Two Problems

- **Type checking**
 - Question: Does exp. e have type \(\tau \) in env \(\Gamma \)?
 - Answer: Yes / No
 - Method: Type derivation

- **Typability**
 - Question: Does exp. e have some type in env. \(\Gamma \)? If so, what is it?
 - Answer: Type \(\tau \) / error
 - Method: Type inference

Type Inference - Outline

- Begin by assigning a **type variable** as the type of the whole expression
- **Decompose the expression** into component expressions
- **Use typing rules to generate constraints** on components and whole
- **Recursively find substitution** that solves typing judgment of first subcomponent
- **Apply substitution to next subcomponent** and find substitution solving it; compose with first, etc.
- **Apply composition of all substitutions** to original type variable to get answer

Type Inference - Example

What type can we give to

\[
(\text{fun } x \to \text{fun } f \to f(f\ x))
\]

- Start with a type variable and then look at the way the term is constructed

Type Inference - Example

- **First approximate:** Give type to full expr

 \[
 \{ \} \vdash (\text{fun } x \to \text{fun } f \to f(f\ x)) : \alpha
 \]

- **Second approximate:** use fun rule

 \[
 \{ x : \beta \} \vdash (\text{fun } f \to f(f\ x)) : \gamma

 \{ \} \vdash (\text{fun } x \to \text{fun } f \to f(f\ x)) : \alpha
 \]

- **Remember constraint** \(\alpha \equiv (\beta \to \gamma) \)

Type Inference - Example

- **Third approximate:** use fun rule

 \[
 \begin{align*}
 &\{ x : \beta \} \vdash f(f\ x) : \epsilon \\
 &\{ \} \vdash (\text{fun } f \to f(f\ x)) : \gamma \\
 &\{ \} \vdash (\text{fun } x \to \text{fun } f \to f(f\ x)) : \alpha
 \end{align*}
 \]

- \(\alpha = (\beta \to \gamma); \ \gamma = (\delta \to \epsilon) \)
Type Inference - Example

- Fourth approximate: use app rule

\[
\{ f : \delta ; x : \beta \} |- f : \varphi \rightarrow \varepsilon \quad \{ f : \delta ; x : \beta \} |- f \times : \varphi
\]

\[
{ f : \delta ; x : \beta } |- (f (f x)) : \varepsilon
\]

\[
{x : \beta } |- (\text{fun } f \rightarrow f (f x)) : \gamma
\]

\[
\{ \} |- (\text{fun } x \rightarrow \text{fun } f \rightarrow f (f x)) : \alpha
\]

\[
\alpha \equiv (\beta \rightarrow \gamma) ; \gamma \equiv (\delta \rightarrow \varepsilon)
\]

Type Inference - Example

- Fifth approximate: use var rule, get constraint \(\delta \equiv \varphi \rightarrow \varepsilon \), Solve with same

\[
\{ f : \delta ; x : \beta \} |- f : \varphi \rightarrow \varepsilon \quad \{ f : \delta ; x : \beta \} |- f x : \varphi
\]

\[
{ f : \delta ; x : \beta } |- (f (f x)) : \varepsilon
\]

\[
{x : \beta } |- (\text{fun } f \rightarrow f (f x)) : \gamma
\]

\[
\{ \} |- (\text{fun } x \rightarrow \text{fun } f \rightarrow f (f x)) : \alpha
\]

\[
\alpha \equiv (\beta \rightarrow \gamma) ; \gamma \equiv (\delta \rightarrow \varepsilon)
\]
Type Inference - Example

- **Current subst:** \{\varepsilon, \beta, \delta \equiv \rightarrow \varepsilon\}
- **Apply to next sub-proof**

 (done) ... \{f : \varepsilon \rightarrow \beta; \beta : \varepsilon\} - \beta : \varepsilon

 ... \{f : \delta ; \beta : \beta\} - f x : \varepsilon

 \{x : \beta\} - (f f x) : \gamma

 \{\} - (fun x -> fun f -> f (f x)) : \alpha

 \alpha \equiv (\beta \rightarrow \gamma); \gamma \equiv (\delta \rightarrow \varepsilon)

10/16/2018
Type Inference - Example

- Current subst:
 \[
 \{ \gamma \equiv ((\beta \to \gamma), \varepsilon \equiv \beta, \zeta \equiv \beta, \varphi \equiv \beta, \delta \equiv \beta \to \beta) \}
 \]
- Solves subproof; return one layer

\[
\begin{array}{l}
\{ f : \delta ; x : \beta \} \mid (f (f x)) : \varepsilon \\
\{ x : \beta \} \mid (\text{fun } x \to f (f x)) : \gamma \\
\{ \} \mid (\text{fun } x \to \text{fun } f \to f (f x)) : \alpha
\end{array}
\]

- \(\alpha \equiv (\beta \to \gamma); \gamma \equiv (\delta \to \varepsilon) \)

Type Inference Algorithm

Let \(\text{infer } (\Gamma, e, \tau) = \sigma \)

- \(\Gamma \) is a typing environment (giving polymorphic types to expression variables)
- \(e \) is an expression
- \(\tau \) is a type (with type variables)
- \(\sigma \) is a substitution of types for type variables
- Idea: \(\sigma \) represents the constraints on type variables necessary for \(\Gamma \mid e : \tau \)
- Should have \(\sigma(\Gamma) \mid e : \sigma(\tau) \) valid

- Slight abuse of notation: \(\sigma(\Gamma) \) is substitution \(\sigma \) applied to all terms in the environment \(\Gamma = \{ x : \tau \ldots \} \) (i.e., \(\sigma(\Gamma) = \{ x : \sigma(\tau) \ldots \} \)).

Type Inference - Example

- Current subst:
 \[
 \{ \alpha \equiv ((\beta \to (\beta \to \beta)) \to \beta), \varepsilon \equiv \beta, \zeta \equiv \beta, \varphi \equiv \beta, \delta \equiv \beta \to \beta \}
 \]
- Solves subproof; return on layer

\[
\begin{array}{l}
\{ x : \beta \} \mid (\text{fun } x \to f (f x)) : \gamma \\
\{ \} \mid (\text{fun } x \to \text{fun } f \to f (f x)) : \alpha
\end{array}
\]

Type Inference Algorithm (All in one!)

\[
\begin{array}{l}
\text{infer } (\Gamma, e, \tau) = \sigma \\
\text{Case } \text{exp of} \\
\quad \text{Var } x \rightarrow \text{return } \text{Uniform}(e(x), \tau) \\
\quad \text{Const } c \rightarrow \text{return } \text{Uniform}(c, \tau) \\
\quad \text{App } (\text{fun } \alpha) \rightarrow \text{return } \text{Uniform}(\alpha, \tau) \\
\quad \text{Fun } \Gamma \mid e : \tau \to \sigma \\
\quad \text{Let } (\alpha, \beta) \rightarrow \text{return } \text{Uniform}(\alpha(\beta), \tau) \\
\quad \text{Return } \alpha(\beta) \rightarrow \text{return } \text{Uniform}(\alpha(\beta), \tau) \\
\end{array}
\]
Type Inference Algorithm

\[
\text{infer } (\Gamma, \text{exp}, \tau) =
\]

- Case \(\text{exp}\) of
 - Var \(v\) --> return \(\text{Unify}(\tau = \text{freshInstance}(\Gamma(v)))\)
 - Replace all quantified type vars by fresh ones
 - Const \(c\) --> return \(\text{Unify}(\tau = \text{freshInstance } \varnothing)\)
 where \(\Gamma \vdash c : \varnothing\) by the constant rules
 - Fun \(x \to e\) -->
 - Let \(\alpha, \beta\) be fresh variables
 - Let \(\sigma = \text{infer } ((\lambda : \alpha) + \Gamma, e, \beta)\)
 - Return \(\text{Unify}((\sigma(\tau) = \sigma(\alpha \to \beta))) \circ \sigma\)

Inference Example (Repeat)

- Fifth approximate: use var rule, get constraint \(\delta = \varnothing \to \varnothing\), Solve with same

- Apply to next sub-proof

\[
\{f : \delta; x : \beta\} \vdash f : \varnothing \to \varnothing
\]

Inference Example (Repeat)

- What do we do here?

\[
\{f : \forall \delta, \delta \to \delta ; x : \beta\} \vdash f : \varnothing \to \varnothing
\]

- And here?

\[
\{f : \forall \epsilon, \epsilon \to \epsilon ; x : \beta\} \vdash f : \varnothing \to \varnothing
\]

Inference Example (Repeat)

- Third approximate: use fun rule

\[
\{f : \exists \delta. \delta \to \delta\} \vdash f : \varnothing \to \varnothing
\]

\[
\{\} \vdash (\text{fun } x \to f(f x)) : \epsilon
\]

- \(\alpha \equiv (\beta \to \gamma)\);

Type Inference Algorithm (cont)

- Case \(\text{exp}\) of
 - App \((e_1, e_2)\) -->
 - Let \(\alpha\) be a fresh variable
 - Let \(\sigma_1 = \text{infer } (\Gamma, e_1, \alpha \to \tau)\)
 - Let \(\sigma_2 = \text{infer } (\sigma_1(\Gamma), e_2, \sigma_1(\alpha))\)
 - Return \(\sigma_2 \circ \sigma_1\)

Inference Example (Repeat)

- Fourth approximate: use app rule

\[
\{f : \delta; x : \beta\} \vdash f : \varnothing \to \varnothing\quad \{f : \delta; x : \beta\} \vdash f : \varnothing \to \varnothing
\]

\[
\{f : \delta \to \delta ; x : \beta\} \vdash f(f x) : \epsilon
\]
Type Inference Algorithm (cont)

- **Case** `exp` of
 - If `e_1` then `e_2` else `e_3` -->
 - Let `σ_1 = infer(Γ, e_1, bool)`
 - Let `σ_2 = infer(σ_1(Γ), e_2, σ_1(τ))`
 - Let `σ_3 = infer(σ_2 o σ_1(Γ), e_2, σ_2 o σ(τ))`
 - Return `σ_3 o σ_2 o σ_1`

- **Case** `exp` of
 - Let `x = e_1` in `e_2` -->
 - Let `α` be a fresh variable
 - Let `σ_1 = infer(Γ, e_1, α)`
 - Let `σ_2 = infer(Δ:GEN(σ_1(α), σ_1(Γ)))`
 + `σ_1(Γ), e_2, σ_1(τ))`
 - Return `σ_2 o σ_1`

Reminder: Type Terms

- **Terms** made from constructors and variables

 Reminder:
 - Monomorphic Types (τ):
 - Basic Types: int, bool, float, string, unit, ...
 - Type Variables: α, β, γ, δ, ε
 - Compound Types: α → β, int * string, bool list, ...
 - Polymorphic Types:
 - Monomorphic types τ
 - Universally quantified monomorphic types
 ∀τ_1,...,τ_n: τ
 - Can think of τ as same as ∀τ: τ

- **To infer a type**, introduce **type_of**
 - Let `α` be a fresh variable
 - `type_of(Γ, e) =
 let `α` be a fresh variable in
 let `σ = infer(Γ, e, α)`
 in `σ(α)`

 - Need substitution!
 - Need an algorithm for **Unif**!
Substitution Implementation

type term = Variable of string |
| Constructor of (string * term list)

let rec subst var_name residue term =
match term with
| Variable name ->
| if var_name = name then residue else term
| Constructor (c, tys) ->
| let newt = List.map (subst var_name residue) tys in Constructor (c, newt);;

Unification Problem

Given a set of pairs of terms ("equations")
\{(s_1, t_1), (s_2, t_2), \ldots, (s_n, t_n)\} *
(the unification problem) does there exist
a substitution \(\sigma\) (the unification solution)
of terms for variables such that
\(\sigma(s_i)\) is the same as \(\sigma(t_i)\),
for all \(i = 1, \ldots, n\)?

- Think of these pairs as \{("s_1\ =\ t_1"), ("s_2\ =\ t_2"), \ldots, ("s_n\ =\ t_n")\}
- This is the notation we're going to use in the example

Uses for Unification

- Type Inference and type checking
- Pattern matching as in OCaml
 - Can use a simplified version of algorithm
- Logic Programming - Prolog
- Simple parsing

Unification Algorithm

- Let \(S = \{(s_1 = t_1), (s_2 = t_2), \ldots, (s_n = t_n)\}\) be a unification problem.
- Unif(S) returns a substitution

 - Case \(S = \{\}\) : Unif(S) = Identity function
 - (i.e., no substitution)

 - Case \(S = \{(s = t)\} \cup S'\) : Four main steps
 - Delete, Decompose, Orient, Eliminate

Unification Algorithm for \(S = \{(s = t)\} \cup S'\)

- **Delete**: if \(s\) is \(t\) (\(s\) and \(t\) are the same term) then
 \(\text{Unif}(S) = \text{Unif}(S')\)
- **Decompose**: if \(s\) is \(f(q_1, \ldots, q_m)\) and \(t\) is \(f(r_1, \ldots, r_m)\)
 (same \(f\), same \(m\)), then
 \(\text{Unif}(S) = \text{Unif}(((q_1 = r_1), \ldots, (q_m = r_m)) \cup S')\)
- **Orient**: if \(t\) is \(x\) (a variable), and \(s\) is not a variable,
 \(\text{Unif}(S) = \text{Unif} (((x = s)) \cup S')\)

Unification Algorithm for \(S = \{(s = t)\} \cup S'\)

- **Eliminate**: if \(s\) is \(x\) (a variable), and \(x\) does not occur in \(t\) (use "occurs (x, t)" check!) then
 - Let \(\psi = \{x \rightarrow t\}\)
 - Let \(\psi = \text{Unif}(\psi(S'))\)
 - \(\text{Unif}(S) = \{x \rightarrow \psi(t)\} \circ \psi\)

 - Be careful when composing substitutions:
 - \(\{x \rightarrow a\} \circ \{y \rightarrow b\} = \{y \rightarrow ((x \rightarrow a)(b))\} \circ \{x \rightarrow a\}\) if \(y\) not in \(a\)
Tricks for Efficient Unification

- Don’t return substitution, rather do it incrementally
- Make substitution be constant time
 - Requires implementation of terms to use mutable structures (or possibly lazy structures)
 - We won’t discuss these

Example

- \(x,y,z \) variables, \(f,g \) constructors

| Unify \(\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ? \)

Example

- \(x,y,z \) variables, \(f,g \) constructors

| Unify \(\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ? \)

Example

- \(x,y,z \) variables, \(f,g \) constructors

Pick a pair: \((g(y,y) = x) \)

| Unify \(\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ? \) by Orient

Example

- \(x,y,z \) variables, \(f,g \) constructors

Pick a pair: \((g(y,y) = x) \)

| Unify \(\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ? \) by Orient

Example

| Unify \(\{(f(x) = f(g(f(z),y))), (g(y,y) = x)\} = ? \) by Orient
Example

- x,y,z variables, f,g constructors

- Unify \{ (f(x) = f(g(f(z), y))), (x = g(y,y)) \} = ?

Example

- x,y,z variables, f,g constructors

- \{ (f(x) = f(g(f(z), y))), (x = g(y,y)) \} is non-empty

- Unify \{ (f(x) = f(g(f(z), y))), (x = g(y,y)) \} = ?

Example

- x,y,z variables, f,g constructors

- Pick a pair: (x = g(y,y))

- Unify \{ (f(f(x)) = f(g(f(z), y))), (x = g(y,y)) \} = ?

Example

- x,y,z variables, f,g constructors

- Pick a pair: (x = g(y,y))

- Eliminate x with substitution \{ x \rightarrow g(y,y) \}

- Check: x not in g(y,y)

- Unify \{ (f(x) = f(g(f(z), y))), (x = g(y,y)) \} = ?

Example

- x,y,z variables, f,g constructors

- Pick a pair: (x = g(y,y))

- Eliminate x with substitution \{ x \rightarrow g(y,y) \}

- Check: x not in g(y,y)

- Unify \{ (f(f(g(y,y))) = f(g(f(z), y))) \}

- \{ x \rightarrow g(y,y) \} = ?
Example

- **x, y, z** variables, **f, g** constructors
- {f(g(y,y)) = f(g(f(z),y))} is non-empty

Unify {f(g(y,y)) = f(g(f(z),y))}

 o {x → g(y,y)} = ?

Example

- **x, y, z** variables, **f, g** constructors
- Pick a pair: (f(g(y,y)) = f(g(f(z),y)))
- Decompose: (f(g(y,y)) = f(g(f(z),y))) becomes
 {g(y,y) = g(f(z),y)}

Unify {f(g(y,y)) = f(g(f(z),y))}

 o {x → g(y,y)} = ?

Example

- **x, y, z** variables, **f, g** constructors
- (g(y,y) = g(f(z),y)) is non-empty

Unify {g(y,y) = g(f(z),y)}

 o {x → g(y,y)} = ?

Example

- **x, y, z** variables, **f, g** constructors
- Pick a pair: (g(y,y) = g(f(z),y))
- Decompose: (g(y,y) = g(f(z),y)) becomes
 {y = f(z); y = y}

Unify {g(y,y) = g(f(z),y)}

 o {x → g(y,y)} = ?

Unify {y = f(z); y = y} o {x → g(y,y)}
Example

- x, y, z variables, f, g constructors

- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} = ?$

Example

- x, y, z variables, f, g constructors

- $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\}$ is non-empty

- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} = ?$

Example

- x, y, z variables, f, g constructors

- Pick a pair: $(y = f(z))$

- Unify $\{(y = f(z)); (y = y)\} \circ \{x \rightarrow g(y, y)\} = ?$

Example

- x, y, z variables, f, g constructors

- Pick a pair: $(y = f(z))$

- Eliminate y with $\{y \rightarrow f(z)\}$

- Unify $\{(f(z) = f(z))\} \circ \{y \rightarrow f(z)\} \circ \{x \rightarrow g(y, y)\} = \text{Unify } \{(f(z) = f(z))\}$

- $\circ \{y \rightarrow f(z)\} \circ \{x \rightarrow g(y, y)\} = \text{Unify } \{(f(z) = f(z))\}$

- $\circ \{y \rightarrow f(z)\}; \{x \rightarrow g((f(z), f(z)))\}$

Example

- x, y, z variables, f, g constructors

- Unify $\{(f(z) = f(z))\}$

- $\circ \{y \rightarrow f(z); x \rightarrow g((f(z), f(z)))\} = ?$

Example

- x, y, z variables, f, g constructors

- $\{(f(z) = f(z))\}$ is non-empty

- Unify $\{(f(z) = f(z))\}$

- $\circ \{y \rightarrow f(z); x \rightarrow g((f(z), f(z)))\} = ?$
Example

- x, y, z variables, f, g constructors

- Pick a pair: $(f(z) = f(z))$

- Unify \{$(f(z) = f(z))$\}
 \(\circ\) $(y \rightarrow f(z); x \rightarrow g(f(z), f(z)))$ = ?

Example

- x, y, z variables, f, g constructors

- Pick a pair: $(f(z) = f(z))$

- Delete

- Unify \{$(f(z) = f(z))$\}
 \(\circ\) $(y \rightarrow f(z); x \rightarrow g(f(z), f(z)))$ =

 Unify $\{} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

Example

- x, y, z variables, f, g constructors

- Unify $\{}$

- Unify $\{} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$ =

 $\{} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

Example

- x, y, z variables, f, g constructors

- $\{}$ is empty

- Unify $\{}$ = identity function

- Unify $\{} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$ =

 $\{} \circ \{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

Example

- Unify \{(f(x) = f(g(f(f(z), y))), (g(y, y) = x))\} =

 $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

 \begin{align*}
 f(\times) &= f(g(f(z), y)) \\
 &= f(g(f(f(z), f(z)))) = f(g(f(z), f(z)))
 \\
 g(y, y) &= \times \\
 &= g(f(z), f(z)) = g(f(z), f(z))
 \end{align*}

Example

- Unify \{(f(x) = f(g(f(f(z), y))), (g(y, y) = x))\} =

 $\{y \rightarrow f(z); x \rightarrow g(f(z), f(z))\}$

 $y \rightarrow \text{int list}, x \rightarrow \text{(int list * int list)}$

 \begin{align*}
 f(\times) &= f(g(f(z), y)) \\
 &= f(g(f(f(z), f(z)))) = f(g(f(z), f(z)))
 \\
 (\text{int list * int list}) \text{ list} &= (\text{int list * int list}) \text{ list}
 \\
 g(y, y) &= \times \\
 &= g(f(z), f(z)) = g(f(z), f(z))
 \end{align*}
Example of Failure: Decompose

- Unify\((f(x,g(y)) = f(h(y),x))\)
 \[\text{Decompose:} \quad (f(x,g(y)) = f(h(y),x))\]
 - Unify \((x = h(y)), \ (g(y) = x))\)
 - Orient: \((g(y) = x)\)
 - Unify \((x = h(y)), \ (x = g(y)))\)
 - Eliminate: \((x = h(y))\)
 - Unify \((h(y) = g(y))) \circ \{x \rightarrow h(y)\}

- No rule to apply! Decompose fails!

Example of Failure: Occurs Check

- Unify\((f(x,g(x)) = f(h(x),x))\)
 \[\text{Decompose:} \quad (f(x,g(x)) = f(h(x),x))\]
 - Unify \((x = h(x)), \ (g(x) = x))\)
 - Orient: \((g(x) = x)\)
 - No rules apply.

Course Objectives

- New programming paradigm
 - Functional programming
 - Environments and Closures
 - Patterns of Recursion
 - Continuation Passing Style
- Phases of an interpreter / compiler
 - Lexing and parsing
 - Type systems
 - Interpretation
- Programming Language Semantics
 - Lambda Calculus
 - Operational Semantics
 - Axiomatic Semantics

Major Phases of a Compiler

Source Program	\(\text{Lex}\)	Tokens
Source Program	\(\text{Parse}\)	Abstract Syntax
\(\text{Semantic Analysis}\)	Environment	
Translate	Intermediate Representation	
\(\text{Optimized IR}\)	\(\text{Instruction Selection}\)	
\(\text{Unoptimized Machine-Specific Assembly Language}\)	\(\text{Instruction Optimize}\)	
Optimized Machine-Specific Assembly Language	Emit code	
Assembly Language	\(\text{Assembler}\)	
Relocatable Object Code	\(\text{Linker}\)	
Machine Code		

Modified from "Modern Compiler Implementation in ML", by Andrew Appel

Programming Languages & Compilers

Three Main Topics of the Course

<table>
<thead>
<tr>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Programming Paradigm</td>
<td>Language Translation</td>
<td>Language Semantics</td>
</tr>
</tbody>
</table>

Programming Languages & Compilers

Order of Evaluation

I
II
III

New Programming Paradigm
Language Translation
Language Semantics

Specification to Implementation
Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language
- It takes more than syntax to understand a language; need meaning (semantics) too
- Syntax is the entry point

Syntax of English Language

- Pattern 1
 - David sings
 - The dog barked
 - Susan yawned

- Pattern 2
<table>
<thead>
<tr>
<th>Subject</th>
<th>Verb</th>
<th>Direct Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>David</td>
<td>sings</td>
<td>ballads</td>
</tr>
<tr>
<td>The professor</td>
<td>wants</td>
<td>to retire</td>
</tr>
<tr>
<td>The jury</td>
<td>found</td>
<td>the defendant guilty</td>
</tr>
</tbody>
</table>
Elements of Syntax

- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Expressions

if ... then begin ... ; ... end else begin ... ; ... end

Type expressions

typexpr₁ -> typexpr₂

Declarations (in functional languages)

let pattern₁ = expr₁ in expr

Statements (in imperative languages)

a = b + c

Subprograms

let pattern₁ = let rec inner = ... in expr

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases
 - Lexing: Converting string (or streams of characters) into lists (or streams) of tokens (the “words” of the language)
 - Specification Technique: Regular Expressions
 - Parsing: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars

Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs