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Data type in Ocaml: lists

 Frequently used lists in recursive program

 Matched over two structural cases

 [ ] - the empty list

 (x :: xs) a non-empty list

 Covers all possible lists

 type ‘a list = [ ] | (::) of ‘a * ‘a list

 Not quite legitimate declaration because of special 

syntax

9/27/2018 2



9/27/2018 3

Variants - Syntax (slightly simplified)

 type name = C1 [of ty1] | . . . | Cn [of tyn]

 Introduce a type called name

 (fun x -> Ci x) : ty1 -> name

 Ci is called a constructor; if the optional type 

argument is omitted, it is called a constant

 Constructors are the basis of almost all pattern 

matching
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Enumeration Types as Variants

An enumeration type is a collection of distinct 

values

In C and Ocaml they have an order structure; 

order by order of input
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Enumeration Types as Variants

# type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

type weekday =

Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday
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Functions over Enumerations

# let day_after day = match day with

Monday -> Tuesday

| Tuesday -> Wednesday

| Wednesday -> Thursday

| Thursday -> Friday

| Friday -> Saturday

| Saturday -> Sunday

| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>
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Functions over Enumerations

# let rec days_later n day =

match n with 

0 -> day

| _ -> if n > 0

then day_after (days_later (n - 1) day)

else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday=<fun>

Write a function days_later n day that computes a day 

which is n days away from the day. Note that n can be 

greater than 7 (more than one week) and also 

negative (meaning a day before

# type weekday = Monday | Tuesday |
Wednesday | Thursday | 
Friday | Saturday | Sunday;;
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Functions over Enumerations

# days_later 2 Tuesday;;

- : weekday = Thursday

# days_later (-1) Wednesday;;

- : weekday = Tuesday

# days_later (-4) Monday;;

- : weekday = Thursday



Problem:

# type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

 Write function is_weekend : weekday -> bool

let is_weekend day = 
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Problem:

# type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

 Write function is_weekend : weekday -> bool

let is_weekend day = 

match day with 

Saturday -> true

| Sunday -> true

| _ -> false
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Example Enumeration Types

# type bin_op = IntPlusOp | IntMinusOp 

| EqOp | CommaOp | ConsOp

# type mon_op = HdOp | TlOp | FstOp

| SndOp
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Disjoint Union Types

 Disjoint union of types, with some possibly 

occurring more than once

 We can also add in some new singleton 

elements

ty1 ty2 ty1
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Disjoint Union Types

# type id = DriversLicense of int                          
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int | 
SocialSecurity of int | Name of string

# let check_id id = 
match id with
DriversLicense num -> 
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>



Problem

 Create a type to represent the currencies for 

US, UK, Europe and Japan

 Hint: Dollar, Pound, Euro, Yen
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Problem

 Create a type to represent the currencies for 

US, UK, Europe and Japan

type currency =

Dollar of int

| Pound of int

| Euro of int

| Yen of int
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Example Disjoint Union Type

# type const =

BoolConst of bool 

| IntConst of int

| FloatConst of float

| StringConst of string 

| NilConst

| UnitConst 
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Example Disjoint Union Type

# type const = BoolConst of bool 

| IntConst of int | FloatConst of float

| StringConst of string  | NilConst

| UnitConst 

How to represent 7 as a const?

Answer:  IntConst 7
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Polymorphism in Variants

 The type 'a option gives us something to 
represent non-existence or failure

# type 'a option = Some of 'a | None;;

type 'a option = Some of 'a | None

 Used to encode partial functions

 Often can replace the raising of an exception
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Functions producing option

# let rec first p list =

match list with [ ] -> None

| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option = 
<fun>

# first (fun x -> x > 3) [1;3;4;2;5];;

- : int option = Some 4

# first (fun x -> x > 5) [1;3;4;2;5];;

- : int option = None

# type 'a option = 
Some of 'a

| None;;
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Functions over option

# let result_ok r =

match r with None -> false

| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>

# result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;

- : bool = true

# result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;

- : bool = false

# type 'a option = 
Some of 'a

| None;;



Problem

 Write a hd and tl on lists that doesn’t raise an 

exception and works at all types of lists.
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# type 'a option = 
Some of 'a

| None;;



Problem

 Write a hd and tl on lists that doesn’t raise an 

exception and works at all types of lists.

 let hd list = 

match list with 

[] -> None

| (x::xs) -> Some x

 let tl list = 

match list with 

[] -> None

| (x::xs) -> Some xs
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# type 'a option = 
Some of 'a

| None;;
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Mapping over Variants

# let optionMap f opt =

match opt with 

None -> None

| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b 
option = <fun>

# optionMap

(fun x -> x - 2)

(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2
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Folding over Variants

# let optionFold someFun noneVal opt =
match opt with 
None -> noneVal

| Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option 
-> 'b = <fun>

# let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b 
option = <fun>
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Recursive Types

 The type being defined may be a component of 

itself

ty ty’ ty
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Recursive Data Types

# type int_Bin_Tree =

Leaf of int 

| Node of (int_Bin_Tree * int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of 
(int_Bin_Tree * int_Bin_Tree)
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Recursive Data Type Values

# let bin_tree =

Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node (Leaf 3, 

Leaf 6), Leaf (-7))
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Recursive Data Type Values

bin_tree =   Node

Node               Leaf (-7)

Leaf 3      Leaf 6
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Recursive Data Types

# type exp = 

VarExp of string

| ConstExp of const

| MonOpAppExp of mon_op * exp 

| BinOpAppExp of bin_op * exp * exp

| IfExp of exp* exp * exp
| AppExp of exp * exp
| FunExp of string * exp
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

| EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int | …

# type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp  | …

How to represent 6 as an exp?
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

| EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int | …

# type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp  | …

How to represent 6 as an exp?

Answer: ConstExp (IntConst 6)
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

| EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int | …

# type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp  | …

How to represent (6, 3) as an exp?
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

| EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int | …

# type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp  | …

How to represent (6, 3) as an exp?

BinOpAppExp (CommaOp,

ConstExp (IntConst 6),

ConstExp (IntConst 3)

)
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Recursive Data Types

# type bin_op = IntPlusOp | IntMinusOp 

| EqOp | CommaOp | ConsOp | …

# type const = BoolConst of bool | IntConst of int | …

# type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp  | …

How to represent [(6, 3)] as an exp?

BinOpAppExp (ConsOp, 

BinOpAppExp (CommaOp, ConstExp (IntConst 6), 

ConstExp (IntConst 3)), 

ConstExp NilConst))));; 
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Recursive Functions

# let rec first_leaf_value tree =

match tree 

with (Leaf n) -> n

|  Node (left_tree, right_tree) ->

first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int 
= <fun>

# let left = first_leaf_value bin_tree;;

val left : int = 3



Problem

type int_Bin_Tree = 

Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

 Write sum_tree : int_Bin_Tree -> int

 Adds all ints in tree

let rec sum_tree t =
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Problem

type int_Bin_Tree =Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

 Write sum_tree : int_Bin_Tree -> int

 Adds all ints in tree

let rec sum_tree t =

match t with Leaf n -> n

| Node(t1,t2) -> sum_tree t1 + sum_tree t2
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Recursion over Recursive Data Types

# type exp = VarExp of string 

| ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp

| AppExp of exp * exp

 How to count the number of variables in an exp?
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Recursion over Recursive Data Types

# type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp | AppExp of exp * exp

 How to count the number of variables in an exp?

# let rec varCnt exp =

match exp with 

VarExp x -> 

| ConstExp c ->

| BinOpAppExp (b, e1, e2) ->

| FunExp (x,e) -> 

| AppExp (e1, e2) ->
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Recursion over Recursive Data Types

# type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp | AppExp of exp * exp

 How to count the number of variables in an exp?

# let rec varCnt exp =

match exp with 

VarExp x -> 1

| ConstExp c -> 0

| BinOpAppExp (b, e1, e2) -> varCnt e1 +varCnt e2

| FunExp (x,e) -> 1 + varCnt e

| AppExp (e1, e2) -> varCnt e1 + varCnt e2
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Mapping over Recursive Types

# let rec ibtreeMap f tree =

match tree with 

(Leaf n) ->  

| Node (left_tree, right_tree) ->
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Mapping over Recursive Types

# let rec ibtreeMap f tree =

match tree with 

(Leaf n) -> Leaf (f n)

| Node (left_tree, right_tree) ->

Node (ibtreeMap f left_tree,

IbtreeMap f right_tree);;

val ibtreeMap : (int -> int) -> int_Bin_Tree -> 

int_Bin_Tree = <fun>
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Mapping over Recursive Types

# let bin_tree =

Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

# ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf 8), 

Leaf (-5))
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Summing up Elements of a Tree

# let rec tree_sum_0 tree =

match tree with 

Leaf n ->  

| Node (left_tree, right_tree) ->
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Folding over Recursive Types

# let rec ibtreeFoldRight leafFun nodeFun tree =

match tree with 

Leaf n ->  

| Node (left_tree, right_tree) ->

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree 

-> 'a = <fun>
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Folding over Recursive Types

# let rec ibtreeFoldRight leafFun nodeFun tree =

match tree with 

Leaf n -> leafFun n

| Node (left_tree, right_tree) ->

nodeFun

(ibtreeFoldRight leafFun nodeFun left_tree)

(ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree 

-> 'a = <fun>
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Folding over Recursive Types

# let tree_sum = 

ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>

# tree_sum bin_tree;;

- : int = 2
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Mutually Recursive Types

# type 'a tree = 

TreeLeaf of 'a

| TreeNode of 'a treeList

and

'a treeList = 

Last of 'a tree

| More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a 

treeList)
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Mutually Recursive Types - Values

# let tree =

TreeNode

(More (TreeLeaf 5,

(More (TreeNode

(More (TreeLeaf 3,

Last (TreeLeaf 2))),

Last (TreeLeaf 7)))));;
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Mutually Recursive Types - Values

val tree : int tree =

TreeNode

(More

(TreeLeaf 5,

More

(TreeNode (More (TreeLeaf 3, Last (TreeLeaf 

2))), Last (TreeLeaf 7))))
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Mutually Recursive Types - Values

TreeNode

More              More Last 

TreeLeaf TreeNode TreeLeaf

5                More                 Last    7

TreeLeaf TreeLeaf

3                     2
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Mutually Recursive Types - Values

A more conventional picture 

5                           7

3               2
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Mutually Recursive Functions

# let rec fringe tree =
match tree with 

(TreeLeaf x) -> [x]
| (TreeNode list) -> list_fringe list

and list_fringe tree_list =
match tree_list with 

(Last tree) -> fringe tree
| (More (tree,list)) ->

(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>

val list_fringe : 'a treeList -> 'a list = <fun>
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Mutually Recursive Functions

# fringe tree;;

- : int list = [5; 3; 2; 7]
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size 
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size 

let rec tree_size t =

match t with TreeLeaf _ -> 

| TreeNode ts ->
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size 

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size 

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size  ts

and treeList_size ts =
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size  ts

and treeList_size ts =

match ts with Last t ->

| More t ts’ ->
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size  ts

and treeList_size ts =

match ts with Last t -> tree_size t 

| More t ts’ -> tree_size t + treeList_size ts’
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Problem

# type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t -> tree_size t 

| More t ts’ -> tree_size t + treeList_size ts’
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Nested Recursive Types

# type intlist = 

Nil | Cons of (int * intlist)

# type ‘a mylist = 

Nil | Cons of (‘a * ‘a mylist)

If only we had control over extra syntax:

“  type ‘a list = [ ] | (::) of ‘a * ‘a list  ”
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Nested Recursive Types

# type 'a labeled_tree =

TreeNode of ('a * 'a labeled_tree list);;

type 'a labeled_tree = TreeNode of ('a * 'a 

labeled_tree list)

Compare: 

# type 'a tree = 

TreeLeaf of 'a

| TreeNode of 'a treeList

and 'a treeList = 

Last of 'a tree

| More of ('a tree * 'a treeList);;
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Nested Recursive Type Values

# let ltree =

TreeNode(5,

[TreeNode (3, []);

TreeNode (2, [TreeNode (1, []);

TreeNode (7, [])]);

TreeNode (5, [])]);;
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Nested Recursive Type Values

Ltree =  TreeNode(5)

::                ::                  :: [ ]

TreeNode(3)   TreeNode(2)   TreeNode(5)

[ ]                ::             :: [ ]       [ ]   

TreeNode(1)  TreeNode(7)

[ ]                 [ ]
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Nested Recursive Type Values

5

3           2           5

1           7
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Mutually Recursive Functions

# let rec flatten_tree labtree =

match labtree with 

TreeNode (x,treelist) ->               

x::flatten_tree_list treelist

and flatten_tree_list treelist =

match treelist with 

[] -> []

| labtree::labtrees ->

flatten_tree labtree

@ (flatten_tree_list labtrees);;
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Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a list = 
<fun>

# flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

 Nested recursive types lead to mutually 

recursive functions
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Records

 Records serve the same programming purpose 

as tuples

 Provide better documentation, more readable 

code

 Allow components to be accessed by label 

instead of position

 Labels (aka field names) must be unique

 Fields accessed by suffix dot notation
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Record Types

 Record types must be declared before they can 

be used in OCaml

# type person = {name : string;

ss : (int * int * int);  

age : int};;

type person = { name : string; ss : 
int * int * int; age : int; }

 person is the type being introduced

 name, ss and age are the labels, or fields
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Record Values

 Records built with labels; order does not matter

# let teacher = {name = "Elsa L. Gunter"; age
= 102; ss = (119,73,6244)};;

val teacher : person =

{name = "Elsa L. Gunter"; ss = (119, 73, 
6244); age = 102}

# teacher.name;;

- : string = "Elsa L. Gunter"
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Record Pattern Matching

# let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"

val age : int = 102

val s3 : int = 6244
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Record Field Access

# let soc_sec = teacher.ss;;

val soc_sec : int * int * int = (119, 73, 
6244)
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Record Values

# let student = {

ss=(325,40,1276); 

name=“Usain Bolt"; 

age=22};;

val student : person =

{name = “Usain Bolt"; ss = (325, 40, 
1276); age = 22}

# student = teacher;;

- : bool = false
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New Records from Old

# let birthday person = 

{person with age = person.age + 1};;

val birthday : person -> person = <fun>

# birthday teacher;;

- : person = {name = "Elsa L. Gunter"; ss = 
(119, 73, 6244); age = 103}
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New Records from Old

# let new_id name soc_sec person =

{person with name = name; ss = soc_sec};;

val new_id : string -> int * int * int -> person -
> person = <fun>

# new_id “Lionel Messi" (523,04,6712) student;;

- : person = {name = “Lionel Messi"; 

- ss = (523, 4, 6712); age = 22}


