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BNF Grammars

 Start with a set of characters, a,b,c,…
 We call these terminals

 Add a set of different characters, 
X,Y,Z,…
 We call these nonterminals

 One special nonterminal S called start
symbol
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BNF Grammars

 BNF rules (aka productions) have form

X ::= y

where X is any nonterminal and y is a string 
of terminals and nonterminals

 BNF grammar is a set of BNF rules such that 
every nonterminal appears on the left of 
some rule
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Sample Grammar

 Terminals: 0 1 + ( )
 Nonterminals: <Sum>
 Start symbol = <Sum>

 <Sum> ::= 0 
 <Sum >::= 1 
 <Sum> ::= <Sum> + <Sum>
 <Sum> ::= (<Sum>)
 Can be abbreviated as
<Sum> ::= 0 | 1 

| <Sum> + <Sum> | ( )
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BNF Deriviations

 Given rules 

X::= yZw and Z::=v

we may replace Z by v to say

X => yZw => yvw 

 Sequence of such replacements called 
derivation

 Derivation called right-most if always 
replace the right-most non-terminal
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BNF Semantics

 The meaning of a BNF grammar is the 
set of all strings consisting only of 
terminals that can be derived from the 
Start symbol
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BNF Derivations

 Start with the start symbol:

<Sum> =>

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)



10/30/2018 8

BNF Derivations

 Pick a non-terminal

<Sum> =>

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a rule and substitute:

 <Sum> ::= ( <Sum> )

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a rule and substitute:

 <Sum >::= 1

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a rule and substitute:

 <Sum >::= 0

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) + 0

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) + 0

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 Pick a rule and substitute

 <Sum> ::= 0

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) 0

=> ( 0 + 1 ) + 0

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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 ( 0 + 1 ) + 0  is generated by grammar

<Sum> => <Sum> + <Sum >

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum> 

=> ( <Sum> + 1 ) + <Sum>

=> ( <Sum> + 1 ) + 0

=> ( 0 + 1 ) + 0

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)
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Regular Grammars

 Subclass of BNF

 Only rules of form 
<nonterminal>::=<terminal><nonterminal> or 
<nonterminal>::=<terminal> or 
<nonterminal>::=ε

 Defines same class of languages as regular 
expressions

 Important for writing lexers (programs that 
convert strings of characters into strings of 
tokens)
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Extended BNF Grammars

 Alternatives: allow rules of form X::=y | z

 Abbreviates  X::= y, X::= z

 Options:  X::=y [v] z

 Abbreviates X::=yvz, X::=yz

 Repetition: X::=y {v}*z

 Can be eliminated by adding new 
nonterminal V and rules 
X::=yz, X::=yVz, 
V::=v, V::=vV
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 Graphical representation of derivation

 Each node labeled with either non-terminal or 

terminal

 If node is labeled with a terminal, then it is a leaf 

(no sub-trees)

 If node is labeled with a non-terminal, then it has 

one branch for each character in the right-hand 

side of rule used to substitute for it

Parse Trees
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Example

 Consider grammar:

<exp>  ::= <factor>

|  <factor> +  <factor>

<factor>  ::=  <bin> 

|   <bin>  *  <exp>

<bin> ::=  0  | 1

 Problem: Build parse tree for  1 * 1 + 0 as 
an <exp>
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Example cont.

 1 * 1 + 0:    <exp>

<exp> is the start symbol for this parse 
tree
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Example cont.

 1 * 1 + 0:    <exp>

<factor>

Use rule: <exp> ::=  <factor>
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Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *         <exp>

Use rule:  <factor> ::=  <bin> *  <exp>
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Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *         <exp>

1         <factor>  +    <factor>

Use rules:  <bin> ::= 1   and

<exp> ::= <factor>  + <factor>
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Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *         <exp>

1         <factor>  +    <factor>

<bin>            <bin>

Use rule:  <factor> ::= <bin>
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Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *         <exp>

1         <factor>  +    <factor>

<bin>            <bin>

1                   0

Use rules:  <bin> ::= 1 | 0
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Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *         <exp>

1         <factor>  +    <factor>

<bin>            <bin>

1                   0

Fringe of tree is string generated by grammar
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Parse Tree Data Structures

 Parse trees may be represented by OCaml 
datatypes

 One datatype for each nonterminal

 One constructor for each rule

 Defined as mutually recursive collection of 
datatype declarations
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Example

 Recall grammar:

<exp>    ::= <factor> | <factor> + <factor>
<factor> ::=  <bin> |  <bin> * <exp>
<bin>    ::=  0  | 1

 Represent as Abstract Data Types: 

 type exp = Factor2Exp of factor
| Plus of factor * factor

and factor  = Bin2Factor of bin 
| Mult of bin * exp

and bin     = Zero | One
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Example cont.

 1 * 1 + 0:    <exp>

<factor>

<bin>      *        <exp>

1         <factor> +    <factor>

<bin>            <bin>

1                   0
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Example cont.

 Can be represented as

Factor2Exp

(Mult(One,  

Plus(Bin2Factor One,

Bin2Factor Zero)))
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Example cont.

 1 * 1 + 0:  Factor2Exp

Mult

One               <Plus>

<Bin2Factor>  <Bin2Factor>

<One>            <Zero>
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Ambiguous Grammars and Languages

 A BNF grammar is ambiguous if its language 
contains strings for which there is more than 
one parse tree

 If all BNFs for a language are ambiguous 
then the language is inherently ambiguous
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Example: Ambiguous Grammar

 0 + 1 + 0

<Sum>                 <Sum>

<Sum> + <Sum>  <Sum> + <Sum>

<Sum> + <Sum>  0         0   <Sum> + <Sum>

0             1                            1             0
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Example

 What is the result for:

3 + 4 * 5 + 6
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Example

 What is the result for:

3 + 4 * 5 + 6

 Possible answers:

 41 = ((3 + 4) * 5) + 6

 47 = 3 + (4 * (5 + 6))

 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)

 77 = (3 + 4) * (5 + 6)
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Example

 What is the value of:

7 – 5 – 2
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Example

 What is the value of:

7 – 5 – 2

 Possible answers:

 In Pascal, C++, SML assoc. left

7 – 5 – 2 = (7 – 5) – 2 = 0

 In APL, associate to right

7 – 5 – 2 = 7 – (5 – 2) = 4
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Two Major Sources of Ambiguity

 Lack of determination of operator 
precedence

 Lack of determination of operator 
associativity

 Not the only sources of ambiguity



Disambiguating a Grammar

 Given ambiguous grammar G, with start 
symbol S, find a grammar G’ with same start 
symbol, such that

language of G = language of G’

 Not always possible

 No algorithm in general
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Disambiguating a Grammar

 Idea: Each non-terminal represents all 
strings having some property

 Identify these properties (often in terms of 
things that can’t happen)

 Use these properties to inductively 
guarantee every string in language has a 
unique parse
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Steps to Grammar Disambiguation

 Identify the rules and a smallest use that display 
ambiguity

 Decide which parse to keep; why should others be 
thrown out?

 What syntactic restrictions on subexpressions are 
needed to throw out the bad (while keeping the 
good)?

 Add a new non-terminal and rules to describe this set 
of restricted subexpressions (called stratifying, or 
refactoring)

 Replace old rules to use new non-terminals
 Rinse and repeat
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Example

 Ambiguous grammar:
<exp>  ::= 0  | 1  | <exp> +  <exp>

|  <exp>  *  <exp>

 String with more then one parse:
0 + 1 + 0
1 * 1 + 1

 Source of ambiguity: associativity and 
precedence
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How to Enforce Associativity

 Have at most one recursive call per 
production

 When two or more recursive calls would 
be natural leave right-most one for 
right assoicativity, left-most one for left 
assoiciativity



10/4/07 49

Example

 <Sum> ::= 0 | 1 | <Sum> + <Sum>

| (<Sum>)

 Becomes

 <Sum> ::= <Num> | <Num> + <Sum>

 <Num> ::= 0 | 1 | (<Sum>)



10/4/07 50

Operator Precedence

 Operators of highest precedence 
evaluated first (bind more tightly).

For instance multiplication (*) has higher 
precedence than addition (+)

 Needs to be reflected in grammar
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Predence in Grammar

 Higher precedence translates to longer derivation 
chain

 Example:

<exp> ::= 0 | 1  | <exp> + <exp> | <exp> * <exp>

 Becomes

<exp> ::= <mult_exp>| <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id> 
<id> ::= 0 | 1 



Disambiguating a Grammar

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp> 

 Want a to have higher precedence than b, which in 
turn has higher precedence than m, and such that 
m associates to the left. 
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Disambiguating a Grammar

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp> 

 Want a to have higher precedence than b, which in 
turn has higher precedence than m, and such that 
m associates to the left. 

 <exp> ::= <exp> m <not_m> | <not_m> 

 <not_m> ::= b <not_m> | <not_b_m>

 <not_b_m> ::= <not_b_m>a | 0 | 1 
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Disambiguating a Grammar – Take 2

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp> 

 Want b to have higher precedence than m, which 
in turn has higher precedence than a, and such 
that m associates to the right. 
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Disambiguating a Grammar – Take 2

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp> 

 Want b has higher precedence than m, which in 
turn has higher precedence than a, and such that 
m associates to the right. 

 <exp> ::=

<no_a_m> | <no_m> m <no_a>| <exp> a

 <no_a> ::= <no_a_m> | <no_a_m> m <no_a>

 <no_m> ::= <no_a_m> | <exp> a

 <no_a_m> ::= b <no_a_m> | 0 | 1
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Disambiguating a Grammar – Take 3

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp> 

 Want a has higher precedence than m, which in 
turn has higher precedence than b, and such that 
m associates to the right. 

 For you…
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How do we disambiguate in this case?

 Our old friend:

<exp> ::= <factor>

|  <factor> +  <factor>

<factor>  ::=  <bin> 

|   <bin>  *  <exp>

<bin> ::=  0  | 1

 How do we make multiplication have higher 
precedence than addition?
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Moving On With Richer Expressions

 How do we extend the grammar to support 
nested additions, e.g., 1 * (0 + 1)

<exp>      ::= <factor>

|  <factor> +  <exp>

<factor>   ::=  <bin> 

|   <bin>  *  <factor>

<bin>       ::=  0  | 1
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Moving On With Richer Expressions

 How do we extend the grammar to support 
nested additions, e.g., 1 * (0 + 1)

<exp>      ::= <factor>

|  <factor> +  <exp>

<factor>   ::=  <bin> 

|   <bin>  *  <factor>

<bin>       ::=  0  | 1 | ( <exp> )
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Moving On With Richer Expressions

 How do we extend the grammar to support 
other operations, subtraction and division?

<exp>      ::= <factor>

|  <factor> +  <exp> | <factor> - <exp>

<factor>   ::=  <bin> 

|   <bin>  *  <exp> | <bin> / <factor>

<bin>       ::=  0  | 1 | ( <exp> )



Disambiguating Grammars – Dangling Else

 stmt ::= ...

| if ( expr ) stmt

| if ( expr ) stmt else stmt

 How can we parse 

if (e1) if (e2) s1 else s2   ? 
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Disambiguating Grammars – Dangling Else

 Try: let us try to differentiate if we have if inside the 
then branch or not….

 stmt = open_stmt | closed_stmt

 open_stmt ::= if ( expr ) stmt

| if ( expr ) closed_stmt else open_stmt

 closed_stmt ::= non_if_statement

| if (expr) closed_stmt else closed_stmt

 How can we parse if (e1) if (e2) s1 else s2  now ? 
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Disambiguating Grammars – Overlapping

 seq =  | may_word  | word seq

 may_word =  | “word”

 How do  you parse “word”? And ?

 How do you fix it? 

10/30/2018 63



How do you know you have ambiguity? 

 The Ocaml parser generator (ocamlyacc) will report 
ambiguity in the grammar as “conflicts”:

 Shift/reduce: Usually caused by lack of 
associativity or precedence information in grammar

 Reduce/reduce: can’t decide between two 
different rules to reduce by; Not always clear what 
the problem is, but often right-hand side of one 
production is the suffix of another

 We will explain what these conflicts mean next time!
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Parser Code

 Ocamlyacc is a parser generator for Ocaml

 Similar generators exist for other languages

 Search under: Yacc, Bison, Menhir… 

 Another family: Antlr

 Input: high level specification (<grammar>.mly file)

 Output: tokens (<grammar>.mli) and generated 

parser (<grammar>.ml)

 <grammar>.ml defines a parsing function per entry point

 Parsing function takes a lexing function (lexer buffer to 

token) and a lexer buffer as arguments 

 Returns semantic attribute of corresponding entry point
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Ocamlyacc Input 

 <grammar>.mly File format:

%{

<header>

%}

<declarations>

%%

<rules>

%%

<trailer>
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Ocamlyacc <header>

 Contains arbitrary Ocaml code

 Typically used to give types and 
functions needed for the semantic 
actions of rules and to give specialized 
error recovery

 May be omitted

 <trailer> similar.  Possibly used to call 
parser
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Ocamlyacc Input 

 <grammar>.mly File format:

%{

<header>

%}

<declarations>

%%

<rules>

%%

<trailer>
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Ocamlyacc <declarations>

 %token symbol … symbol
Declare given symbols as tokens

 %token <type> symbol … symbol

 Declare given symbols as token constructors, 
taking an argument of type <type>

 %start symbol … symbol
Declare given symbols as entry points; functions of 
same names in <grammar>.ml 
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Ocamlyacc <declarations>

 %type <type> symbol … symbol

Specify type of attributes for given symbols. 
Mandatory for start symbols

 %left symbol … symbol
 %right symbol … symbol
 %nonassoc symbol … symbol

Associate precedence and associativity to given 
symbols. Same line,same precedence; earlier line, 
lower precedence (broadest scope)
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Ocamlyacc Input 

 <grammar>.mly File format:

%{

<header>

%}

<declarations>

%%

<rules>

%%

<trailer>
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Ocamlyacc <rules>

 nonterminal :

symbol ... symbol { semantic_action }

| ...

| symbol ... symbol { semantic_action }

;

 Semantic actions are arbitrary Ocaml 
expressions

 Must be of same type as declared (or inferred) 
for nonterminal

 Access semantic attributes (values) of symbols 
by position: $1 for first symbol, $2 to second …
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Example - Grammar

A slight variation of what we’ve seen earlier:

Expr    ::= Term | Term + Expr | Term – Expr

Term   ::= Factor | Factor * Term | Factor / Term

Factor ::= Id | ( Expr ) 
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Example - Base types

(* File: expr.ml *)
type expr =

Term_as_Expr of term
| Plus_Expr of (term * expr)
| Minus_Expr of (term * expr)

and term =
Factor_as_Term of factor 

| Mult_Term of (factor * term)
| Div_Term of (factor * term)

and factor =
Id_as_Factor of string

| Parenthesized_Expr_as_Factor of expr
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Example - Lexer

{ open Exprparse }

let numeric = ['0' - '9']
let letter =['a' - 'z' 'A' - 'Z']
rule token = parse
| "+" {Plus_token}
| "-"  {Minus_token}
| "*"  {Times_token}
| "/"  {Divide_token}
| "("  {Left_parenthesis}
| ")"  {Right_parenthesis}
| letter (letter|numeric|"_")* as id {Id_token id}
| [' ' '\t' '\n'] {token lexbuf}
| eof {EOL}
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Example - Parser (exprparse.mly)

%{ 

open Expr

%}

%token <string> Id_token

%token Left_parenthesis Right_parenthesis

%token Times_token Divide_token

%token Plus_token Minus_token

%token EOL

%start main

%type <expr> main

%%
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Example - Parser (exprparse.mly)

expr:

term
{ Term_as_Expr $1 }

| term Plus_token expr
{ Plus_Expr ($1, $3) }

| term Minus_token expr
{ Minus_Expr ($1, $3) }
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Example - Parser (exprparse.mly)

term:

factor
{ Factor_as_Term $1 }

| factor Times_token term
{ Mult_Term ($1, $3) }

| factor Divide_token term
{ Div_Term ($1, $3) }
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Example - Parser (exprparse.mly)

factor:

Id_token
{ Id_as_Factor $1 }

| Left_parenthesis expr Right_parenthesis
{Parenthesized_Expr_as_Factor $2 }

main:

| expr EOL               
{ $1 }

Recall, we previously defined: 
%start main
%type <expr> main



 Call: 

 $ ocamlyacc options exprparse.mly

 Get:

 Tokens: exprparse.mli (can be used in lexer)

 Parser: exprparse.ml 
(included in the rest of code)
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Example - Using Parser

# #use "expr.ml";;
…
# #use "exprparse.ml";;
…
# #use "exprlex.ml";;
…

# let test s =

let lexbuf = Lexing.from_string (s ^ "\n") in

main token lexbuf;;
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Example - Using Parser

# test "a + b";;

- : expr =

Plus_Expr

(Factor_as_Term (Id_as_Factor "a"),

Term_as_Expr

(Factor_as_Term (Id_as_Factor "b"))

)



11/1/2018 83

LR Parsing

General plan:

 Read tokens left to right (L)

 Create a rightmost derivation (R)

How is this possible?

 Start at the bottom (left) and work your way up

 Last step has only one non-terminal to be 
replaced so is right-most

 Working backwards, replace mixed strings by 
non-terminals

 Always proceed so that there are no non-
terminals to the right of the string to be replaced
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Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

(         0        +     1               )    +       0
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(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>       

<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>       

<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

<Sum>       

<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

<Sum>       

<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

<Sum>       

<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>                                 

<Sum>

<Sum>       

<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

<Sum>                                 

<Sum>

<Sum>       

<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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<Sum>

<Sum>                                 

<Sum>

<Sum>       

<Sum>

<Sum>

(         0        +     1               )    +       0

Example: <Sum> ::= 0 | 1 | (<Sum>) 
| <Sum> + <Sum>
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LR Parsing Tables

 Build a pair of tables, Action and Goto, from 
the grammar

 This is the hardest part, we omit here

 Rows labeled by states

 For Action, columns labeled by terminals 
and “end-of-tokens” marker
 (more generally strings of terminals of fixed 

length)

 For Goto, columns labeled by non-
terminals
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Action and Goto Tables

 Given a state and the next input, Action 
table says either

 shift and go to state n, or

 reduce by production k (explained in a 
bit)

 accept or error

 Given a state and a non-terminal, Goto table 
says 

 go to state m
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LR(i) Parsing Algorithm

 Based on push-down automata

 Uses states and transitions (as recorded 

in Action and Goto tables)

 Uses a stack containing states, 

terminals and non-terminals
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LR(i) Parsing Algorithm

0.  Insure token stream ends in special “end-

of-tokens” symbol

1. Start in state 1 with an empty stack

2. Push state(1) onto stack

3. Look at next i tokens from token stream 

(toks) (don’t remove yet)

4. If top symbol on stack is state(n), look 

up action in  Action table at (n, toks)
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LR(i) Parsing Algorithm

5. If action = shift m,

a) Remove the top token from token 
stream and push it onto the stack

b) Push state(m) onto stack

c) Go to step 3
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LR(i) Parsing Algorithm

6. If action = reduce k where production k is 
E ::= u

a) Remove 2 * length(u) symbols from 
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m), 
look up new state p in Goto(m,E)

c) Push E onto the stack, then push 
state(p) onto the stack

d) Go to step 3
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LR(i) Parsing Algorithm

7. If action = accept

 Stop parsing, return success

8. If action = error,

 Stop parsing, return failure
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=    ( 0 + 1 ) + 0 shift
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LR(i) Parsing Algorithm

0.  Insure token stream ends in special “end-

of-tokens” symbol

1. Start in state 1 with an empty stack

2. Push state(1) onto stack

3. Look at next i tokens from token stream 

(toks) (don’t remove yet)

4. If top symbol on stack is state(n), look 

up action in  Action table at (n, toks)
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=    ( 0 + 1 ) + 0 shift
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LR(i) Parsing Algorithm

5. If action = shift m,

a) Remove the top token from token 
stream and push it onto the stack

b) Push state(m) onto stack

c) Go to step 3
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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LR(i) Parsing Algorithm

6. If action = reduce k where production k is 
E ::= u

a) Remove 2 * length(u) symbols from 
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m), 
look up new state p in Goto(m,E)

c) Push E onto the stack, then push 
state(p) onto the stack

d) Go to step 3
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=> ( <Sum> + <Sum>  ) + 0     reduce
=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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LR(i) Parsing Algorithm

6. If action = reduce k where production k is 
E ::= u

a) Remove 2 * length(u) symbols from 
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m), 
look up new state p in Goto(m,E)

c) Push E onto the stack, then push 
state(p) onto the stack

d) Go to step 3
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=   ( <Sum> ) + 0 shift    
=> ( <Sum> + <Sum>  ) + 0     reduce
=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=> ( <Sum> )  + 0 reduce 
=   ( <Sum> ) + 0 shift    
=> ( <Sum> + <Sum>  ) + 0     reduce
=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=   <Sum>  + 0 shift
=> ( <Sum> )  + 0 reduce 
=   ( <Sum> ) + 0 shift    
=> ( <Sum> + <Sum>  ) + 0     reduce
=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>

=   <Sum> +  0 shift
=   <Sum>  + 0 shift
=> ( <Sum> )  + 0 reduce 
=   ( <Sum> ) + 0 shift    
=> ( <Sum> + <Sum>  ) + 0     reduce
=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  =>
=> <Sum> + 0  reduce
=   <Sum> +  0 shift
=   <Sum>  + 0 shift
=> ( <Sum> )  + 0 reduce 
=   ( <Sum> ) + 0 shift    
=> ( <Sum> + <Sum>  ) + 0     reduce
=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  => <Sum> + <Sum >  reduce
=> <Sum> + 0  reduce
=   <Sum> +  0 shift
=   <Sum>  + 0 shift
=> ( <Sum> )  + 0 reduce 
=   ( <Sum> ) + 0 shift    
=> ( <Sum> + <Sum>  ) + 0     reduce
=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

<Sum>  => <Sum> + <Sum >  reduce
=> <Sum> + 0  reduce
=   <Sum> +  0 shift
=   <Sum>  + 0 shift
=> ( <Sum> )  + 0 reduce 
=   ( <Sum> ) + 0 shift    
=> ( <Sum> + <Sum>  ) + 0     reduce
=> ( <Sum> + 1  ) + 0 reduce
=   ( <Sum> +  1 ) + 0 shift
=   ( <Sum>  + 1 ) + 0 shift
=> ( 0  + 1 ) + 0 reduce                          
=   ( 0 + 1 ) + 0 shift
=    ( 0 + 1 ) + 0 shift
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LR(i) Parsing Algorithm

7. If action = accept

 Stop parsing, return success

8. If action = error,

 Stop parsing, return failure
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LR(i) Parsing Algorithm

 Based on push-down automata

 Uses states and transitions (as recorded 

in Action and Goto tables)

 Uses a stack containing states, 

terminals and non-terminals
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LR(i) Parsing Algorithm

0.  Insure token stream ends in special “end-

of-tokens” symbol

1. Start in state 1 with an empty stack

2. Push state(1) onto stack

3. Look at next i tokens from token stream 

(toks) (don’t remove yet)

4. If top symbol on stack is state(n), look 

up action in  Action table at (n, toks)
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LR(i) Parsing Algorithm

5. If action = shift m,

a) Remove the top token from token 
stream and push it onto the stack

b) Push state(m) onto stack

c) Go to step 3
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LR(i) Parsing Algorithm

6. If action = reduce k where production k is 
E ::= u

a) Remove 2 * length(u) symbols from 
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m), 
look up new state p in Goto(m,E)

c) Push E onto the stack, then push 
state(p) onto the stack

d) Go to step 3
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LR(i) Parsing Algorithm

7. If action = accept

 Stop parsing, return success

8. If action = error,

 Stop parsing, return failure
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Adding Synthesized Attributes

 Add to each reduce a rule for calculating 
the new synthesized attribute from the 
component attributes

 Add to each non-terminal pushed onto the 
stack, the attribute calculated for it

 When performing a reduce,
 gather the recorded attributes from each non-

terminal popped from stack

 Compute new attribute for non-terminal pushed 
onto stack
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Shift-Reduce Conflicts

 Problem: can’t decide whether the 

action for a state and input character 

should be shift or reduce

 Caused by ambiguity in grammar

 Usually caused by lack of associativity 

or precedence information in grammar



10/30/2018 133

Example: <Sum> = 0 | 1 | (<Sum>) 
| <Sum> + <Sum>

 0 + 1 + 0 shift
->  0  + 1 + 0 reduce 
-> <Sum>  + 1 + 0 shift
-> <Sum> +  1 + 0 shift
-> <Sum> + 1  + 0 reduce
-> <Sum> + <Sum>  + 0
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Example - cont

 Problem: shift or reduce?

 You can shift-shift-reduce-reduce or   
reduce-shift-shift-reduce

 Shift first - right associative

 Reduce first- left associative
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Reduce - Reduce Conflicts

 Problem: can’t decide between two 
different rules to reduce by

 Again caused by ambiguity in grammar

 Symptom: RHS of one production 
suffix of another

 Requires examining grammar and 
rewriting it

 Harder to solve than shift-reduce errors
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Example

 S ::= A | aB     A ::= abc       B ::= bc

 abc shift
a  bc shift
ab  c shift
abc 

 Problem: reduce by B ::= bc then by     S 
::= aB, or by A::= abc then S::A?


