Programming Languages and Compilers (CS 421)

Sasa Misailovic
4110 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based on slides by Elsa Gunter, which were inspired by earlier slides by Mattox Beckman, Vikram Adve, and Gul Agha
Course Objectives

- New programming paradigm
 - Functional programming
 - Environments and Closures
 - Patterns of Recursion
 - Continuation Passing Style

- Phases of an interpreter / compiler
 - Lexing and parsing
 - Type systems
 - Interpretation

- Programming Language Semantics
 - Lambda Calculus
 - Operational Semantics
 - Axiomatic Semantics
Major Phases of a Compiler

Source Program
- Lex
 - Tokens
- Parse
 - Abstract Syntax

Semantic Analysis
- Environment

Translate
- Intermediate Representation (CPS)

Analyze + Transform
- Optimized IR (CPS)

Instruction Selection
- Unoptimized Machine-Specific Assembly Language

Instruction Optimize
- Optimized Machine-Specific Assembly Language

Emit Code
- Assembly Language

Assembler
- Relocatable Object Code

Linker
- Machine Code

Modified from “Modern Compiler Implementation in ML”, by Andrew Appel
Major Phases of a PicoML Interpreter

Source Program

Lex

Tokens

Parse

Abstract Syntax

Semantic Analysis

Environment

Translate

Intermediate Representation (CPS)

Analyze + Transform

Optimized IR (CPS)

Interpreter Execution

Program Run
Meta-discourse

Language Syntax and Semantics

- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars

- Semantics
 - Natural Semantics
 - Transition Semantics
Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Break the big strings into tokens (lex)
- Turn tokens into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)
Syntax of English Language

- Pattern 1

<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
</tr>
<tr>
<td>The dog</td>
<td>barked</td>
</tr>
<tr>
<td>Susan</td>
<td>yawned</td>
</tr>
</tbody>
</table>

- Pattern 2

<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
<th>Direct Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
<td>ballads</td>
</tr>
<tr>
<td>The professor</td>
<td>wants</td>
<td>to retire</td>
</tr>
<tr>
<td>The jury</td>
<td>found</td>
<td>the defendant guilty</td>
</tr>
</tbody>
</table>
Elements of Syntax

- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)
Elements of Syntax

- Expressions

 if ... then begin ... ; ... end else begin ... ; ... end

- Type expressions

 \(\text{typexpr}_1 \rightarrow \text{typexpr}_2 \)

- Declarations (in functional languages)

 let \(\text{pattern} = \text{expr} \)

- Statements (in imperative languages)

 \(a = b + c \)

- Subprograms

 let \(\text{pattern}_1 = \text{expr}_1 \) in \(\text{expr} \)
Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)
Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - **Lexing**: Converting string (or streams of characters) into lists (or streams) of tokens (the “words” of the language)
 - Specification Technique: Regular Expressions
 - **Parsing**: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars
Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory
Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs
Regular Expressions - Review

- Start with a given character set – a, b, c...

- Each character is a regular expression
 - It represents the set of one string containing just that character
Regular Expressions

- If \(x \) and \(y \) are regular expressions, then \(xy \) is a regular expression
 - It represents the set of all strings made from first a string described by \(x \) then a string described by \(y \)
 - If \(x=\{a,ab\} \) and \(y=\{c,d\} \) then \(xy=\{ac,ad,abc,abd\} \).

- If \(x \) and \(y \) are regular expressions, then \(x \lor y \) is a regular expression
 - It represents the set of strings described by either \(x \) or \(y \)
 - If \(x=\{a,ab\} \) and \(y=\{c,d\} \) then \(x \lor y=\{a,ab,c,d\} \).
Regular Expressions

- If \(x \) is a regular expression, then so is \((x)\)
 - It represents the same thing as \(x\)
- If \(x \) is a regular expression, then so is \(x^*\)
 - It represents strings made from concatenating zero or more strings from \(x\)
 - If \(x = \{a, ab\} \) then \(x^* = \{\"\", a, ab, aa, aab, abab, \ldots\}\)
- \(\varepsilon\)
 - It represents \{"\"\}, set containing the empty string
- \(\emptyset\)
 - It represents \{\}, the empty set
Example Regular Expressions

- \((0\lor1)^*1\)
 - The set of all strings of 0’s and 1’s ending in 1,
 - \(\{1, 01, 11,\ldots\}\)

- \(a^*b(a^*)\)
 - The set of all strings of a’s and b’s with exactly one b

- \(((01) \lor (10))^*\)
 - You tell me

- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words
Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language

- **Identifier** = \((a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z) (a \lor b \lor \ldots \lor z \lor A \lor B \lor \ldots \lor Z \lor 0 \lor 1 \lor \ldots \lor 9)^*\)

- **Digit** = \((0 \lor 1 \lor \ldots \lor 9)\)

- **Number** = \(0 \lor (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^* \lor - (1 \lor \ldots \lor 9)(0 \lor \ldots \lor 9)^*\)

- **Keywords**: if = if, while = while,...
Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374
Lexing

- Different syntactic categories of “words”: tokens

Example:
- Convert sequence of characters into sequence of strings, integers, and floating point numbers.
- "asd 123 jkl 3.14" will become:

 [String "asd"; Int 123; String "jkl"; Float 3.14]
Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
 - A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml
How to do it

To use regular expressions to parse our input we need:

- Some way to identify the input string — call it a lexing buffer
- Set of regular expressions,
- Corresponding set of actions to take when they are matched.
How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.
Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file `<filename>.mll`
- Call

```
ocamllex `<filename>.mll`
```
- Produces Ocaml code for a lexical analyzer in file `<filename>.ml`
Sample Input

rule main = parse
 ['0'-'9']+ { print_string "Int\n"}
| ['0'-'9']+.'['0'-'9']+ { print_string "Float\n"}
| ['a'-'z']+ { print_string "String\n"}
| _ { main lexbuf }
{
 let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex.\n";
 main newlexbuf
}
General Input

```plaintext
{ header }

let ident = regexp ...

rule entrypoint [arg1... argn] = parse
    regexp { action }
    ...
    ...
    ...
    regexp { action }

and entrypoint [arg1... argn] = parse
    ...
    ...and ...

{ trailer }
```
Ocamllex Input

- header and trailer contain arbitrary ocaml code put at top an bottom of <filename>.ml

- let ident = regexp ... Introduces ident for use in later regular expressions
Ocamlllex Input

- `<filename>.ml` contains one lexing function per `entrypoint`
 - Name of function is name given for `entrypoint`
 - Each entry point becomes an Ocaml function that takes $n + 1$ arguments, the extra implicit last argument being of type `Lexing.lexbuf`
- `arg1... argn` are for use in `action`
Ocamllex Regular Expression

- Single quoted characters for letters: ‘a’
- _: (underscore) matches any letter
- Eof: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- e_1 / e_2: choice - what was $e_1 \lor e_2$
Ocamllex Regular Expression

- \([c_1 - c_2]\): choice of any character between first and second inclusive, as determined by character codes
- \([^c_1 - c_2]\): choice of any character NOT in set
- \(e^*\): same as before
- \(e^+\): same as \(e \ e^*\)
- \(e?\): option - was \(e_1 \lor \varepsilon\)
Ocamllex Regular Expression

- $e_1 \# e_2$: the characters in e_1 but not in e_2; e_1 and e_2 must describe just sets of characters

- **ident**: abbreviation for earlier reg exp in let

 $ident = \ regexp$

- e_1 as id: binds the result of e_1 to id to be used in the associated action
Ocamllex Manual

More details can be found at

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html
Example: test.mll

```ml
{
  type result = Int of int | Float of float | String of string
}

let digit = ['0'-'9']
let digits = digit+
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter+
```
Example: test.mll

rule main = parse
 (digits)'.'digits as f
 { Float (float_of_string f) }
| digits as n { Int (int_of_string n) }
| letters as s { String s}
| _ { main lexbuf }

{ let newlexbuf = (Lexing.from_channel stdin) in
 print_string "Ready to lex."
 print_newline ();
 main newlexbuf
}

Example

#use "test.ml";;
...
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> result = <fun>

Ready to lex.

hi there 234 5.2
- : result = String "hi"

What happened to the rest?!?
Example

let b = Lexing.from_channel stdin;;
main b;;
h i 673 t h e r e
- : result = String "hi"
main b;;
- : result = Int 673
main b;;
- : result = String "there"
Problem

- How to get lexer to look at more than the first token at one time?
- Answer: `action` has to tell it to -- recursive calls
- Side Benefit: can add “state” into lexing
- Note: already used this with the `_` case
Example

```haskell
rule main = parse
  (digits) '.' digits as f
  { Float (float_of_string f) :: main lexbuf}
| digits as n
  { Int (int_of_string n) :: main lexbuf }
| letters as s
  { String s :: main lexbuf}
| eof   { [] }
| _     { main lexbuf }
```
Example Results

Ready to lex.
hi there 234 5.2
- : result list = [String "hi"; String "there";
 Int 234; Float 5.2]
#

Used Ctrl-d to send the end-of-file signal
Dealing with comments

First Attempt

let open_comment = "(*"
let close_comment = "*)"

rule main = parse
 (digits) "." digits as f
 { Float (float_of_string f) :: main lexbuf}
| digits as n
 { Int (int_of_string n) :: main lexbuf }
| letters as s
 { String s :: main lexbuf}
Dealing with comments

(* Continued from rule main *)
| open_comment { comment lexbuf}
| eof { [] }
| _ { main lexbuf }

and comment = parse
 close_comment { main lexbuf }
| _ { comment lexbuf }
Dealing with nested comments

rule main = parse ...
| open_comment { comment 1 lexbuf}
| eof { [] }
| _ { main lexbuf }

and comment depth = parse
 open_comment { comment (depth+1) lexbuf }
| close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1)
 lexbuf
 }
| _ { comment depth lexbuf }
Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata

- Whole family more of grammars and automata – covered in automata theory
Regular Grammars

- Subclass of BNF (covered in detail soon)
- Only rules of form
 \[<\text{nonterminal}> ::= <\text{terminal}> <\text{nonterminal}> \] or
 \[<\text{nonterminal}> ::= <\text{terminal}> \] or \[<\text{nonterminal}> ::= \varepsilon \]
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata
 - nonterminals = states;
 - rule = edge
Example

- Regular grammar:

 `<Balanced> ::= ε
 `<Balanced> ::= 0<OneAndMore>
 `<Balanced> ::= 1<ZeroAndMore>
 `<OneAndMore> ::= 1<Balanced>
 `<ZeroAndMore> ::= 0<Balanced>

- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
BNF Grammars

- Start with a set of characters, \(a, b, c, \ldots \)
 - We call these *terminals*

- Add a set of different characters, \(X, Y, Z, \ldots \)
 - We call these *nonterminals*

- One special nonterminal \(S \) called *start symbol*
BNF Grammars

- BNF rules (aka *productions*) have form
 \[X ::= y \]
 where \(X \) is any nonterminal and \(y \) is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s

- \(<\text{Sum}> ::= 0\)
- \(<\text{Sum}> ::= 1\)
- \(<\text{Sum}> ::= <\text{Sum}> + <\text{Sum}>\)
- \(<\text{Sum}> ::= (<\text{Sum}>)\)
Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>

- \(<Sum> ::= 0\)
- \(<Sum> ::= 1\)
- \(<Sum> ::= <Sum> + <Sum>\)
- \(<Sum> ::= (<Sum>)\)

Can be abbreviated as
\(<Sum> ::= 0 | 1
| <Sum> + <Sum> | (<Sum>)\)
BNF Derivations

- Given rules

 \[X ::= yZw \text{ and } Z ::= \nu \]

 we may replace \(Z \) by \(\nu \) to say

 \[X \Rightarrow yZw \Rightarrow y\nu w \]

- Sequence of such replacements called \textit{derivation}

- Derivation called \textit{right-most} if always replace the right-most non-terminal
BNF Derivations

- Start with the start symbol:

<Sum> =>
BNF Derivations

- Pick a non-terminal

<Sum> =>
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= <Sum> + <Sum>`

 `<Sum> => <Sum> + <Sum>`
BNF Derivations

- Pick a non-terminal:

<Sum> => <Sum> + <Sum >
BNF Derivations

- Pick a rule and substitute:
 - \(<\text{Sum}> ::= (\ <\text{Sum}> \)\)

\(<\text{Sum}> \rightarrow \ <\text{Sum}> + \ <\text{Sum}> \)

\(\rightarrow (\ <\text{Sum}> \) + \ <\text{Sum}>\)
BNF Derivations

- Pick a non-terminal:

<Sum> => <Sum> + <Sum>

=> (<Sum>) + <Sum>
BNF Derivations

- Pick a rule and substitute:
 - \(<\text{Sum}\> ::= \langle\text{Sum}\rangle + \langle\text{Sum}\rangle\)

\(<\text{Sum}\> \Rightarrow \langle\text{Sum}\rangle + \langle\text{Sum}\rangle\)

\[\Rightarrow (\langle\text{Sum}\rangle) + \langle\text{Sum}\rangle\]

\[\Rightarrow (\langle\text{Sum}\rangle + \langle\text{Sum}\rangle) + \langle\text{Sum}\rangle\]
BNF Derivations

Pick a non-terminal:

\[\langle \text{Sum} \rangle \Rightarrow \langle \text{Sum} \rangle + \langle \text{Sum} \rangle \]

\[\Rightarrow (\langle \text{Sum} \rangle) + \langle \text{Sum} \rangle \]

\[\Rightarrow (\langle \text{Sum} \rangle + \langle \text{Sum} \rangle) + \langle \text{Sum} \rangle \]
BNF Derivations

- Pick a rule and substitute:
 - `<Sum> ::= 1`

```
<Sum> => <Sum> + <Sum>

=> ( <Sum> ) + <Sum>

=> ( <Sum> + <Sum> ) + <Sum>

=> ( <Sum> + 1 ) + <Sum>
```
BNF Derivations

Pick a non-terminal:

<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
BNF Derivations

- Pick a rule and substitute:
 - `<Sum>` ::= 0

<Sum> => <Sum> + <Sum>

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0
BNF Derivations

- Pick a non-terminal:

\[
<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}>) + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}>
\]

\[
\Rightarrow (<\text{Sum}> + 1) + 0
\]
BNF Derivations

- Pick a rule and substitute
 - `<Sum>` ::= 0

```
<Sum>  =>  <Sum> + <Sum>
=> ( <Sum> ) + <Sum>
=> ( <Sum> + <Sum> ) + <Sum>
=> ( <Sum> + 1 ) + <Sum>
=> ( <Sum> + 1 ) 0
=> ( 0 + 1 ) + 0
```
BNF Derivations

- \((0 + 1) + 0\) is generated by grammar

\[\begin{align*}
<\text{Sum}> &\Rightarrow <\text{Sum}> + <\text{Sum}> \\
&\Rightarrow (<\text{Sum}>) + <\text{Sum}> \\
&\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \\
&\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}> \\
&\Rightarrow (<\text{Sum}> + 1) + 0 \\
&\Rightarrow (0 + 1) + 0
\end{align*}\]