
9/27/2018 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based on slides by Elsa Gunter, which were inspired by

earlier slides by Mattox Beckman, Vikram Adve, and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Data type in Ocaml: lists

 Frequently used lists in recursive program

 Matched over two structural cases

 [] - the empty list

 (x :: xs) a non-empty list

 Covers all possible lists

 type ‘a list = [] | (::) of ‘a * ‘a list

 Not quite legitimate declaration because of special

syntax

9/27/2018 2

9/27/2018 3

Variants - Syntax (slightly simplified)

 type name = C1 [of ty1] | . . . | Cn [of tyn]

 Introduce a type called name

 (fun x -> Ci x) : ty1 -> name

 Ci is called a constructor; if the optional type

argument is omitted, it is called a constant

 Constructors are the basis of almost all pattern

matching

9/27/2018 4

Enumeration Types as Variants

An enumeration type is a collection of distinct

values

In C and Ocaml they have an order structure;

order by order of input

9/27/2018 5

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

type weekday =

Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

9/27/2018 6

Functions over Enumerations

let day_after day = match day with

Monday -> Tuesday

| Tuesday -> Wednesday

| Wednesday -> Thursday

| Thursday -> Friday

| Friday -> Saturday

| Saturday -> Sunday

| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>

9/27/2018 7

Functions over Enumerations

let rec days_later n day =

match n with

0 -> day

| _ -> if n > 0

then day_after (days_later (n - 1) day)

else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday=<fun>

Write a function days_later n day that computes a day

which is n days away from the day. Note that n can be

greater than 7 (more than one week) and also

negative (meaning a day before

type weekday = Monday | Tuesday |
Wednesday | Thursday |
Friday | Saturday | Sunday;;

9/27/2018 8

Functions over Enumerations

days_later 2 Tuesday;;

- : weekday = Thursday

days_later (-1) Wednesday;;

- : weekday = Tuesday

days_later (-4) Monday;;

- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

 Write function is_weekend : weekday -> bool

let is_weekend day =

9/27/2018 9

Problem:

type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

 Write function is_weekend : weekday -> bool

let is_weekend day =

match day with

Saturday -> true

| Sunday -> true

| _ -> false

9/27/2018 10

9/27/2018 11

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp

| SndOp

9/27/2018 12

Disjoint Union Types

 Disjoint union of types, with some possibly

occurring more than once

 We can also add in some new singleton

elements

ty1 ty2 ty1

9/27/2018 13

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int |
SocialSecurity of int | Name of string

let check_id id =
match id with
DriversLicense num ->
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>

Problem

 Create a type to represent the currencies for

US, UK, Europe and Japan

 Hint: Dollar, Pound, Euro, Yen

9/27/2018 14

Problem

 Create a type to represent the currencies for

US, UK, Europe and Japan

type currency =

Dollar of int

| Pound of int

| Euro of int

| Yen of int

9/27/2018 15

9/27/2018 16

Example Disjoint Union Type

type const =

BoolConst of bool

| IntConst of int

| FloatConst of float

| StringConst of string

| NilConst

| UnitConst

9/27/2018 17

Example Disjoint Union Type

type const = BoolConst of bool

| IntConst of int | FloatConst of float

| StringConst of string | NilConst

| UnitConst

How to represent 7 as a const?

Answer: IntConst 7

9/27/2018 18

Polymorphism in Variants

 The type 'a option gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;

type 'a option = Some of 'a | None

 Used to encode partial functions

 Often can replace the raising of an exception

9/27/2018 19

Functions producing option

let rec first p list =

match list with [] -> None

| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option =
<fun>

first (fun x -> x > 3) [1;3;4;2;5];;

- : int option = Some 4

first (fun x -> x > 5) [1;3;4;2;5];;

- : int option = None

type 'a option =
Some of 'a

| None;;

9/27/2018 20

Functions over option

let result_ok r =

match r with None -> false

| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>

result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;

- : bool = true

result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;

- : bool = false

type 'a option =
Some of 'a

| None;;

Problem

 Write a hd and tl on lists that doesn’t raise an

exception and works at all types of lists.

9/27/2018 21

type 'a option =
Some of 'a

| None;;

Problem

 Write a hd and tl on lists that doesn’t raise an

exception and works at all types of lists.

 let hd list =

match list with

[] -> None

| (x::xs) -> Some x

 let tl list =

match list with

[] -> None

| (x::xs) -> Some xs
9/27/2018 22

type 'a option =
Some of 'a

| None;;

9/27/2018 23

Mapping over Variants

let optionMap f opt =

match opt with

None -> None

| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap

(fun x -> x - 2)

(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

9/27/2018 24

Folding over Variants

let optionFold someFun noneVal opt =
match opt with
None -> noneVal

| Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option
-> 'b = <fun>

let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

9/27/2018 25

Recursive Types

 The type being defined may be a component of

itself

ty ty’ ty

9/27/2018 26

Recursive Data Types

type int_Bin_Tree =

Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

9/27/2018 27

Recursive Data Type Values

let bin_tree =

Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node (Leaf 3,

Leaf 6), Leaf (-7))

9/27/2018 28

Recursive Data Type Values

bin_tree = Node

Node Leaf (-7)

Leaf 3 Leaf 6

9/27/2018 29

Recursive Data Types

type exp =

VarExp of string

| ConstExp of const

| MonOpAppExp of mon_op * exp

| BinOpAppExp of bin_op * exp * exp

| IfExp of exp* exp * exp
| AppExp of exp * exp
| FunExp of string * exp

9/27/2018 30

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent 6 as an exp?

9/27/2018 31

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent 6 as an exp?

Answer: ConstExp (IntConst 6)

9/27/2018 32

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent (6, 3) as an exp?

33

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent (6, 3) as an exp?

BinOpAppExp (CommaOp,

ConstExp (IntConst 6),

ConstExp (IntConst 3)

)

9/27/2018 34

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent [(6, 3)] as an exp?

BinOpAppExp (ConsOp,

BinOpAppExp (CommaOp, ConstExp (IntConst 6),

ConstExp (IntConst 3)),

ConstExp NilConst))));;

9/27/2018 35

Recursive Functions

let rec first_leaf_value tree =

match tree

with (Leaf n) -> n

| Node (left_tree, right_tree) ->

first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int
= <fun>

let left = first_leaf_value bin_tree;;

val left : int = 3

Problem

type int_Bin_Tree =

Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

 Write sum_tree : int_Bin_Tree -> int

 Adds all ints in tree

let rec sum_tree t =

9/27/2018 36

Problem

type int_Bin_Tree =Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

 Write sum_tree : int_Bin_Tree -> int

 Adds all ints in tree

let rec sum_tree t =

match t with Leaf n -> n

| Node(t1,t2) -> sum_tree t1 + sum_tree t2

9/27/2018 37

9/27/2018 38

Recursion over Recursive Data Types

type exp = VarExp of string

| ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp

| AppExp of exp * exp

 How to count the number of variables in an exp?

39

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp | AppExp of exp * exp

 How to count the number of variables in an exp?

let rec varCnt exp =

match exp with

VarExp x ->

| ConstExp c ->

| BinOpAppExp (b, e1, e2) ->

| FunExp (x,e) ->

| AppExp (e1, e2) ->

40

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp | AppExp of exp * exp

 How to count the number of variables in an exp?

let rec varCnt exp =

match exp with

VarExp x -> 1

| ConstExp c -> 0

| BinOpAppExp (b, e1, e2) -> varCnt e1 +varCnt e2

| FunExp (x,e) -> 1 + varCnt e

| AppExp (e1, e2) -> varCnt e1 + varCnt e2

9/27/2018 41

Mapping over Recursive Types

let rec ibtreeMap f tree =

match tree with

(Leaf n) ->

| Node (left_tree, right_tree) ->

9/27/2018 42

Mapping over Recursive Types

let rec ibtreeMap f tree =

match tree with

(Leaf n) -> Leaf (f n)

| Node (left_tree, right_tree) ->

Node (ibtreeMap f left_tree,

IbtreeMap f right_tree);;

val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

9/27/2018 43

Mapping over Recursive Types

let bin_tree =

Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf 8),

Leaf (-5))

9/27/2018 44

Summing up Elements of a Tree

let rec tree_sum_0 tree =

match tree with

Leaf n ->

| Node (left_tree, right_tree) ->

9/27/2018 45

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =

match tree with

Leaf n ->

| Node (left_tree, right_tree) ->

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree

-> 'a = <fun>

9/27/2018 46

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =

match tree with

Leaf n -> leafFun n

| Node (left_tree, right_tree) ->

nodeFun

(ibtreeFoldRight leafFun nodeFun left_tree)

(ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree

-> 'a = <fun>

9/27/2018 47

Folding over Recursive Types

let tree_sum =

ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>

tree_sum bin_tree;;

- : int = 2

48

Mutually Recursive Types

type 'a tree =

TreeLeaf of 'a

| TreeNode of 'a treeList

and

'a treeList =

Last of 'a tree

| More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a

treeList)

9/27/2018 49

Mutually Recursive Types - Values

let tree =

TreeNode

(More (TreeLeaf 5,

(More (TreeNode

(More (TreeLeaf 3,

Last (TreeLeaf 2))),

Last (TreeLeaf 7)))));;

9/27/2018 50

Mutually Recursive Types - Values

val tree : int tree =

TreeNode

(More

(TreeLeaf 5,

More

(TreeNode (More (TreeLeaf 3, Last (TreeLeaf

2))), Last (TreeLeaf 7))))

9/27/2018 51

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

5 More Last 7

TreeLeaf TreeLeaf

3 2

9/27/2018 52

Mutually Recursive Types - Values

A more conventional picture

5 7

3 2

9/27/2018 53

Mutually Recursive Functions

let rec fringe tree =
match tree with

(TreeLeaf x) -> [x]
| (TreeNode list) -> list_fringe list

and list_fringe tree_list =
match tree_list with

(Last tree) -> fringe tree
| (More (tree,list)) ->

(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>

val list_fringe : 'a treeList -> 'a list = <fun>

9/27/2018 54

Mutually Recursive Functions

fringe tree;;

- : int list = [5; 3; 2; 7]

9/27/2018 55

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

9/27/2018 56

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

let rec tree_size t =

match t with TreeLeaf _ ->

| TreeNode ts ->

9/27/2018 57

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

9/27/2018 58

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

9/27/2018 59

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t ->

| More t ts’ ->

9/27/2018 60

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t -> tree_size t

| More t ts’ -> tree_size t + treeList_size ts’

9/27/2018 61

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t -> tree_size t

| More t ts’ -> tree_size t + treeList_size ts’

9/27/2018 62

Nested Recursive Types

type intlist =

Nil | Cons of (int * intlist)

type ‘a mylist =

Nil | Cons of (‘a * ‘a mylist)

If only we had control over extra syntax:

“ type ‘a list = [] | (::) of ‘a * ‘a list ”

9/27/2018 63

Nested Recursive Types

type 'a labeled_tree =

TreeNode of ('a * 'a labeled_tree list);;

type 'a labeled_tree = TreeNode of ('a * 'a

labeled_tree list)

Compare:

type 'a tree =

TreeLeaf of 'a

| TreeNode of 'a treeList

and 'a treeList =

Last of 'a tree

| More of ('a tree * 'a treeList);;

9/27/2018 64

Nested Recursive Type Values

let ltree =

TreeNode(5,

[TreeNode (3, []);

TreeNode (2, [TreeNode (1, []);

TreeNode (7, [])]);

TreeNode (5, [])]);;

9/27/2018 65

Nested Recursive Type Values

Ltree = TreeNode(5)

:: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

[] :: :: [] []

TreeNode(1) TreeNode(7)

[] []

9/27/2018 66

Nested Recursive Type Values

5

3 2 5

1 7

9/27/2018 67

Mutually Recursive Functions

let rec flatten_tree labtree =

match labtree with

TreeNode (x,treelist) ->

x::flatten_tree_list treelist

and flatten_tree_list treelist =

match treelist with

[] -> []

| labtree::labtrees ->

flatten_tree labtree

@ (flatten_tree_list labtrees);;

9/27/2018 68

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a list =
<fun>

flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

 Nested recursive types lead to mutually

recursive functions

9/27/2018 72

Records

 Records serve the same programming purpose

as tuples

 Provide better documentation, more readable

code

 Allow components to be accessed by label

instead of position

 Labels (aka field names) must be unique

 Fields accessed by suffix dot notation

9/27/2018 73

Record Types

 Record types must be declared before they can

be used in OCaml

type person = {name : string;

ss : (int * int * int);

age : int};;

type person = { name : string; ss :
int * int * int; age : int; }

 person is the type being introduced

 name, ss and age are the labels, or fields

9/27/2018 74

Record Values

 Records built with labels; order does not matter

let teacher = {name = "Elsa L. Gunter"; age
= 102; ss = (119,73,6244)};;

val teacher : person =

{name = "Elsa L. Gunter"; ss = (119, 73,
6244); age = 102}

teacher.name;;

- : string = "Elsa L. Gunter"

9/27/2018 75

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"

val age : int = 102

val s3 : int = 6244

9/27/2018 76

Record Field Access

let soc_sec = teacher.ss;;

val soc_sec : int * int * int = (119, 73,
6244)

9/27/2018 77

Record Values

let student = {

ss=(325,40,1276);

name=“Usain Bolt";

age=22};;

val student : person =

{name = “Usain Bolt"; ss = (325, 40,
1276); age = 22}

student = teacher;;

- : bool = false

9/27/2018 78

New Records from Old

let birthday person =

{person with age = person.age + 1};;

val birthday : person -> person = <fun>

birthday teacher;;

- : person = {name = "Elsa L. Gunter"; ss =
(119, 73, 6244); age = 103}

9/27/2018 79

New Records from Old

let new_id name soc_sec person =

{person with name = name; ss = soc_sec};;

val new_id : string -> int * int * int -> person -
> person = <fun>

new_id “Lionel Messi" (523,04,6712) student;;

- : person = {name = “Lionel Messi";

- ss = (523, 4, 6712); age = 22}

