
10/30/2018 1

Programming Languages and
Compilers (CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based on slides by Elsa Gunter, which were inspired by earlier

slides by Mattox Beckman, Vikram Adve, and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

10/30/2018 2

BNF Grammars

 Start with a set of characters, a,b,c,…
 We call these terminals

 Add a set of different characters,
X,Y,Z,…
 We call these nonterminals

 One special nonterminal S called start
symbol

10/30/2018 3

BNF Grammars

 BNF rules (aka productions) have form

X ::= y

where X is any nonterminal and y is a string
of terminals and nonterminals

 BNF grammar is a set of BNF rules such that
every nonterminal appears on the left of
some rule

10/30/2018 4

Sample Grammar

 Terminals: 0 1 + ()
 Nonterminals: <Sum>
 Start symbol = <Sum>

 <Sum> ::= 0
 <Sum >::= 1
 <Sum> ::= <Sum> + <Sum>
 <Sum> ::= (<Sum>)
 Can be abbreviated as
<Sum> ::= 0 | 1

| <Sum> + <Sum> | ()

10/30/2018 5

BNF Deriviations

 Given rules

X::= yZw and Z::=v

we may replace Z by v to say

X => yZw => yvw

 Sequence of such replacements called
derivation

 Derivation called right-most if always
replace the right-most non-terminal

10/30/2018 6

BNF Semantics

 The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

10/30/2018 7

BNF Derivations

 Start with the start symbol:

<Sum> =>

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 8

BNF Derivations

 Pick a non-terminal

<Sum> =>

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 9

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 10

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 11

 Pick a rule and substitute:

 <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 12

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 13

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 14

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 15

 Pick a rule and substitute:

 <Sum >::= 1

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 16

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 17

 Pick a rule and substitute:

 <Sum >::= 0

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 18

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 19

 Pick a rule and substitute

 <Sum> ::= 0

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) 0

=> (0 + 1) + 0

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 20

 (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0

=> (0 + 1) + 0

BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

10/30/2018 21

Regular Grammars

 Subclass of BNF

 Only rules of form
<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=ε

 Defines same class of languages as regular
expressions

 Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

10/30/2018 22

Extended BNF Grammars

 Alternatives: allow rules of form X::=y | z

 Abbreviates X::= y, X::= z

 Options: X::=y [v] z

 Abbreviates X::=yvz, X::=yz

 Repetition: X::=y {v}*z

 Can be eliminated by adding new
nonterminal V and rules
X::=yz, X::=yVz,
V::=v, V::=vV

10/30/2018 23

 Graphical representation of derivation

 Each node labeled with either non-terminal or

terminal

 If node is labeled with a terminal, then it is a leaf

(no sub-trees)

 If node is labeled with a non-terminal, then it has

one branch for each character in the right-hand

side of rule used to substitute for it

Parse Trees

10/30/2018 24

Example

 Consider grammar:

<exp> ::= <factor>

| <factor> + <factor>

<factor> ::= <bin>

| <bin> * <exp>

<bin> ::= 0 | 1

 Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

10/30/2018 25

Example cont.

 1 * 1 + 0: <exp>

<exp> is the start symbol for this parse
tree

10/30/2018 26

Example cont.

 1 * 1 + 0: <exp>

<factor>

Use rule: <exp> ::= <factor>

10/30/2018 27

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

10/30/2018 28

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

Use rules: <bin> ::= 1 and

<exp> ::= <factor> + <factor>

10/30/2018 29

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

<bin> <bin>

Use rule: <factor> ::= <bin>

10/30/2018 30

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

<bin> <bin>

1 0

Use rules: <bin> ::= 1 | 0

10/30/2018 31

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

<bin> <bin>

1 0

Fringe of tree is string generated by grammar

10/30/2018 32

Parse Tree Data Structures

 Parse trees may be represented by OCaml
datatypes

 One datatype for each nonterminal

 One constructor for each rule

 Defined as mutually recursive collection of
datatype declarations

10/30/2018 33

Example

 Recall grammar:

<exp> ::= <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> ::= 0 | 1

 Represent as Abstract Data Types:

 type exp = Factor2Exp of factor
| Plus of factor * factor

and factor = Bin2Factor of bin
| Mult of bin * exp

and bin = Zero | One

10/30/2018 34

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

<bin> <bin>

1 0

10/30/2018 35

Example cont.

 Can be represented as

Factor2Exp

(Mult(One,

Plus(Bin2Factor One,

Bin2Factor Zero)))

10/30/2018 36

Example cont.

 1 * 1 + 0: Factor2Exp

Mult

One <Plus>

<Bin2Factor> <Bin2Factor>

<One> <Zero>

10/30/2018 37

Ambiguous Grammars and Languages

 A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

 If all BNFs for a language are ambiguous
then the language is inherently ambiguous

10/30/2018 38

Example: Ambiguous Grammar

 0 + 1 + 0

<Sum> <Sum>

<Sum> + <Sum> <Sum> + <Sum>

<Sum> + <Sum> 0 0 <Sum> + <Sum>

0 1 1 0

10/30/2018 39

Example

 What is the result for:

3 + 4 * 5 + 6

10/30/2018 40

Example

 What is the result for:

3 + 4 * 5 + 6

 Possible answers:

 41 = ((3 + 4) * 5) + 6

 47 = 3 + (4 * (5 + 6))

 29 = (3 + (4 * 5)) + 6 = 3 + ((4 * 5) + 6)

 77 = (3 + 4) * (5 + 6)

10/30/2018 41

Example

 What is the value of:

7 – 5 – 2

10/30/2018 42

Example

 What is the value of:

7 – 5 – 2

 Possible answers:

 In Pascal, C++, SML assoc. left

7 – 5 – 2 = (7 – 5) – 2 = 0

 In APL, associate to right

7 – 5 – 2 = 7 – (5 – 2) = 4

10/30/2018 43

Two Major Sources of Ambiguity

 Lack of determination of operator
precedence

 Lack of determination of operator
associativity

 Not the only sources of ambiguity

Disambiguating a Grammar

 Given ambiguous grammar G, with start
symbol S, find a grammar G’ with same start
symbol, such that

language of G = language of G’

 Not always possible

 No algorithm in general

10/30/2018 44

Disambiguating a Grammar

 Idea: Each non-terminal represents all
strings having some property

 Identify these properties (often in terms of
things that can’t happen)

 Use these properties to inductively
guarantee every string in language has a
unique parse

10/30/2018 45

Steps to Grammar Disambiguation

 Identify the rules and a smallest use that display
ambiguity

 Decide which parse to keep; why should others be
thrown out?

 What syntactic restrictions on subexpressions are
needed to throw out the bad (while keeping the
good)?

 Add a new non-terminal and rules to describe this set
of restricted subexpressions (called stratifying, or
refactoring)

 Replace old rules to use new non-terminals
 Rinse and repeat

10/30/2018 46

10/30/2018 47

Example

 Ambiguous grammar:
<exp> ::= 0 | 1 | <exp> + <exp>

| <exp> * <exp>

 String with more then one parse:
0 + 1 + 0
1 * 1 + 1

 Source of ambiguity: associativity and
precedence

10/4/07 48

How to Enforce Associativity

 Have at most one recursive call per
production

 When two or more recursive calls would
be natural leave right-most one for
right assoicativity, left-most one for left
assoiciativity

10/4/07 49

Example

 <Sum> ::= 0 | 1 | <Sum> + <Sum>

| (<Sum>)

 Becomes

 <Sum> ::= <Num> | <Num> + <Sum>

 <Num> ::= 0 | 1 | (<Sum>)

10/4/07 50

Operator Precedence

 Operators of highest precedence
evaluated first (bind more tightly).

For instance multiplication (*) has higher
precedence than addition (+)

 Needs to be reflected in grammar

10/4/07 51

Predence in Grammar

 Higher precedence translates to longer derivation
chain

 Example:

<exp> ::= 0 | 1 | <exp> + <exp> | <exp> * <exp>

 Becomes

<exp> ::= <mult_exp>| <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>
<id> ::= 0 | 1

Disambiguating a Grammar

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp>

 Want a to have higher precedence than b, which in
turn has higher precedence than m, and such that
m associates to the left.

10/30/2018 52

Disambiguating a Grammar

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp>

 Want a to have higher precedence than b, which in
turn has higher precedence than m, and such that
m associates to the left.

 <exp> ::= <exp> m <not_m> | <not_m>

 <not_m> ::= b <not_m> | <not_b_m>

 <not_b_m> ::= <not_b_m>a | 0 | 1

10/30/2018 53

Disambiguating a Grammar – Take 2

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp>

 Want b to have higher precedence than m, which
in turn has higher precedence than a, and such
that m associates to the right.

10/30/2018 54

Disambiguating a Grammar – Take 2

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp>

 Want b has higher precedence than m, which in
turn has higher precedence than a, and such that
m associates to the right.

 <exp> ::=

<no_a_m> | <no_m> m <no_a>| <exp> a

 <no_a> ::= <no_a_m> | <no_a_m> m <no_a>

 <no_m> ::= <no_a_m> | <exp> a

 <no_a_m> ::= b <no_a_m> | 0 | 1

10/30/2018 55

Disambiguating a Grammar – Take 3

 <exp>::= 0|1| b<exp> | <exp>a

| <exp>m<exp>

 Want a has higher precedence than m, which in
turn has higher precedence than b, and such that
m associates to the right.

 For you…

11/1/2018 56

10/30/2018 57

How do we disambiguate in this case?

 Our old friend:

<exp> ::= <factor>

| <factor> + <factor>

<factor> ::= <bin>

| <bin> * <exp>

<bin> ::= 0 | 1

 How do we make multiplication have higher
precedence than addition?

11/1/2018 58

Moving On With Richer Expressions

 How do we extend the grammar to support
nested additions, e.g., 1 * (0 + 1)

<exp> ::= <factor>

| <factor> + <exp>

<factor> ::= <bin>

| <bin> * <factor>

<bin> ::= 0 | 1

11/1/2018 59

Moving On With Richer Expressions

 How do we extend the grammar to support
nested additions, e.g., 1 * (0 + 1)

<exp> ::= <factor>

| <factor> + <exp>

<factor> ::= <bin>

| <bin> * <factor>

<bin> ::= 0 | 1 | (<exp>)

11/1/2018 60

Moving On With Richer Expressions

 How do we extend the grammar to support
other operations, subtraction and division?

<exp> ::= <factor>

| <factor> + <exp> | <factor> - <exp>

<factor> ::= <bin>

| <bin> * <exp> | <bin> / <factor>

<bin> ::= 0 | 1 | (<exp>)

Disambiguating Grammars – Dangling Else

 stmt ::= ...

| if (expr) stmt

| if (expr) stmt else stmt

 How can we parse

if (e1) if (e2) s1 else s2 ?

10/30/2018 61

Disambiguating Grammars – Dangling Else

 Try: let us try to differentiate if we have if inside the
then branch or not….

 stmt = open_stmt | closed_stmt

 open_stmt ::= if (expr) stmt

| if (expr) closed_stmt else open_stmt

 closed_stmt ::= non_if_statement

| if (expr) closed_stmt else closed_stmt

 How can we parse if (e1) if (e2) s1 else s2 now ?

10/30/2018 62

Disambiguating Grammars – Overlapping

 seq = | may_word | word seq

 may_word = | “word”

 How do you parse “word”? And ?

 How do you fix it?

10/30/2018 63

How do you know you have ambiguity?

 The Ocaml parser generator (ocamlyacc) will report
ambiguity in the grammar as “conflicts”:

 Shift/reduce: Usually caused by lack of
associativity or precedence information in grammar

 Reduce/reduce: can’t decide between two
different rules to reduce by; Not always clear what
the problem is, but often right-hand side of one
production is the suffix of another

 We will explain what these conflicts mean next time!

10/30/2018 64

11/1/2018 65

Parser Code

 Ocamlyacc is a parser generator for Ocaml

 Similar generators exist for other languages

 Search under: Yacc, Bison, Menhir…

 Another family: Antlr

 Input: high level specification (<grammar>.mly file)

 Output: tokens (<grammar>.mli) and generated

parser (<grammar>.ml)

 <grammar>.ml defines a parsing function per entry point

 Parsing function takes a lexing function (lexer buffer to

token) and a lexer buffer as arguments

 Returns semantic attribute of corresponding entry point

11/1/2018 66

Ocamlyacc Input

 <grammar>.mly File format:

%{

<header>

%}

<declarations>

%%

<rules>

%%

<trailer>

10/30/2018 67

Ocamlyacc <header>

 Contains arbitrary Ocaml code

 Typically used to give types and
functions needed for the semantic
actions of rules and to give specialized
error recovery

 May be omitted

 <trailer> similar. Possibly used to call
parser

11/1/2018 68

Ocamlyacc Input

 <grammar>.mly File format:

%{

<header>

%}

<declarations>

%%

<rules>

%%

<trailer>

10/30/2018 69

Ocamlyacc <declarations>

 %token symbol … symbol
Declare given symbols as tokens

 %token <type> symbol … symbol

 Declare given symbols as token constructors,
taking an argument of type <type>

 %start symbol … symbol
Declare given symbols as entry points; functions of
same names in <grammar>.ml

10/30/2018 70

Ocamlyacc <declarations>

 %type <type> symbol … symbol

Specify type of attributes for given symbols.
Mandatory for start symbols

 %left symbol … symbol
 %right symbol … symbol
 %nonassoc symbol … symbol

Associate precedence and associativity to given
symbols. Same line,same precedence; earlier line,
lower precedence (broadest scope)

11/1/2018 71

Ocamlyacc Input

 <grammar>.mly File format:

%{

<header>

%}

<declarations>

%%

<rules>

%%

<trailer>

10/30/2018 72

Ocamlyacc <rules>

 nonterminal :

symbol ... symbol { semantic_action }

| ...

| symbol ... symbol { semantic_action }

;

 Semantic actions are arbitrary Ocaml
expressions

 Must be of same type as declared (or inferred)
for nonterminal

 Access semantic attributes (values) of symbols
by position: $1 for first symbol, $2 to second …

11/1/2018 73

Example - Grammar

A slight variation of what we’ve seen earlier:

Expr ::= Term | Term + Expr | Term – Expr

Term ::= Factor | Factor * Term | Factor / Term

Factor ::= Id | (Expr)

10/30/2018 74

Example - Base types

(* File: expr.ml *)
type expr =

Term_as_Expr of term
| Plus_Expr of (term * expr)
| Minus_Expr of (term * expr)

and term =
Factor_as_Term of factor

| Mult_Term of (factor * term)
| Div_Term of (factor * term)

and factor =
Id_as_Factor of string

| Parenthesized_Expr_as_Factor of expr

10/30/2018 75

Example - Lexer

{ open Exprparse }

let numeric = ['0' - '9']
let letter =['a' - 'z' 'A' - 'Z']
rule token = parse
| "+" {Plus_token}
| "-" {Minus_token}
| "*" {Times_token}
| "/" {Divide_token}
| "(" {Left_parenthesis}
| ")" {Right_parenthesis}
| letter (letter|numeric|"_")* as id {Id_token id}
| [' ' '\t' '\n'] {token lexbuf}
| eof {EOL}

10/30/2018 76

Example - Parser (exprparse.mly)

%{

open Expr

%}

%token <string> Id_token

%token Left_parenthesis Right_parenthesis

%token Times_token Divide_token

%token Plus_token Minus_token

%token EOL

%start main

%type <expr> main

%%

10/30/2018 77

Example - Parser (exprparse.mly)

expr:

term
{ Term_as_Expr $1 }

| term Plus_token expr
{ Plus_Expr ($1, $3) }

| term Minus_token expr
{ Minus_Expr ($1, $3) }

10/30/2018 78

Example - Parser (exprparse.mly)

term:

factor
{ Factor_as_Term $1 }

| factor Times_token term
{ Mult_Term ($1, $3) }

| factor Divide_token term
{ Div_Term ($1, $3) }

11/1/2018 79

Example - Parser (exprparse.mly)

factor:

Id_token
{ Id_as_Factor $1 }

| Left_parenthesis expr Right_parenthesis
{Parenthesized_Expr_as_Factor $2 }

main:

| expr EOL
{ $1 }

Recall, we previously defined:
%start main
%type <expr> main

 Call:

 $ ocamlyacc options exprparse.mly

 Get:

 Tokens: exprparse.mli (can be used in lexer)

 Parser: exprparse.ml
(included in the rest of code)

11/1/2018 80

10/30/2018 81

Example - Using Parser

#use "expr.ml";;
…
#use "exprparse.ml";;
…
#use "exprlex.ml";;
…

let test s =

let lexbuf = Lexing.from_string (s ^ "\n") in

main token lexbuf;;

10/30/2018 82

Example - Using Parser

test "a + b";;

- : expr =

Plus_Expr

(Factor_as_Term (Id_as_Factor "a"),

Term_as_Expr

(Factor_as_Term (Id_as_Factor "b"))

)

11/1/2018 83

LR Parsing

General plan:

 Read tokens left to right (L)

 Create a rightmost derivation (R)

How is this possible?

 Start at the bottom (left) and work your way up

 Last step has only one non-terminal to be
replaced so is right-most

 Working backwards, replace mixed strings by
non-terminals

 Always proceed so that there are no non-
terminals to the right of the string to be replaced

11/1/2018 84

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

(0 + 1) + 0

11/1/2018 85

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

10/30/2018 86

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

10/30/2018 87

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

10/30/2018 88

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

10/30/2018 89

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

10/30/2018 90

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

10/30/2018 91

<Sum>

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

10/30/2018 92

<Sum>

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

11/1/2018 93

<Sum>

<Sum>

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

11/1/2018 94

<Sum>

<Sum>

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

11/1/2018 95

<Sum>

<Sum>

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

11/1/2018 96

<Sum>

<Sum>

<Sum>

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

11/1/2018 97

<Sum>

<Sum>

<Sum>

<Sum>

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

11/1/2018 98

<Sum>

<Sum>

<Sum>

<Sum>

<Sum>

<Sum>

(0 + 1) + 0

Example: <Sum> ::= 0 | 1 | (<Sum>)
| <Sum> + <Sum>

10/30/2018 99

LR Parsing Tables

 Build a pair of tables, Action and Goto, from
the grammar

 This is the hardest part, we omit here

 Rows labeled by states

 For Action, columns labeled by terminals
and “end-of-tokens” marker
 (more generally strings of terminals of fixed

length)

 For Goto, columns labeled by non-
terminals

10/30/2018 100

Action and Goto Tables

 Given a state and the next input, Action
table says either

 shift and go to state n, or

 reduce by production k (explained in a
bit)

 accept or error

 Given a state and a non-terminal, Goto table
says

 go to state m

11/1/2018 101

LR(i) Parsing Algorithm

 Based on push-down automata

 Uses states and transitions (as recorded

in Action and Goto tables)

 Uses a stack containing states,

terminals and non-terminals

11/1/2018 102

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-

of-tokens” symbol

1. Start in state 1 with an empty stack

2. Push state(1) onto stack

3. Look at next i tokens from token stream

(toks) (don’t remove yet)

4. If top symbol on stack is state(n), look

up action in Action table at (n, toks)

11/1/2018 103

LR(i) Parsing Algorithm

5. If action = shift m,

a) Remove the top token from token
stream and push it onto the stack

b) Push state(m) onto stack

c) Go to step 3

11/1/2018 104

LR(i) Parsing Algorithm

6. If action = reduce k where production k is
E ::= u

a) Remove 2 * length(u) symbols from
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m),
look up new state p in Goto(m,E)

c) Push E onto the stack, then push
state(p) onto the stack

d) Go to step 3

11/1/2018 105

LR(i) Parsing Algorithm

7. If action = accept

 Stop parsing, return success

8. If action = error,

 Stop parsing, return failure

11/1/2018 106

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (0 + 1) + 0 shift

11/1/2018 107

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-

of-tokens” symbol

1. Start in state 1 with an empty stack

2. Push state(1) onto stack

3. Look at next i tokens from token stream

(toks) (don’t remove yet)

4. If top symbol on stack is state(n), look

up action in Action table at (n, toks)

11/1/2018 108

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (0 + 1) + 0 shift

11/1/2018 109

LR(i) Parsing Algorithm

5. If action = shift m,

a) Remove the top token from token
stream and push it onto the stack

b) Push state(m) onto stack

c) Go to step 3

11/1/2018 110

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 111

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 112

LR(i) Parsing Algorithm

6. If action = reduce k where production k is
E ::= u

a) Remove 2 * length(u) symbols from
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m),
look up new state p in Goto(m,E)

c) Push E onto the stack, then push
state(p) onto the stack

d) Go to step 3

11/1/2018 113

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 114

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 115

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 116

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

=> (<Sum> + <Sum>) + 0 reduce
=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 117

LR(i) Parsing Algorithm

6. If action = reduce k where production k is
E ::= u

a) Remove 2 * length(u) symbols from
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m),
look up new state p in Goto(m,E)

c) Push E onto the stack, then push
state(p) onto the stack

d) Go to step 3

11/1/2018 118

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (<Sum>) + 0 shift
=> (<Sum> + <Sum>) + 0 reduce
=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 119

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

=> (<Sum>) + 0 reduce
= (<Sum>) + 0 shift
=> (<Sum> + <Sum>) + 0 reduce
=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 120

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= <Sum> + 0 shift
=> (<Sum>) + 0 reduce
= (<Sum>) + 0 shift
=> (<Sum> + <Sum>) + 0 reduce
=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 121

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= <Sum> + 0 shift
= <Sum> + 0 shift
=> (<Sum>) + 0 reduce
= (<Sum>) + 0 shift
=> (<Sum> + <Sum>) + 0 reduce
=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 122

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>
=> <Sum> + 0 reduce
= <Sum> + 0 shift
= <Sum> + 0 shift
=> (<Sum>) + 0 reduce
= (<Sum>) + 0 shift
=> (<Sum> + <Sum>) + 0 reduce
=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 123

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> => <Sum> + <Sum > reduce
=> <Sum> + 0 reduce
= <Sum> + 0 shift
= <Sum> + 0 shift
=> (<Sum>) + 0 reduce
= (<Sum>) + 0 shift
=> (<Sum> + <Sum>) + 0 reduce
=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 124

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> => <Sum> + <Sum > reduce
=> <Sum> + 0 reduce
= <Sum> + 0 shift
= <Sum> + 0 shift
=> (<Sum>) + 0 reduce
= (<Sum>) + 0 shift
=> (<Sum> + <Sum>) + 0 reduce
=> (<Sum> + 1) + 0 reduce
= (<Sum> + 1) + 0 shift
= (<Sum> + 1) + 0 shift
=> (0 + 1) + 0 reduce
= (0 + 1) + 0 shift
= (0 + 1) + 0 shift

11/1/2018 125

LR(i) Parsing Algorithm

7. If action = accept

 Stop parsing, return success

8. If action = error,

 Stop parsing, return failure

10/30/2018 126

LR(i) Parsing Algorithm

 Based on push-down automata

 Uses states and transitions (as recorded

in Action and Goto tables)

 Uses a stack containing states,

terminals and non-terminals

10/30/2018 127

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-

of-tokens” symbol

1. Start in state 1 with an empty stack

2. Push state(1) onto stack

3. Look at next i tokens from token stream

(toks) (don’t remove yet)

4. If top symbol on stack is state(n), look

up action in Action table at (n, toks)

10/30/2018 128

LR(i) Parsing Algorithm

5. If action = shift m,

a) Remove the top token from token
stream and push it onto the stack

b) Push state(m) onto stack

c) Go to step 3

10/30/2018 129

LR(i) Parsing Algorithm

6. If action = reduce k where production k is
E ::= u

a) Remove 2 * length(u) symbols from
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m),
look up new state p in Goto(m,E)

c) Push E onto the stack, then push
state(p) onto the stack

d) Go to step 3

10/30/2018 130

LR(i) Parsing Algorithm

7. If action = accept

 Stop parsing, return success

8. If action = error,

 Stop parsing, return failure

10/30/2018 131

Adding Synthesized Attributes

 Add to each reduce a rule for calculating
the new synthesized attribute from the
component attributes

 Add to each non-terminal pushed onto the
stack, the attribute calculated for it

 When performing a reduce,
 gather the recorded attributes from each non-

terminal popped from stack

 Compute new attribute for non-terminal pushed
onto stack

10/30/2018 132

Shift-Reduce Conflicts

 Problem: can’t decide whether the

action for a state and input character

should be shift or reduce

 Caused by ambiguity in grammar

 Usually caused by lack of associativity

or precedence information in grammar

10/30/2018 133

Example: <Sum> = 0 | 1 | (<Sum>)
| <Sum> + <Sum>

 0 + 1 + 0 shift
-> 0 + 1 + 0 reduce
-> <Sum> + 1 + 0 shift
-> <Sum> + 1 + 0 shift
-> <Sum> + 1 + 0 reduce
-> <Sum> + <Sum> + 0

10/30/2018 134

Example - cont

 Problem: shift or reduce?

 You can shift-shift-reduce-reduce or
reduce-shift-shift-reduce

 Shift first - right associative

 Reduce first- left associative

10/30/2018 135

Reduce - Reduce Conflicts

 Problem: can’t decide between two
different rules to reduce by

 Again caused by ambiguity in grammar

 Symptom: RHS of one production
suffix of another

 Requires examining grammar and
rewriting it

 Harder to solve than shift-reduce errors

10/30/2018 136

Example

 S ::= A | aB A ::= abc B ::= bc

 abc shift
a bc shift
ab c shift
abc

 Problem: reduce by B ::= bc then by S
::= aB, or by A::= abc then S::A?

