Programming Languages and
Compilers (CS 421)

Sasa Misailovic -
4110 SC, UIUC &

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based on slides by Elsa Gunter, which were inspired by earlier
slides by Mattox Beckman, Vikram Adve, and Gul Agha

10/30/2018 1

BNF Grammars

= BNF rules (aka productions) have form
X:u=y
where X is any nonterminal and yis a string
of terminals and nonterminals

= BNF grammar is a set of BNF rules such that
every nonterminal appears on the left of
some rule

10/30/2018 3

BNF Deriviations

= Given rules
X:i:= yZwand Z::=v
we may replace Z by vto say
X=>)yZw => yvw
= Sequence of such replacements called
derivation

= Derivation called right-most if always
replace the right-most non-terminal

10/30/2018 5

BNF Grammars

= Start with a set of characters, a,b,c,...
= We call these terminals

= Add a set of different characters,
X)Y,Z,...
= We call these nonterminals

= One special nonterminal S called start
symbol

10/30/2018 2

Sample Grammar

= Terminals: 01 + ()
= Nonterminals: <Sum>
Start symbol = <Sum>

s <Sum> ::=0

s <Sum >::=1

s <Sum> ::= <Sum> + <Sum>
= <Sum> ::= (<Sum>)

= Can be abbreviated as

<Sum> =01
| <Sum> + <Sum> | ()

10/30/2018 4

BNF Semantics

= The meaning of a BNF grammar is the
set of all strings consisting only of
terminals that can be derived from the
Start symbol

10/30/2018 6

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

BNF Derivations

<Sum> ;=0 1| <Sum> + <Sum> | (<Sum>)
= Start with the start symbol:

<Sum> =>

10/30/2018 7

BNF Derivations

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)
= Pick a rule and substitute:

= <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

10/30/2018 9

BNF Derivations

<Sum> ;=0 1| <Sum> + <Sum> | (<Sum>)
= Pick a rule and substitute:

= <Sum> ::= (<Sum>)
<Sum> => <Sum> + <Sum >
=>(<Sum>) + <Sum>

10/30/2018 11

BNF Derivations

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)
= Pick a non-terminal

<Sum> =>

10/30/2018 8

BNF Derivations

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)
= Pick a non-terminal:

<Sum> => <Sum> + <Sum >

10/30/2018 10

BNF Derivations

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)
= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

10/30/2018 12

BNF Derivations

<Sum> ;=0 1| <Sum> + <Sum> | (<Sum>)
= Pick a rule and substitute:

= <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>

10/30/2018 13

BNF Derivations

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)
= Pick a rule and substitute:

= <Sum >:;:=1
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=>(<Sum> + 1) + <Sum>

10/30/2018 15

BNF Derivations

<Sum> ;=0 1| <Sum> + <Sum> | (<Sum>)
= Pick a rule and substitute:

= <Sum >::=0
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
=>(<Sum>+1)+0

10/30/2018 17

BNF Derivations

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)
= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>

10/30/2018 14

BNF Derivations

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)
= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=>(<Sum> + 1) + <Sum>

10/30/2018 16

BNF Derivations

<Sum> ::=0] 1| <Sum> + <Sum> | (<Sum>)
= Pick a non-terminal:

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=>(<Sum> + 1) + <Sum>
=>(<Sum>+1)+0

10/30/2018 18

BNF Derivations

<Sum> ;=0 1| <Sum> + <Sum> | (<Sum>)

= Pick a rule and substitute
= <Sum> =0

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=>(<Sum> + 1) + <Sum>
=>(<Sum>+1)0
=>(0+1)+0

10/30/2018 19

Regular Grammars

Subclass of BNF

Only rules of form
<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=¢

Defines same class of languages as regular
expressions

Important for writing lexers (programs that
convert strings of characters into strings of
tokens)

10/30/2018 21

Parse Trees

= Graphical representation of derivation

= Each node labeled with either non-terminal or
terminal

= If node is labeled with a terminal, then it is a leaf

(no sub-trees)

= If node is labeled with a non-terminal, then it has

one branch for each character in the right-hand
side of rule used to substitute for it

10/30/2018 23

BNF Derivations

<Sum> ;=0 1| <Sum> + <Sum> | (<Sum>)

= (0+ 1)+ 0 is generated by grammar

<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=>(<Sum> + 1) + <Sum>
=>(<Sum>+1)+0
=>(0+1)+0

10/30/2018 20

Extended BNF Grammars

= Alternatives: allow rules of form X::=y | z
= Abbreviates X::=y, Xii=z
= Options: X::=y[v] z
= Abbreviates X::=yvz, X::=yz
= Repetition: X::=y {v}*z
= Can be eliminated by adding new
nonterminal V and rules

X:ii=yz, Xii=yVz,

Vii=v, Vii=vwW
10/30/2018 22
Example

= Consider grammar:

<exp> ::= <factor>
| <factor> + <factor>
<factor> ::= <bin>

| <bin> * <exp>
<bin> = 0 |1

= Problem: Build parse tree for 1 * 1 + 0 as
an <exp>

10/30/2018 24

Example cont.

n1*1+0: <exp>

<exp> is the start symbol for this parse
tree

10/30/2018 25

Example cont.

n1*1+0: <exp>
<fac|tor>

<bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

10/30/2018 27

Example cont.

= 1*1+0: <exp>

<fac|tor>
<bin> * <exp>
{ <fac|tor/> I-|-\<l’a<.itor>
<bin> <bin>

Use rule: <factor> ::= <bin>

10/30/2018 29

Example cont.

s 1*14+0: <exp>

<factor>

Use rule: <exp> ::= <factor>

10/30/2018 26

Example cont.

n1*1+0: <e>?p>

<factor>
<bin * <(Tx >
1 <factor> + <factor>

Use rules: <bin> ::=1 and
<exp> ::= <factor> + <factor>

10/30/2018 28

Example cont.

= 1*¥1+0: <exp>

<fac|tor>
<bin> * <exp>
{ <fac|tor/> I-|>facltor>
< blin > < blin >
1 0

Use rules: <bin>::=1]0

10/30/2018 30

Example cont.

= 1*1+0: <exp>
<fac|tor>
<bin> 5 <exp>
{ <fac|tor/> Iw>facltor>
<bin> <bin>
I1 0I

Fringe of tree is string generated by grammar

10/30/2018 31

Example

= Recall grammar:

<exp> = <factor> | <factor> + <factor>
<factor> ::= <bin> | <bin> * <exp>
<bin> = 0 |1

= Represent as Abstract Data Types:

Factor2Exp of factor
Plus of factor * factor

= type exp =
I

and factor = Bin2Factor of bin
I

Mult of bin * exp

and bin Zero | One

10/30/2018 33

Example cont.

= Can be represented as

Factor2Exp
(Mult(One,
Plus(Bin2Factor One,
Bin2Factor Zero)))

10/30/2018 35

Parse Tree Data Structures

= Parse trees may be represented by OCaml

datatypes

= One datatype for each nonterminal
= One constructor for each rule

= Defined as mutually recursive collection of
datatype declarations

10/30/2018

Example cont.

«1*1+0:

<b|in>
1

10/30/2018

Example cont.

32

= type exp = Factor2Exp of factor
| Plus of factor * factor
and factor = Bin2Factor of bin
| Mult of bin * exp
and bin = Zero | One

<exp>
[

<fac|tor>

* <exp>
[T~
<fac|tor> + <fac'?or>
< blin > < blin >
1 0

34

= type exp = Factor2Exp of factor
| Plus of factor * factor
and factor = Bin2Factor of bin
| Mult of bin * exp
and bin = Zero | One

= 1*1+0: FactoerExp

One

+0: <e)‘cp>
<fathor>
<bin> ¥ <exp>
| T
1 <faﬁtor> + <faciar>

<b‘in> <b|in>
1 0

Mult
<Plus>
- \ -
<B|n2I actor> <B|n|2Factor>
<One> <Zero>

36

Ambiguous Grammars and Languages

= A BNF grammar is ambiguous if its language
contains strings for which there is more than
one parse tree

= If all BNFs for a language are ambiguous
then the language is /nherently ambiguous

10/30/2018 37

Example

= What is the result for:
3+4*5+6

10/30/2018 39

Example

= What is the value of:
7-5-2

10/30/2018 41

Example: Ambiguous Grammar

«0+1+0

<Sum> <Sum>

<Su/m>| hSum> <Sum{-4l-<\5um>

I I I
<Sum{-l<\5um> 0 0 <Sum{+ <Sum>
| | |

I
0 1 1 0

10/30/2018 38

Example

= What is the result for:
3+4*5+6
= Possible answers:
» 41=(3+4)*5)+6
« 47=3+(4*(5+6))
s 29=(3+(@4*5)+6=3+((4*5)+6)
« 77=(3+4)*(5+6)

10/30/2018 40

Example

= What is the value of:
7-5-2
= Possible answers:
= In Pascal, C++, SML assoc. left
7-5-2=(7-5)-2=0
= In APL, associate to right
7-5-2=7-(5-2)=4

10/30/2018 42

Two Major Sources of Ambiguity

= Lack of determination of operator
precedence

= Lack of determination of operator
associativity

= Not the only sources of ambiguity

10/30/2018 43

Disambiguating a Grammar

= Idea: Each non-terminal represents all
strings having some property

= Identify these properties (often in terms of
things that can't happen)

= Use these properties to inductively
guarantee every string in language has a
unique parse

10/30/2018 45

Example

= Ambiguous grammar:
<exp> :i= 0 |1 | <exp> + <exp>
| <exp> * <exp>
= String with more then one parse:
0+1+0
1*1+1
= Source of ambiguity: associativity and
precedence

10/30/2018 47

Disambiguating a Grammar

= Given ambiguous grammar G, with start
symbol S, find a grammar G’ with same start
symbol, such that
language of G = language of G’
= Not always possible
= No algorithm in general

10/30/2018 44

Steps to Grammar Disambiguation

= Identify the rules and a smallest use that display
ambiguity

= Decide which parse to keep; why should others be
thrown out?

= What syntactic restrictions on subexpressions are
needed to throw out the bad (while keeping the
good)?

= Add a new non-terminal and rules to describe this set
of restricted subexpressions (called stratifying, or
refactoring)

= Replace old rules to use new non-terminals
= Rinse and repeat

10/30/2018 46

How to Enforce Associativity

= Have at most one recursive call per
production

= When two or more recursive calls would
be natural leave right-most one for
right assoicativity, left-most one for left
assoiciativity

10/4/07 48

Example

s <Sum> ::=0] 1] <Sum> + <Sum>
| (<Sum>)
= Becomes
= <Sum> ::= <Num> | <Num> + <Sum>
s <Num> ::=0 | 1| (<Sum>)

10/4/07 49

Predence in Grammar

. Hllgher precedence translates to longer derivation
chain

= Example:
<exp>::=0]1 | <exp> + <exp> | <exp> * <exp>

= Becomes

<exp> ::= <mult_exp>| <exp> + <mult_exp>
<mult_exp> ::= <id> | <mult_exp> * <id>
<id>u=0]1

10/4/07 51

Disambiguating a Grammar

= <exp>::= 0|1] b<exp> | <exp>a
| <exp>m<exp>

= Want a to have higher precedence than b, which in
turn has higher precedence than m, and such that
m associates to the left.

= <exp> ::= <exp> m <not_m> | <not_m>
= <not_m> ::=b <not_m> | <not_b_m>
= <not_b_m> ::=<not_b_m>a |01

10/30/2018 53

Operator Precedence

= Operators of highest precedence
evaluated first (bind more tightly).

For instance multiplication (*) has higher
precedence than addition (+)

= Needs to be reflected in grammar

10/4/07 50

Disambiguating a Grammar

= <exp>::= 0]|1]| b<exp> | <exp>a
| <exp>m<exp>
= Want a to have higher precedence than b, which in

turn has higher precedence than m, and such that
m associates to the left.

10/30/2018 52

Disambiguating a Grammar — Take 2

n <exp>::= 0]1| b<exp> | <exp>a
| <exp>m<exp>

= Want b to have higher precedence than m, which
in turn has higher precedence than a, and such
that m associates to the right.

10/30/2018 54

Disambiguating a Grammar — Take 2

= <exp>::= 0|1] b<exp> | <exp>a
| <exp>m<exp>
= Want b has higher precedence than m, which in

turn has higher precedence than a, and such that
m associates to the right.

= <exp> :i=

<no_a_m> | <no_m> m <no_a>| <exp> a

= <NO_a> ::= <no_a_m> | <no_a_m> m <no_a>
= <NO_M> ::= <no_a_m> | <exp> a
= <no_a_m> ::=b<no_am>|0]1

10/30/2018 55

How do we disambiguate in this case?

= Our old friend:

<exp> 1= <factor>
| <factor> + <factor>

<factor> ::= <bin>
| <bin> * <exp>

<bin> =011
= How do we make multiplication have higher
precedence than addition?

10/30/2018 57

Moving On With Richer Expressions

= How do we extend the grammar to support
nested additions, e.g., 1 * (0 + 1)

<exp> 1= <factor>
| <factor> + <exp>

<factor> ::= <bin>
| <bin> * <factor>

<bin> =0 | 1] (<exp>)

11/1/2018 59

Disambiguating a Grammar — Take 3

» <exp>::= 0]1]| b<exp> | <exp>a
| <exp>m<exp>
= Want a has higher precedence than m, which in

turn has higher precedence than b, and such that
m associates to the right.

= For you...

11/1/2018 56

Moving On With Richer Expressions

= How do we extend the grammar to support
nested additions, e.g., 1 * (0 + 1)

<exp> 1= <factor>
| <factor> + <exp>

<factor> ::= <bin>
| <bin> * <factor>
<bin> n=0]1

11/1/2018 58

Moving On With Richer Expressions

= How do we extend the grammar to support
other operations, subtraction and division?

<exp> 1= <factor>
| <factor> + <exp> | <factor> - <exp>

<factor> ::= <bin>
| <bin> * <exp> | <bin> / <factor>

<bin> =0 | 1] (<exp>)

11/1/2018 60

10

Disambiguating Grammars — Dangling Else

stmt ::= ...
| if (expr) stmt
| if (expr) stmt else stmt

How can we parse
if (el) if (e2) sl elses2 ?

10/30/2018 61

Disambiguating Grammars — Overlapping

seq = ¢ | may_word | word seq
may_word = ¢ | “word”

How do you parse “word”? And ¢?

How do you fix it?

10/30/2018 63

Parser Code

Ocamlyacc is a parser generator for Ocaml

= Similar generators exist for other languages

= Search under: Yacc, Bison, Menhir...

= Another family: Antir
Input: high level specification (<grammar>.mly file)
Output: tokens (<grammar>.mli) and generated
parser (<grammar>.ml)

= <grammar>.ml defines a parsing function per entry point
= Parsing function takes a lexing function (lexer buffer to

token) and a lexer buffer as arguments
= Returns semantic attribute of corresponding entry point

11/1/2018 65

Disambiguating Grammars — Dangling Else

Try: let us try to differentiate if we have if inside the
then branch or not....

stmt = open_stmt | closed_stmt
open_stmt ::= if (expr) stmt

| if (expr) closed_stmt else open_stmt
closed_stmt ::= non_if_statement

| if (expr) closed_stmt else closed_stmt

How can we parse if (el) if (e2) s1 else s2 now ?

10/30/2018 62

How do you know you have ambiguity?

The Ocaml parser generator (ocamlyacc) will report
ambiguity in the grammar as “conflicts"”:

Shift/reduce: Usually caused by lack of
associativity or precedence information in grammar

Reduce/reduce: can’ t decide between two
different rules to reduce by; Not always clear what
the problem is, but often right-hand side of one
production is the suffix of another

We will explain what these conflicts mean next time!

10/30/2018 64

Ocamlyacc Input

» <grammar>.mly File format:
%<

< header>

%%

%%

<rules>

%%

< trailer>

11/1/2018 66

11

Ocamlyacc < header>

= Contains arbitrary Ocaml code

= Typically used to give types and
functions needed for the semantic
actions of rules and to give specialized
error recovery

= May be omitted

n <trafler> similar. Possibly used to call
parser

10/30/2018 67

Ocamlyacc <declarations>

%token symbol ... symbol
Declare given symbols as tokens

%token <type> symbol ... symbol

= Declare given symbols as token constructors,
taking an argument of type <type>

%start symbol ... symbol
Declare given symbols as entry points; functions of
same names in <grammar>.mi

10/30/2018 69

Ocamlyacc Input

» <grammar>.mly File format:
%¢{

< header>
%>}

%%

<rules>

%%
<trailer>

11/1/2018 71

Ocamlyacc Input

s <grammar>.mly File format:
%<

< header>
%3}

%%
<rules>
%%
< trailer>

11/1/2018 68

Ocamlyacc < declarations>

n %type <type> symbol .. symbol

Specify type of attributes for given symbols.
Mandatory for start symbols

n %left symbol .. symbol
= %right symbol .. symbol
= %nonassoc symbol .. symbol

Associate precedence and associativity to given
symbols. Same line,same precedence; earlier line,
lower precedence (broadest scope)

10/30/2018 70

Ocamlyacc <rules>

= nonterminal :
symbol ... symbol { semantic_action }

| symbol ... symbol { semantic_action }

= Semantic actions are arbitrary Ocaml
expressions

= Must be of same type as declared (or inferred)
for nonterminal

= Access semantic attributes (values) of symbols
by position: $1 for first symbol, $2 to second ...

10/30/2018 72

12

Example - Grammar

A slight variation of what we've seen earlier:

Expr ::=Term | Term + Expr | Term — Expr
Term ::= Factor | Factor * Term | Factor / Term
Factor ::=1d | (Expr)

11/1/2018 73
- Expr ::=Term | Term + Expr | Term - Expr
Example - Lexer i e e T P e

Factor ::=1d | (Expr)
{ open Exprparse }

let numeric = ['@" - '9']
let letter =['a' - 'z' 'A' - 'Z']
rule token = parse
| "+" {Plus_token}
| "-" {Minus_token}
| "*" {Times_token}
| "/ {Divide_token}
I "(" {Left_parenthesis}
I
|
|

+

")" {Right_parenthesis}
letter (letter|numeric|"_")* as id {Id_token id}

[* " "\t'" "\n'] {token lexbuf}
eof {EOL}
10/30/2018 75

Example - Parser (exprparse.mly)

11= Term | Term + Expr | Term — Expr

= Factor | Factor * Term | Factor / Term
expr: Factor ::=Id | { Expr)

term
{ Term_as_Expr $1 }
| term Plus_token expr
{ Plus_Expr ($1, $3) }
| term Minus_token expr
{ Minus_Expr ($1, $3) }

Example - Base types

(* File: expr.ml *)

type expr =
Term_as_Expr of term
| Plus_Expr of (term * expr)
| Minus_Expr of (term * expr)

10/30/2018

1= Term | Term + Expr | Term = Expr

EXa m ple - Base types 'Ef:fpi; Factor | Factor * Term | Factor / Term

Factor ::=1d | Expr)

(* File: expr.ml *)

type expr =

Term_as_Expr of term
Plus_Expr of (term * expr)
Minus_Expr of (term * expr)
and term =

Factor_as_Term of factor
Mult_Term of (factor * term)
Div_Term of (factor * term)
and factor =

Id_as_Factor of string
Parenthesized_Expr_as_Factor of expr

10/30/2018 74

Example - Parser (exprparse.mly)

%{
open Expr
%}
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token Minus_token
%token EOL

%start main
%type <expr> main
%%

10/30/2018 76

Example - Parser (exprparse.mly)

1= Term | Term + Expr | Term — Expr

Factor | Factor * Term | Factor / Term
term: Factor == 1Id | { Expr)

factor
{ Factor_as_Term $1 }
| factor Times_token term
{ Mult_Term ($1, $3) }
| factor Divide_token term
{ Div_Term ($1, $3) }

Example - Base types

(* File: expr.ml *)
type expr =
Term_as_Expr of term
| Plus_Expr of (term * expr)
| Minus_Expr of {term * expr)
and term =
Fac?nr as Terr?} of fac}or)
Mult_Term of (factor * term]
10/30/2018 I Div_Term of (factor * term)

13

Example - Parser (exprparse.mly)

Expr ::= Term | Term + Expr | Term — Expr

Term
Factor ::= Id | { Expr)
factor:

Id_token
{ Id_as_Factor $1 }
| Left_parenthesis expr Right_parenthesis
{Parenthesized_Expr_as_Factor $2 }

= Factor | Factor * Term | Factor / Term

Example - Base types

main:
* File: *
| expr EOL Wil
{$11} Term_as_Expr of term
| Plus_Expr of (term * expr)
| Minus_Expr of (term * expr)
and term =
Factor_as_Term of factor

Recall, we previously defined: | D oo facser e

i and factor =
é;;ggtgi;g} main 1d_as_Factor of string

Example - Using Parser

#use "expr.ml";;
#use "exprparse.ml";;
#use "exprlex.ml";;

let test s =
let lexbuf = Lexing.from_string (s ~ "\n") in
main token lexbuf;;

10/30/2018 81

LR Parsing

General plan:
= Read tokens left to right (L)
= Create a rightmost derivation (R)

How is this possible?
= Start at the bottom (left) and work your way up

= Last step has only one non-terminal to be
replaced so is right-most

= Working backwards, replace mixed strings by
non-terminals

= Always proceed so that there are no non-
terminals to the right of the string to be replaced

11/1/2018 83

| Parenthesized_Expr_as_Factor of expr

= Call:

= $ ocamlyacc options exprparse.mly

= Get:
= Tokens: exprparse.mli (can be used in lexer)

= Parser: exprparse.ml
(included in the rest of code)

11/1/2018 80

E I U . P Example - Base types
xample - Using Parser | ..
type expr =
Term_as_Expr of term
| Plus_Expr of (term * expr)
| Minus_Expr of (term * expr)
and term =
Factor_as_Term of factar
| Mult_Term of (factor * term)
| Div_Term of (factor * term)
and factor =
1d_as_Factor of strin

test "a + b";;

- @ expr =

| Parenthesized Expr_as_Factor of expr

Plus_Expr
(Factor_as_Term (Id_as_Factor "a"),
Term_as_Expr
(Factor_as_Term (Id_as_Factor "b"))

10/30/2018 82

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

11/1/2018 84

14

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

(0 + 1) + 0

11/1/2018 85

Example: <Sum> ::=0| 1 | (<Sum>)
| <Sum> + <Sum>

(+ 1) + 0

10/30/2018 87

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

(+ 1) + 0

10/30/2018 89

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

(0 + 1) + 0

10/30/2018 86

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

(+ 1) + 0

10/30/2018 88

Example: <Sum> ::= 0] 1| (<Sum>)
| <Sum> + <Sum>

(+) o+ 0

10/30/2018 90

15

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

10/30/2018 91

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

11/1/2018 93

Example: <Sum> ::=0] 1 | (<Sum>)
| <Sum> + <Sum>

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

(0) + 0

10/30/2018 92

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

11/1/2018 94

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

11/1/2018 95

11/1/2018 96

Example: <Sum> ;=0 1] (<Sum>)
| <Sum> + <Sum>

11/1/2018 97

LR Parsing Tables

= Build a pair of tables, Action and Goto, from
the grammar

= This is the hardest part, we omit here
= Rows labeled by states

= For Action, columns labeled by terminals
and “end-of-tokens” marker

= (more generally strings of terminals of fixed
length)

= For Goto, columns labeled by non-
terminals

10/30/2018 99

LR(i) Parsing Algorithm

= Based on push-down automata

= Uses states and transitions (as recorded
in Action and Goto tables)

= Uses a stack containing states,
terminals and non-terminals

11/1/2018 101

Example: <Sum> ::=0] 1| (<Sum>)
| <Sum> + <Sum>

<Sum>
<Sum>
<Sum>

Sum
<Sum
Sum>

11/1/2018 98

Action and Goto Tables

= Given a state and the next input, Action
table says either
= shift and go to state n, or
= reduce by production & (explained in a
bit)
= accept or error

= Given a state and a non-terminal, Goto table
says
= go to state m

10/30/2018 100

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-
of-tokens” symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack

->» 3. Look at next /tokens from token stream

(toks) (don’ t remove yet)

4. If top symbol on stack is state(n), look
up action in Action table at (n, toks)

11/1/2018 102

17

LR(i) Parsing Algorithm

5. If action = shift m,

a) Remove the top token from token
stream and push it onto the stack

b) Push state(m) onto stack
c) Gotostep 3

11/1/2018 103

LR(i) Parsing Algorithm

7. If action = accept

= Stop parsing, return success
8. If action = error,

= Stop parsing, return failure

11/1/2018 105

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-
of-tokens” symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack

->» 3. Look at next /tokens from token stream
(toks) (don’ t remove yet)

4. If top symbol on stack is state(r), look
up action in Action table at (n, foks)

11/1/2018 107

LR(i) Parsing Algorithm
6. If action = reduce & where production «is
E:=u

a) Remove 2 * length(u) symbols from
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m),
look up new state pin Goto(m,E)

c) Push E onto the stack, then push
state(p) onto the stack

d) Go to step 3

11/1/2018 104

Example: <Sum> =0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= 0(0+1)+0 shift

11/1/2018 106

Example: <Sum> =0 | 1| (<Sum>)
| <Sum> + <Sum>

<Sum> =>

= (0+1)+0 shift

11/1/2018 108

18

. . . Example: <Sum> =0 1| (<Sum>)
LR(i) Parsing Algorithm | <Sum> + <Sum>

5. If action = shift m, <sum> =>

a) Remove the top token from token
stream and push it onto the stack

b) Push state(m) onto stack
c) Gotostep 3

(0+1)+0 shift
(0+1)+0 shift

11/1/2018 109 11/1/2018 110

Example: <Sum> =0 | 1 | (<Sum>)

| <Sum> + <Sum> LR(i) Parsing Algorithm

<Sum> => 6. If action = reduce & where production «is
E:i=u
a) Remove 2 * length(u) symbols from
stack (u and all the interleaved states)
b) If new top symbol on stack is state(m),
look up new state pin Goto(m,E)
c) Push E onto the stack, then push
=>(00+1)+0 reduce state(p) onto the stack
= (#0+1)+0 shift
= o(0+1)+0 shift d) Go to step 3
11/1/2018 111 11/1/2018 112
Example: <Sum> =0 | 1| (<Sum>) Example: <Sum> =0 | 1| (<Sum>)
| <Sum> + <Sum> | <Sum> + <Sum>
<Sum> => <Sum> =>

(<Sum>+e1)+0 shift

(<Sum>® +1)+0 shift (<Sum>e® +1)+0 shift

=>(0e0+1)+0 reduce =>(00+1)+0 reduce
= (#0+1)+0 shift = (#0+1)+0 shift
= (0+1)+0 shift = (0+1)+0 shift

11/1/2018 113 11/1/2018 114

19

Example: <Sum> =0 | 1 | (<Sum>)

| <Sum> + <Sum>

<Sum> =>

Example: <Sum> =0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum>

=>

> (<Sum> + <Sum>

)+ 0 reduce

=>(<Sum>+10)+0 reduce =>(<Sum>+10)+0 reduce
= (<Sum>+©1)+0 shift = (<Sum>+©1)+0 shift
= (<Sum>e® +1)+0 shift = (<Sum>e® +1)+0 shift
=>(0e+1)+0 reduce =>(00+1)+0 reduce
= (#0+1)+0 shift = (#0+1)+0 shift
= (0+1)+0 shift = (0+1)+0 shift

11/1/2018 115 11/1/2018 116

Example: <Sum> =0 | 1 | (<Sum>)

LR(i) Parsing Algorithm | <Sum> + <Sum>

6. If action = reduce & where production kis <Sum> =>
E:=u
a) Remove 2 * length(u) symbols from
stack (u and all the interleaved states) = (<Sum> ©) 40 shift
b) If new top symbol on stack is state(m), => (<Sum> + <Sum> ®) +0 reduce
i =>(<Sum>+10)+0 reduce
look up new state pin Goto(m,E) = (Soums+e1)10 Thift
c) Push E onto the stack, then push = (<Sum>e® +1)+0 shift
=>(0e+1)+0 reduce
state(p) onto the stack (00 41)40 e
d) Go to step 3 = o(0+1)+0 shift

11/1/2018 117 11/1/2018 118

Example: <Sum> =0 | 1| (<Sum>)
| <Sum> + <Sum>

Example: <Sum> =0 | 1| (<Sum>)
| <Sum> + <Sum>

<Sum> => <Sum> =>

= <Sum> e +0 shift
=>(<Sum>)® +0 reduce =>(<Sum>)® +0 reduce
= (<Sum>#®)+0 shift = (<Sum>®)+0 shift
=>(<Sum> + <Sum> ®)+ 0 reduce =>(<Sum> + <Sum> @)+ 0 reduce
=>(<Sum>+1e)+0 reduce =>(<Sum>+10)+0 reduce
= (<Sum>+e1)+0 shift = (<Sum>+e1)+0 shift
= (<Sum>e +1)+0 shift = (<Sum>e® +1)+0 shift
=>(0e0+1)+0 reduce =>(00+1)+0 reduce
= (#0+1)+0 shift = (#0+1)+0 shift
= (0+1)+0 shift = (0+1)+0 shift

11/1/2018 119 11/1/2018 120

Example: <Sum> =0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>
<Sum>+ 0 shift
<Sum> ® + 0 shift
>(<Sum>)e +0 reduce
(<Sum> @) +0 shift
> (<Sum> + <Sum> ®) +0 reduce
>(<Sum>+10)+0 reduce

(<Sum>+e1)+0 shift
(<Sum>® +1)+0 shift

>(0e+1)+0 reduce
(*0+1)+0 shift
(0+1)+0 shift

11/1/2018

Example: <Sum> =0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> => <Sum> + <Sum > reduce
=> <Sum> + 0 reduce
<Sum>+ 0 shift
<Sum> ® + 0 shift
>(<Sum>)e® +0 reduce
(<Sum> @) +0 shift
> (<Sum> + <Sum> ®) + 0 reduce
>(<Sum>+1e)+0 reduce

(<Sum>+©1)+0 shift
(<Sum>e +1)+0 shift

>(0e+1)+0 reduce
(*0+1)+0 shift
(0+1)+0 shift

11/1/2018

LR(i) Parsing Algorithm

7. If action = accept

= Stop parsing, return success
8. If action = error,

= Stop parsing, return failure

11/1/2018

121

123

125

Example: <Sum> =0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> =>
=><Sum> + 0 reduce
<Sum>+ 0 shift
<Sum>® +0 shift
>(<Sum>)e +0 reduce
(<Sum> @) +0 shift
> (<Sum> + <Sum> ®)+ 0 reduce
>(<Sum>+10)+0 reduce

(<Sum>+e1)+0 shift
(<Sum>e® +1)+0 shift

>(0e+1)+0 reduce
(0+1)+0 shift
(0+1)+0 shift

11/1/2018 122

Example: <Sum> =0 | 1 | (<Sum>)
| <Sum> + <Sum>

<Sum> ® => <Sum> + <Sum > reduce
=> <Sum> + 0 reduce
<Sum>+ 0 shift
<Sum> ® +0 shift
>(<Sum>)e +0 reduce
(<Sum> @) +0 shift
> (<Sum> + <Sum> @) + 0 reduce
>(<Sum>+10)+0 reduce

(<Sum>+©1)+0 shift
(<Sum>e +1)+0 shift

>(0e+1)+0 reduce
(0+1)+0 shift
(0+1)+0 shift

11/1/2018 124

LR(i) Parsing Algorithm

= Based on push-down automata

= Uses states and transitions (as recorded
in Action and Goto tables)

= Uses a stack containing states,
terminals and non-terminals

10/30/2018 126

21

LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-
of-tokens” symbol

1. Start in state 1 with an empty stack
2. Push state(1) onto stack

->» 3. Look at next /tokens from token stream
(toks) (don’ t remove yet)

4. If top symbol on stack is state(n), look
up action in Action table at (n, foks)

10/30/2018 127

LR(i) Parsing Algorithm

6. If action = reduce k& where production kis
E:=u

a) Remove 2 * length(u) symbols from
stack (u and all the interleaved states)

b) If new top symbol on stack is state(m),
look up new state pin Goto(m,E)

c) Push E onto the stack, then push
state(p) onto the stack

d) Go to step 3

10/30/2018 129

Adding Synthesized Attributes

= Add to each reduce a rule for calculating
the new synthesized attribute from the
component attributes

= Add to each non-terminal pushed onto the
stack, the attribute calculated for it

= When performing a reduce,

= gather the recorded attributes from each non-
terminal popped from stack

= Compute new attribute for non-terminal pushed
onto stack

10/30/2018 131

LR(i) Parsing Algorithm

5. If action = shift m,

a) Remove the top token from token
stream and push it onto the stack

b) Push state(/m) onto stack
c) Go to step 3

10/30/2018 128

LR(i) Parsing Algorithm

7. If action = accept

= Stop parsing, return success
8. If action = error,

= Stop parsing, return failure

10/30/2018 130

Shift-Reduce Conflicts

= Problem: can’ t decide whether the
action for a state and input character
should be shift or reduce

= Caused by ambiguity in grammar

= Usually caused by lack of associativity
or precedence information in grammar

10/30/2018 132

22

Example: <Sum> =01 | (<Sum>)
| <Sum> + <Sum>

0+1+0 shift
> 00+1+0 reduce
-> <Sum>® + 1+ 0 shift
-> <Sum>+ © 1+ 0 shift
-><Sum>+1® +0 reduce
-> <Sum> + <Sum> © + 0

10/30/2018 133

Reduce - Reduce Conflicts

= Problem: can’t decide between two
different rules to reduce by

= Again caused by ambiguity in grammar

= Symptom: RHS of one production
suffix of another

= Requires examining grammar and
rewriting it

= Harder to solve than shift-reduce errors

10/30/2018 135

Example - cont

= Problem: shift or reduce?

= You can shift-shift-reduce-reduce or
reduce-shift-shift-reduce

= Shift first - right associative
= Reduce first- left associative

10/30/2018 134

Example

sSii=A|aB A:x=abc B::=bc

abc shift
ao®bc shift
abec shift
abc

= Problem: reduce by B ::=bcthenby S
::= aB, or by A::= abc then S::A?

10/30/2018 136

23

