
10/25/2018 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based on slides by Elsa Gunter, which were inspired by earlier

slides by Mattox Beckman, Vikram Adve, and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

10/25/2018 2

Course Objectives

 New programming paradigm
 Functional programming

 Environments and Closures

 Patterns of Recursion

 Continuation Passing Style

 Phases of an interpreter / compiler
 Lexing and parsing

 Type systems

 Interpretation

 Programming Language Semantics
 Lambda Calculus

 Operational Semantics

 Axiomatic Semantics

Major Phases of a Compiler

Source Program

Lex

Tokens

Parse

Abstract Syntax

Semantic

Analysis
Environment

Translate
Intermediate

Representation

(CPS)

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel

Instruction

Selection

Optimized Machine-Specific

Assembly Language

Instruction

Optimize

Unoptimized Machine-Specific

Assembly Language

Emit code

Assembler

Relocatable

Object Code

Assembly Language

Linker

Machine

Code

Analyze

+ Transform
Optimized IR (CPS)

Major Phases of a PicoML Interpreter

Source Program

Lex

Tokens

Parse

Abstract Syntax

Semantic

Analysis
Environment

Translate
Intermediate

Representation

(CPS)

Interpreter

Execution

Program Run

Analyze

+ Transform
Optimized IR (CPS)

10/25/2018 6

Meta-discourse

Language Syntax and Semantics

 Syntax

- Regular Expressions, DFSAs and NDFSAs

- Grammars

 Semantics

- Natural Semantics

- Transition Semantics

10/25/2018 7

Where We Are Going Next?

 We want to turn strings (code) into computer

instructions

 Done in phases

 Break the big strings into tokens (lex)

 Turn tokens into abstract syntax trees (parse)

 Translate abstract syntax trees into executable

instructions (interpret or compile)

10/25/2018 8

Syntax of English Language

 Pattern 1

 Pattern 2

10/25/2018 9

Elements of Syntax

 Character set – previously always ASCII, now

often 64 character sets

 Keywords – usually reserved

 Special constants – cannot be assigned to

 Identifiers – can be assigned to

 Operator symbols

 Delimiters (parenthesis, braces, brackets)

 Blanks (aka white space)

10/25/2018 10

Elements of Syntax

 Expressions

if ... then begin ... ; ... end else begin ... ; ... end

 Type expressions
typexpr1 -> typexpr2

 Declarations (in functional languages)
let pattern = expr

 Statements (in imperative languages)
a = b + c

 Subprograms

let pattern1 = expr1 in expr

10/25/2018 11

Elements of Syntax

 Modules

 Interfaces

 Classes (for object-oriented languages)

10/25/2018 12

Lexing and Parsing

 Converting strings to abstract syntax trees done

in two phases

 Lexing: Converting string (or streams of

characters) into lists (or streams) of tokens

(the “words” of the language)

 Specification Technique: Regular Expressions

 Parsing: Convert a list of tokens into an

abstract syntax tree

 Specification Technique: BNF Grammars

10/25/2018 13

Formal Language Descriptions

 Regular expressions, regular grammars, finite

state automata

 Context-free grammars, BNF grammars, syntax

diagrams

 Whole family more of grammars and automata –

covered in automata theory

10/25/2018 14

Grammars

 Grammars are formal descriptions of which

strings over a given character set are in a

particular language

 Language designers write grammar

 Language implementers use grammar to know

what programs to accept

 Language users use grammar to know how to

write legitimate programs

10/25/2018 15

Regular Expressions - Review

 Start with a given character set – a, b, c…

 Each character is a regular expression

 It represents the set of one string containing

just that character

10/25/2018 16

Regular Expressions

 If x and y are regular expressions, then xy is a
regular expression

 It represents the set of all strings made from first a
string described by x then a string described by y

If x={a,ab} and y={c,d} then xy ={ac,ad,abc,abd}.

 If x and y are regular expressions, then xy is a
regular expression

 It represents the set of strings described by either x
or y

If x={a,ab} and y={c,d} then x y={a,ab,c,d}

10/25/2018 17

Regular Expressions

 If x is a regular expression, then so is (x)
 It represents the same thing as x

 If x is a regular expression, then so is x*
 It represents strings made from concatenating zero or

more strings from x

If x = {a,ab} then x* ={“”,a,ab,aa,aab,abab,…}

 It represents {“”}, set containing the empty string

 Φ
 It represents { }, the empty set

10/25/2018 18

Example Regular Expressions

 (01)*1
 The set of all strings of 0’s and 1’s ending in 1,

 {1, 01, 11,…}

 a*b(a*)
 The set of all strings of a’s and b’s with exactly one b

 ((01) (10))*
 You tell me

 Regular expressions (equivalently, regular
grammars) important for lexing, breaking strings
into recognized words

10/25/2018 19

Example: Lexing

 Regular expressions good for describing lexemes

(words) in a programming language

 Identifier = (a b … z A B … Z) (a b

 … z A B … Z 0 1 … 9)*

 Digit = (0 1 … 9)

 Number = 0 (1 … 9)(0 … 9)*

- (1 … 9)(0 … 9)*

 Keywords: if = if, while = while,…

10/25/2018 20

Implementing Regular Expressions

 Regular expressions reasonable way to
generate strings in language

 Not so good for recognizing when a string
is in language

 Problems with Regular Expressions

 which option to choose,

 how many repetitions to make

 Answer: finite state automata

 Should have seen in CS374

10/25/2018 21

Lexing

 Different syntactic categories of “words”:
tokens

Example:

 Convert sequence of characters into sequence
of strings, integers, and floating point numbers.

 "asd 123 jkl 3.14" will become:

[String "asd"; Int 123; String "jkl"; Float 3.14]

10/25/2018 22

Lex, ocamllex

 Could write the reg exp, then translate to DFA

by hand

 A lot of work

 Better: Write program to take reg exp as input

and automatically generates automata

 Lex is such a program

 ocamllex version for ocaml

10/25/2018 23

How to do it

 To use regular expressions to parse

our input we need:

 Some way to identify the input string —

call it a lexing buffer

 Set of regular expressions,

 Corresponding set of actions to take

when they are matched.

10/25/2018 24

How to do it

 The lexer will take the regular expressions and

generate a state

machine.

 The state machine will take our lexing buffer and

apply the transitions...

 If we reach an accepting state from which we can

go no further, the machine will perform the

appropriate action.

10/25/2018 25

Mechanics

 Put table of reg exp and corresponding actions

(written in ocaml) into a file <filename>.mll

 Call

ocamllex <filename>.mll

 Produces Ocaml code for a lexical analyzer in file

<filename>.ml

10/25/2018 26

Sample Input

rule main = parse

['0'-'9']+ { print_string "Int\n"}

| ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}

| ['a'-'z']+ { print_string "String\n"}

| _ { main lexbuf }

{

let newlexbuf = (Lexing.from_channel stdin) in

print_string "Ready to lex.\n";

main newlexbuf

}

10/25/2018 27

General Input

{ header }

let ident = regexp ...

rule entrypoint [arg1... argn] = parse

regexp { action }

| ...

| regexp { action }

and entrypoint [arg1... argn] = parse

...and ...

{ trailer }

10/25/2018 28

Ocamllex Input

 header and trailer contain arbitrary ocaml
code put at top an bottom of
<filename>.ml

 let ident = regexp ... Introduces ident for
use in later regular expressions

10/25/2018 29

Ocamllex Input

 <filename>.ml contains one lexing function
per entrypoint
 Name of function is name given for entrypoint

 Each entry point becomes an Ocaml function
that takes n +1 arguments, the extra implicit
last argument being of type Lexing.lexbuf

 arg1... argn are for use in action

10/25/2018 30

Ocamllex Regular Expression

 Single quoted characters for letters: ‘a’

 _: (underscore) matches any letter

 Eof: special “end_of_file” marker

 Concatenation same as usual

 “string”: concatenation of sequence of
characters

 e1 | e2 : choice - what was e1 e2

10/25/2018 31

Ocamllex Regular Expression

 [c1 - c2]: choice of any character between
first and second inclusive, as determined by
character codes

 [^c1 - c2]: choice of any character NOT in
set

 e*: same as before

 e+: same as e e*

 e?: option - was e1

10/25/2018 32

Ocamllex Regular Expression

 e1 # e2: the characters in e1 but not in e2; e1

and e2 must describe just sets of characters

 ident: abbreviation for earlier reg exp in let

ident = regexp

 e1 as id: binds the result of e1 to id to be

used in the associated action

10/25/2018 33

Ocamllex Manual

 More details can be found at

http://caml.inria.fr/pub/docs/manual-

ocaml/lexyacc.html

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html

10/25/2018 34

Example : test.mll

{

type result = Int of int | Float of float |
String of string

}

let digit = ['0'-'9']

let digits = digit+

let lower_case = ['a'-'z']

let upper_case = ['A'-'Z']

let letter = upper_case | lower_case

let letters = letter+

35

Example : test.mll

rule main = parse

(digits)'.'digits as f

{ Float (float_of_string f) }

| digits as n { Int (int_of_string n) }

| letters as s { String s}

| _ { main lexbuf }

{

let newlexbuf = (Lexing.from_channel stdin) in

print_string "Ready to lex.";

print_newline ();

main newlexbuf

}

10/25/2018 36

Example

#use "test.ml";;

…

val main : Lexing.lexbuf -> result = <fun>

val __ocaml_lex_main_rec : Lexing.lexbuf ->
int -> result = <fun>

Ready to lex.

hi there 234 5.2

- : result = String "hi"

What happened to the rest?!?

10/25/2018 37

Example

let b = Lexing.from_channel stdin;;

main b;;

hi 673 there

- : result = String "hi"

main b;;

- : result = Int 673

main b;;

- : result = String "there"

10/25/2018 39

Problem

 How to get lexer to look at more than the first

token at one time?

 Answer: action has to tell it to -- recursive calls

 Side Benefit: can add “state” into lexing

 Note: already used this with the _ case

10/25/2018 40

Example

rule main = parse

(digits) '.' digits as f

{ Float (float_of_string f) :: main lexbuf}

| digits as n

{ Int (int_of_string n) :: main lexbuf }

| letters as s

{ String s :: main lexbuf}

| eof { [] }

| _ { main lexbuf }

10/25/2018 41

Example Results

Ready to lex.

hi there 234 5.2

- : result list = [String "hi"; String "there";
Int 234; Float 5.2]

Used Ctrl-d to send the end-of-file signal

10/25/2018 42

Dealing with comments

First Attempt

let open_comment = "(*"
let close_comment = "*)“

rule main = parse
(digits) '.' digits as f
{ Float (float_of_string f) :: main lexbuf}

| digits as n
{ Int (int_of_string n) :: main lexbuf }

| letters as s
{ String s :: main lexbuf}

10/25/2018 43

Dealing with comments

(* Continued from rule main *)

| open_comment { comment lexbuf}

| eof { [] }

| _ { main lexbuf }

and comment = parse

close_comment { main lexbuf }

| _ { comment lexbuf }

44

Dealing with nested comments

rule main = parse …
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }

and comment depth = parse
open_comment { comment (depth+1) lexbuf }

| close_comment { if depth = 1
then main lexbuf
else comment (depth - 1)

lexbuf
}

| _ { comment depth lexbuf }

10/25/2018 45

Types of Formal Language Descriptions

 Regular expressions, regular grammars

 Context-free grammars, BNF grammars, syntax

diagrams

 Finite state automata

 Pushdown automata

 Whole family more of grammars and automata –

covered in automata theory

10/25/2018 46

BNF Grammars

 Start with a set of characters, a,b,c,…

 We call these terminals

 Add a set of different characters, X,Y,Z,…

 We call these nonterminals

 One special nonterminal S called start
symbol

10/25/2018 47

BNF Grammars

 BNF rules (aka productions) have form

X ::= y

where X is any nonterminal and y is a string of

terminals and nonterminals

 BNF grammar is a set of BNF rules such that

every nonterminal appears on the left of some

rule

10/25/2018 48

Example: Regular Grammars

 Regular grammar:

<Balanced> ::=

<Balanced> ::= 0<OneAndMore>

<Balanced> ::= 1<ZeroAndMore>

<OneAndMore> ::= 1<Balanced>

<ZeroAndMore> ::= 0<Balanced>

 Generates even length strings where every initial
substring of even length has same number of 0’s
as 1’s

49

Example of BNF: Regular Grammars

 Subclass of BNF -- has only rules of the form:

<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::=ε

 Defines same class of languages as regular expressions

 Important for writing lexers (programs that convert strings
of characters into strings of tokens)

 Close connection to nondeterministic finite state automata

 nonterminals = states;

 rule = edge

10/25/2018 50

BNF Grammars

 BNF rules (aka productions) have form

X ::= y

where X is any nonterminal and y is a string of

terminals and nonterminals

 BNF grammar is a set of BNF rules such that

every nonterminal appears on the left of some

rule

10/25/2018 51

Sample BNF Grammar

 Language: Parenthesized sums of 0’s and 1’s

 <Sum> ::= 0

 <Sum >::= 1

 <Sum> ::= <Sum> + <Sum>

 <Sum> ::= (<Sum>)

10/25/2018 52

Sample Grammar

 Terminals: 0 1 + ()
 Nonterminals: <Sum>
 Start symbol = <Sum>

 <Sum> ::= 0
 <Sum >::= 1
 <Sum> ::= <Sum> + <Sum>
 <Sum> ::= (<Sum>)
 Can be abbreviated as
<Sum> ::= 0 | 1

| <Sum> + <Sum> | (<Sum>)

10/25/2018 53

BNF Deriviations

 Given rules

X::= yZw and Z::=v

we may replace Z by v to say

X => yZw => yvw

 Sequence of such replacements called
derivation

 Derivation called right-most if always
replace the right-most non-terminal

10/25/2018 54

BNF Derivations

 Start with the start symbol:

<Sum> =>

10/25/2018 55

BNF Derivations

 Pick a non-terminal

<Sum> =>

10/25/2018 56

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

BNF Derivations

10/25/2018 57

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

10/25/2018 58

 Pick a rule and substitute:

 <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

BNF Derivations

10/25/2018 59

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

BNF Derivations

10/25/2018 60

 Pick a rule and substitute:

 <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

10/25/2018 61

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

BNF Derivations

10/25/2018 62

 Pick a rule and substitute:

 <Sum >::= 1

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

BNF Derivations

10/25/2018 63

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

BNF Derivations

10/25/2018 64

 Pick a rule and substitute:

 <Sum >::= 0

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0

BNF Derivations

10/25/2018 65

 Pick a non-terminal:

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0

BNF Derivations

10/25/2018 66

 Pick a rule and substitute

 <Sum> ::= 0

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) 0

=> (0 + 1) + 0

BNF Derivations

10/25/2018 67

 (0 + 1) + 0 is generated by grammar

<Sum> => <Sum> + <Sum >

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0

=> (0 + 1) + 0

BNF Derivations

10/25/2018 68

 Graphical representation of derivation

 Each node labeled with either non-terminal or

terminal

 If node is labeled with a terminal, then it is a leaf (no

sub-trees)

 If node is labeled with a non-terminal, then it has one

branch for each character in the right-hand side of

rule used to substitute for it

Parse Trees

10/25/2018 69

Example

 Consider grammar:

<exp> ::= <factor>

| <factor> + <factor>

<factor> ::= <bin>

| <bin> * <exp>

<bin> ::= 0 | 1

 Goal: Build parse tree for 1 * 1 + 0 as an <exp>

10/25/2018 70

Example cont.

 1 * 1 + 0: <exp>

<exp> is the start symbol for this parse tree

10/25/2018 71

Example cont.

 1 * 1 + 0: <exp>

<factor>

Use rule: <exp> ::= <factor>

10/25/2018 72

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

Use rule: <factor> ::= <bin> * <exp>

10/25/2018 73

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

| <factor> + <factor>

Use rules: <bin> ::= 1 and

<exp> ::= <factor> + <factor>

10/25/2018 74

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

<bin> <bin>

Use rule: <factor> ::= <bin>

10/25/2018 75

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

<bin> <bin>

1 0

Use rules: <bin> ::= 1 | 0

10/25/2018 76

Example cont.

 1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

<bin> <bin>

1 0

Use rules: <bin> ::= 1 | 0

