)^{*}((\mathrm{x}-1)!)\right) \text { and } \mathrm{x}-1>=0\right\} \\
\text { fact }=\text { fact * } x \\
\left\{\left(\mathrm{a}!=\text { fact * }^{((x-1)!)) \text { and } x-1>=0\}}\right.\right.
\end{gathered}
$$

- By Precondition strengthening, it suffices to show that
$((\mathrm{a}!=$ fact * $(\mathrm{x}!))$ and $\mathrm{x}>=0$ and $\mathrm{x}>0) \rightarrow$
$\left(\left(\mathrm{a}!=\left(\text { fact }^{*} \mathrm{x}\right)^{*}((\mathrm{x}-1)!)\right)\right.$ and $\left.\mathrm{x}-1>=0\right)$

From algebra we know that fact * $x$ * $(x-1)!=$ fact * $x$ ! and $(x>0) \rightarrow x-1>=0$ since $x$ is an integer, so $\left\{\left(a!=\right.\right.$ fact $\left.^{*}(x!)\right)$ and $x>=0$ and $\left.x>0\right\} \rightarrow$ $\left\{\left(a!=(f a c t * x)^{*}((x-1)!)\right)\right.$ and $\left.x-1>=0\right\}$
12/4/2018

## Example

- For Part 2, we need
$(a!=$ fact * $(x!)$ and $x>=0$ and not $(x>0)) \rightarrow($ fact $=a!)$

Since we know $(x>=0$ and not $(x>0)) \rightarrow(x=0)$ so

$$
\text { fact * }(x!)=\text { fact * }(0!)
$$

And since from algebra we know that $0!=1$,

$$
\text { fact * }(0)!=\text { fact * } 1=\text { fact }
$$

- Therefore, we can prove:
(a! = fact * $(x!)$ and $x>=0$ and not $(x>0)) \rightarrow($ fact $=a!)$
12/4/2018
52

思

