Programming Languages and Compilers (CS 42I)

Sasa Misailovic 4110 SC, UIUC

 https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based on slides by Elsa Gunter, which were inspired by earlier slides by Mattox Beckman, Vikram Adve, and Gul Agha

Course Objectives

- New programming paradigm
- Functional programming
- Environments and Closures
- Patterns of Recursion
- Continuation Passing Style
- Phases of an interpreter / compiler
- Lexing and parsing
- Type systems
- Interpretation
- Programming Language Semantics
- Lambda Calculus
- Operational Semantics
- Axiomatic Semantics

Major Phases of a Compiler

Analyze + Transform Optimized IR (CPS) Instruction Selection
Unoptimized Machine-Specific Assembly Language
Instruction Optimize
Relocatable Object Code
Linker Optimized Machine-Specific Assembly Language Emit code Assembly Language Aachine Code

Modified from "Modern Compiler Implementation in ML", by Andrew Appel

Major Phases of a PicoML Interpreter

Meta-discourse

Language Syntax and Semantics

- Syntax
- Regular Expressions, DFSAs and NDFSAs
- Grammars
- Semantics
- Natural Semantics
- Transition Semantics

Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Break the big strings into tokens (lex)
- Turn tokens into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)

Syntax of English Language

- Pattern I

Subject	Verb
David	sings
The dog	barked
Susan	yawned

- Pattern 2

Subject	Verb	Direct Object
David	sings	ballads
The professor	wants	to retire
The jury	found	the defendant guilty

Elements of Syntax

- Character set - previously always ASCII, now often 64 character sets
- Keywords - usually reserved
- Special constants - cannot be assigned to
- Identifiers - can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Elements of Syntax

- Expressions
if ... then begin ... ; ... end else begin ... ; ... end
- Type expressions

$$
\text { typexpr }_{1}->\text { typexpr }_{2}
$$

- Declarations (in functional languages) let pattern = expr
- Statements (in imperative languages)

$$
a=b+c
$$

- Subprograms

$$
\text { let pattern }{ }_{1}=\text { expr }_{1} \text { in expr }
$$

Elements of Syntax

- Modules

- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
- Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the "words" of the language)
- Specification Technique: Regular Expressions
- Parsing: Convert a list of tokens into an abstract syntax tree
- Specification Technique: BNF Grammars

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata covered in automata theory

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

Regular Expressions - Review

- Start with a given character set - a, b, c...
- Each character is a regular expression - It represents the set of one string containing just that character

Regular Expressions

- If x and y are regular expressions, then $x y$ is a regular expression
- It represents the set of all strings made from first a string described by x then a string described by y If $x=\{a, a b\}$ and $y=\{c, d\}$ then $x y=\{a c, a d, a b c, a b d\}$.
- If x and y are regular expressions, then $x \vee y$ is a regular expression
- It represents the set of strings described by either \mathbf{x} or y

$$
\text { If } x=\{a, a b\} \text { and } y=\{c, d\} \text { then } x \vee y=\{a, a b, c, d\}
$$

Regular Expressions

- If x is a regular expression, then so is (x)
- It represents the same thing as x
- If x is a regular expression, then so is x^{*}
- It represents strings made from concatenating zero or more strings from x

$$
\text { If } x=\{a, a b\} \text { then } x^{*}=\{" ", a, a b, a a, a a b, a b a b, \ldots\}
$$

■ ε

- It represents \{""\}, set containing the empty string
- Φ
- It represents \{ \}, the empty set

Example Regular Expressions

- (OV)*I
- The set of all strings of 0 ' s and I's ending in I,
- $\{1,01$, II,...\}
- a*b(a*)
- The set of all strings of a ' s and b ' s with exactly one b
- ((01) $\vee(10))^{*}$
- You tell me
- Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words

Example: Lexing

- Regular expressions good for describing lexemes (words) in a programming language
- Identifier $=(a \vee b \vee \ldots \vee z \vee A \vee B \vee \ldots \vee Z)(a \vee b$ $\vee \ldots \vee z \vee A \vee B \vee \ldots \vee Z \vee 0 \vee I \vee \ldots \vee 9)^{*}$
- Digit $=(0 \vee I \vee \ldots \vee 9)$
- Number $=0 \vee(1 \vee \ldots \vee 9)(0 \vee \ldots \vee 9)^{*} \vee$

$$
-(1 \vee \ldots \vee 9)(0 \vee \ldots \vee 9)^{*}
$$

- Keywords: if = if, while = while,...

Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
- which option to choose,
- how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374

Lexing

- Different syntactic categories of "words": tokens

Example:

- Convert sequence of characters into sequence of strings, integers, and floating point numbers.
- "asd I23 jkl 3.14" will become:
[String "asd"; Int I23; String "jkl"; Float 3.I4]

Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
- A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml

How to do it

- To use regular expressions to parse our input we need:
- Some way to identify the input string call it a lexing buffer
- Set of regular expressions,
- Corresponding set of actions to take when they are matched.

How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.

Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file <filename>.mll
- Call ocamllex <filename>.mll
- Produces Ocaml code for a lexical analyzer in file <filename>.ml

Sample Input

rule main = parse

$$
\begin{aligned}
& \text { ['0'-'9']+ \{ print_string "Int\n"\} } \\
& \mid \text { ['0'-'9']+'.'['0'-'9']+ \{ print_string "Float } \backslash n "\} \\
& \mid \text { ['a'-'z']+ \{ print_string "String } \backslash n "\} \\
& \mid-\{\text { main lexbuf \} }
\end{aligned}
$$

\{
let newlexbuf = (Lexing.from_channel stdin) in print_string "Ready to lex.\n";
main newlexbuf
\}

General Input

\{ header \}
let ident = regexp ...
rule entrypoint [arg1... argn] = parse regexp \{ action \} | ... | regexp \{ action \} and entrypoint [arg1... argn] = parse ...and ...
\{ trailer \}

Ocamllex Input

- header and trailer contain arbitrary ocaml code put at top an bottom of <filename>.ml
- let ident = regexp ... Introduces ident for use in later regular expressions

Ocamllex Input

- <filename>.ml contains one lexing function per entrypoint
- Name of function is name given for entrypoint
- Each entry point becomes an Ocaml function that takes $n+I$ arguments, the extra implicit last argument being of type Lexing.lexbuf
- arg/... argn are for use in action

Ocamllex Regular Expression

- Single quoted characters for letters: "a'
- _: (underscore) matches any letter
- Eof: special "end_of_file" marker
- Concatenation same as usual
- "string": concatenation of sequence of characters
- $e_{/} / e_{2}$: choice - what was $e_{/} \vee e_{2}$

Ocamllex Regular Expression

- [$c_{1}-c_{2}$]: choice of any character between first and second inclusive, as determined by character codes
- [$\left.{ }^{\wedge} c_{1}-c_{2}\right]$: choice of any character NOT in set
- e^{*} : same as before
- e+. same as $e e^{*}$
- e?: option - was $e, \vee \varepsilon$

Ocamllex Regular Expression

- $e_{/} \# e_{2}$ the characters in $e_{/}$but not in $e_{2} ; e_{1}$ and e_{2} must describe just sets of characters
- ident. abbreviation for earlier reg exp in let ident $=$ regexp
- e, as id. binds the result of e, to id to be used in the associated action

Ocamllex Manual

- More details can be found at

http://caml.inria.fr/pub/docs/manual-

 ocaml/lexyacc.html
Example : test.mll

\{

$$
\begin{aligned}
\text { type result }= & \text { Int of int | Float of float | } \\
& \text { String of string }
\end{aligned}
$$

\}
let digit = ['0'-'9']
let digits = digit+
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter+

Example : test.mll

rule main = parse
(digits)'.'digits as f
\{ Float (float_of_string f) \}
| digits as n \{ Int (int_of_string n) \}
| letters as s \{ String s\}
| _ \{ main lexbuf \}
\{
let newlexbuf = (Lexing.from_channel stdin) in print_string "Ready to lex."; print_newline ();
main newlexbuf

Example

\# \#use "test.ml";

val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> result = <fun>
Ready to lex.
hi there 2345.2

- : result = String "hi"

What happened to the rest?!?

Example

\# let b = Lexing.from_channel stdin; ; \# main b;
hi 673 there

- : result = String "hi"
\# main b; ;
- : result = Int 673
\# main b;
- : result = String "there"

Problem

- How to get lexer to look at more than the first token at one time?
- Answer: action has to tell it to -- recursive calls
- Side Benefit: can add "state" into lexing
- Note: already used this with the _ case

Example

rule main = parse
(digits) '.' digits as f
\{ Float (float_of_string f) : : main lexbuf\}
| digits as n
\{ Int (int_of_string n) : : main lexbuf \}
| letters as s
\{ String s : : main lexbuf\}
| eof \{ [] \}
| _ \{ main lexbuf \}

Example Results

Ready to lex.
hi there 2345.2

- : result list = [String "hi"; String "there"; Int 234; Float 5.2]
\#

Used Ctrl-d to send the end-of-file signal

Dealing with comments

First Attempt

let open_comment = "(*"
let close_comment = "*)"
rule main = parse
(digits) '.' digits as f
\{ Float (float_of_string f) :: main lexbuf\}
| digits as n
\{ Int (int_of_string n) :: main lexbuf \}
| letters as s
\{ String s :: main lexbuf\}

Dealing with comments

(* Continued from rule main *)
$\begin{array}{ll}\text { | open_comment } & \{\text { comment } \\ \text { lexbuf }\} \\ \text { eof } & \{[]\} \\ \mid \quad \text { _ main lexbuf }\} & \end{array}$
and comment = parse
close_comment
\{ main lexbuf \}
\{ comment lexbuf \}

Dealing with nested comments

rule main = parse ...
| open_comment \{ comment 1 lexbuf\}

| _ \{ main lexbuf \}
and comment depth = parse open_comment \{ comment (depth+1) lexbuf \}
| close_comment \{ if depth = 1
then main lexbuf
else comment (depth - 1)
\}
\{ comment depth lexbuf \}

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Pushdown automata
- Whole family more of grammars and automata covered in automata theory

BNF Grammars

- Start with a set of characters, a,b,c,... - We call these terminals
- Add a set of different characters, X,Y,Z,... - We call these nonterminals
- One special nonterminal S called start symbol

BNF Grammars

- BNF rules (aka productions) have form $X::=y$
where \mathbf{X} is any nonterminal and y is a string of terminals and nonterminals
- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Example: Regular Grammars

- Regular grammar:
<Balanced> ::= ε
<Balanced> ::= 0<OneAndMore>
<Balanced> ::= |<ZeroAndMore>
<OneAndMore> ::= |<Balanced>
<ZeroAndMore> ::= 0<Balanced>
- Generates even length strings where every initial substring of even length has same number of 0 ' s as I's

Example of BNF: Regular Grammars

- Subclass of BNF -- has only rules of the form:
<nonterminal>::=<terminal><nonterminal> or
<nonterminal>::=<terminal> or
<nonterminal>::= $=$
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata
- nonterminals = states;
- rule = edge

BNF Grammars

- BNF rules (aka productions) have form $X::=y$
where \mathbf{X} is any nonterminal and y is a string of terminals and nonterminals
- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample BNF Grammar

- Language: Parenthesized sums of 0's and I's
- <Sum> ::= 0
- <Sum >::=
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)

Sample Grammar

- Terminals: 0 I + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>
- <Sum> ::= 0
- <Sum >::=
- <Sum> ::= <Sum> + <Sum>
<Sum> ::= (<Sum>)
- Can be abbreviated as
<Sum> ::=0|l
| <Sum> + <Sum> | (<Sum>)

BNF Deriviations

- Given rules

$$
\mathbf{X}::=y \mathbf{Z} w \text { and } \mathbf{Z}::=v
$$

we may replace \mathbf{Z} by v to say

$$
\mathbf{X}=>y \mathbf{Z} w=>y v w
$$

- Sequence of such replacements called derivation
- Derivation called right-most if always replace the right-most non-terminal

BNF Derivations

- Start with the start symbol:

<Sum> =>

BNF Derivations

- Pick a non-terminal

<Sum> =>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a non-terminal:

<Sum> => <Sum> + <Sum >

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= (<Sum>)
<Sum> => <Sum> + <Sum >

$$
=>(<\text { Sum }>)+<\text { Sum }>
$$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >
=> (<Sum>) + <Sum>

BNF Derivations

- Pick a rule and substitute:
- <Sum> ::= <Sum> + <Sum>
<Sum> => <Sum> + <Sum >
$=>($ <Sum $>)+$ <Sum $>$
$=>($ <Sum $>+$ <Sum $>)+$ <Sum $>$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { <Sum }>)+\text { <Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= ।
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SSum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+\text { <Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+\text { <Sum }>
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute:
- <Sum >::= 0
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+1)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+0
\end{aligned}
$$

BNF Derivations

- Pick a non-terminal:
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { <Sum })+\text { <Sum }> \\
& =>(\text { <Sum }>+1)+\text { <Sum }> \\
& =>(\text { SSum }>+1)+0
\end{aligned}
$$

BNF Derivations

- Pick a rule and substitute
- <Sum> ::= 0
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+1)+\text { <Sum }> \\
& =>(\text { SUum }>+1) 0 \\
& =>(0+1)+0
\end{aligned}
$$

BNF Derivations

- $(0+1)+0$ is generated by grammar
<Sum> => <Sum> + <Sum >

$$
\begin{aligned}
& =>(\text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+ \text { <Sum }>)+\text { <Sum }> \\
& =>(\text { <Sum }>+1)+\text { <Sum }> \\
& =>(\text { SUum }>+1)+0 \\
& =>(0+1)+0
\end{aligned}
$$

Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it

Example

- Consider grammar:
$\begin{aligned} \text { <exp> } \quad: & =\text { <factor> } \\ & \mid<\text { factor> + <factor> }\end{aligned}$
<factor> ::= <bin>
| <bin> * <exp>
<bin> ::= 0 |
- Goal: Build parse tree for 1 * $1+0$ as an <exp>

Example cont.

$$
\text { - } 1^{*} 1+0: \quad \text { <exp> }
$$

<exp> is the start symbol for this parse tree

Example cont.

$$
\text { - } 1 * 1+0: \underset{\substack{* \\<\text { factor> }}}{\text { <exp> }}
$$

Use rule: <exp> ::= <factor>

Example cont.

$$
\begin{aligned}
& \text { - } 1^{*} 1+0: \quad \underset{\mid}{\text { <exp> }} \\
& \text { <bin> } \overbrace{*}^{\text {<factor> }}<\text { exp> }
\end{aligned}
$$

Use rule: <factor> ::= <bin> * <exp>

Example cont.

Use rules: <bin> ::= | and <exp> ::= <factor> + <factor>

Example cont.

Use rule: <factor> ::= <bin>

Example cont.

Use rules: <bin> ::= 1 | 0

Example cont.

Use rules: <bin> ::= 1 | 0

