
9/27/2018 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based on slides by Elsa Gunter, which were inspired by

earlier slides by Mattox Beckman, Vikram Adve, and Gul Agha

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Data type in Ocaml: lists

 Frequently used lists in recursive program

 Matched over two structural cases

 [] - the empty list

 (x :: xs) a non-empty list

 Covers all possible lists

 type ‘a list = [] | (::) of ‘a * ‘a list

 Not quite legitimate declaration because of special

syntax

9/27/2018 2

9/27/2018 3

Variants - Syntax (slightly simplified)

 type name = C1 [of ty1] | . . . | Cn [of tyn]

 Introduce a type called name

 (fun x -> Ci x) : ty1 -> name

 Ci is called a constructor; if the optional type

argument is omitted, it is called a constant

 Constructors are the basis of almost all pattern

matching

9/27/2018 4

Enumeration Types as Variants

An enumeration type is a collection of distinct

values

In C and Ocaml they have an order structure;

order by order of input

9/27/2018 5

Enumeration Types as Variants

type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

type weekday =

Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

9/27/2018 6

Functions over Enumerations

let day_after day = match day with

Monday -> Tuesday

| Tuesday -> Wednesday

| Wednesday -> Thursday

| Thursday -> Friday

| Friday -> Saturday

| Saturday -> Sunday

| Sunday -> Monday;;

val day_after : weekday -> weekday = <fun>

9/27/2018 7

Functions over Enumerations

let rec days_later n day =

match n with

0 -> day

| _ -> if n > 0

then day_after (days_later (n - 1) day)

else days_later (n + 7) day;;

val days_later : int -> weekday -> weekday=<fun>

Write a function days_later n day that computes a day

which is n days away from the day. Note that n can be

greater than 7 (more than one week) and also

negative (meaning a day before

type weekday = Monday | Tuesday |
Wednesday | Thursday |
Friday | Saturday | Sunday;;

9/27/2018 8

Functions over Enumerations

days_later 2 Tuesday;;

- : weekday = Thursday

days_later (-1) Wednesday;;

- : weekday = Tuesday

days_later (-4) Monday;;

- : weekday = Thursday

Problem:

type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

 Write function is_weekend : weekday -> bool

let is_weekend day =

9/27/2018 9

Problem:

type weekday = Monday | Tuesday | Wednesday

| Thursday | Friday | Saturday | Sunday;;

 Write function is_weekend : weekday -> bool

let is_weekend day =

match day with

Saturday -> true

| Sunday -> true

| _ -> false

9/27/2018 10

9/27/2018 11

Example Enumeration Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp

type mon_op = HdOp | TlOp | FstOp

| SndOp

9/27/2018 12

Disjoint Union Types

 Disjoint union of types, with some possibly

occurring more than once

 We can also add in some new singleton

elements

ty1 ty2 ty1

9/27/2018 13

Disjoint Union Types

type id = DriversLicense of int
| SocialSecurity of int | Name of string;;

type id = DriversLicense of int |
SocialSecurity of int | Name of string

let check_id id =
match id with
DriversLicense num ->
not (List.mem num [13570; 99999])

| SocialSecurity num -> num < 900000000
| Name str -> not (str = "John Doe");;

val check_id : id -> bool = <fun>

Problem

 Create a type to represent the currencies for

US, UK, Europe and Japan

 Hint: Dollar, Pound, Euro, Yen

9/27/2018 14

Problem

 Create a type to represent the currencies for

US, UK, Europe and Japan

type currency =

Dollar of int

| Pound of int

| Euro of int

| Yen of int

9/27/2018 15

9/27/2018 16

Example Disjoint Union Type

type const =

BoolConst of bool

| IntConst of int

| FloatConst of float

| StringConst of string

| NilConst

| UnitConst

9/27/2018 17

Example Disjoint Union Type

type const = BoolConst of bool

| IntConst of int | FloatConst of float

| StringConst of string | NilConst

| UnitConst

How to represent 7 as a const?

Answer: IntConst 7

9/27/2018 18

Polymorphism in Variants

 The type 'a option gives us something to
represent non-existence or failure

type 'a option = Some of 'a | None;;

type 'a option = Some of 'a | None

 Used to encode partial functions

 Often can replace the raising of an exception

9/27/2018 19

Functions producing option

let rec first p list =

match list with [] -> None

| (x::xs) -> if p x then Some x else first p xs;;

val first : ('a -> bool) -> 'a list -> 'a option =
<fun>

first (fun x -> x > 3) [1;3;4;2;5];;

- : int option = Some 4

first (fun x -> x > 5) [1;3;4;2;5];;

- : int option = None

type 'a option =
Some of 'a

| None;;

9/27/2018 20

Functions over option

let result_ok r =

match r with None -> false

| Some _ -> true;;

val result_ok : 'a option -> bool = <fun>

result_ok (first (fun x -> x > 3) [1;3;4;2;5]);;

- : bool = true

result_ok (first (fun x -> x > 5) [1;3;4;2;5]);;

- : bool = false

type 'a option =
Some of 'a

| None;;

Problem

 Write a hd and tl on lists that doesn’t raise an

exception and works at all types of lists.

9/27/2018 21

type 'a option =
Some of 'a

| None;;

Problem

 Write a hd and tl on lists that doesn’t raise an

exception and works at all types of lists.

 let hd list =

match list with

[] -> None

| (x::xs) -> Some x

 let tl list =

match list with

[] -> None

| (x::xs) -> Some xs
9/27/2018 22

type 'a option =
Some of 'a

| None;;

9/27/2018 23

Mapping over Variants

let optionMap f opt =

match opt with

None -> None

| Some x -> Some (f x);;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

optionMap

(fun x -> x - 2)

(first (fun x -> x > 3) [1;3;4;2;5]);;

- : int option = Some 2

9/27/2018 24

Folding over Variants

let optionFold someFun noneVal opt =
match opt with
None -> noneVal

| Some x -> someFun x;;
val optionFold : ('a -> 'b) -> 'b -> 'a option
-> 'b = <fun>

let optionMap f opt =
optionFold (fun x -> Some (f x)) None opt;;

val optionMap : ('a -> 'b) -> 'a option -> 'b
option = <fun>

9/27/2018 25

Recursive Types

 The type being defined may be a component of

itself

ty ty’ ty

9/27/2018 26

Recursive Data Types

type int_Bin_Tree =

Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

type int_Bin_Tree = Leaf of int | Node of
(int_Bin_Tree * int_Bin_Tree)

9/27/2018 27

Recursive Data Type Values

let bin_tree =

Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

val bin_tree : int_Bin_Tree = Node (Node (Leaf 3,

Leaf 6), Leaf (-7))

9/27/2018 28

Recursive Data Type Values

bin_tree = Node

Node Leaf (-7)

Leaf 3 Leaf 6

9/27/2018 29

Recursive Data Types

type exp =

VarExp of string

| ConstExp of const

| MonOpAppExp of mon_op * exp

| BinOpAppExp of bin_op * exp * exp

| IfExp of exp* exp * exp
| AppExp of exp * exp
| FunExp of string * exp

9/27/2018 30

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent 6 as an exp?

9/27/2018 31

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent 6 as an exp?

Answer: ConstExp (IntConst 6)

9/27/2018 32

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent (6, 3) as an exp?

33

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent (6, 3) as an exp?

BinOpAppExp (CommaOp,

ConstExp (IntConst 6),

ConstExp (IntConst 3)

)

9/27/2018 34

Recursive Data Types

type bin_op = IntPlusOp | IntMinusOp

| EqOp | CommaOp | ConsOp | …

type const = BoolConst of bool | IntConst of int | …

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp | …

How to represent [(6, 3)] as an exp?

BinOpAppExp (ConsOp,

BinOpAppExp (CommaOp, ConstExp (IntConst 6),

ConstExp (IntConst 3)),

ConstExp NilConst))));;

9/27/2018 35

Recursive Functions

let rec first_leaf_value tree =

match tree

with (Leaf n) -> n

| Node (left_tree, right_tree) ->

first_leaf_value left_tree;;

val first_leaf_value : int_Bin_Tree -> int
= <fun>

let left = first_leaf_value bin_tree;;

val left : int = 3

Problem

type int_Bin_Tree =

Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

 Write sum_tree : int_Bin_Tree -> int

 Adds all ints in tree

let rec sum_tree t =

9/27/2018 36

Problem

type int_Bin_Tree =Leaf of int

| Node of (int_Bin_Tree * int_Bin_Tree);;

 Write sum_tree : int_Bin_Tree -> int

 Adds all ints in tree

let rec sum_tree t =

match t with Leaf n -> n

| Node(t1,t2) -> sum_tree t1 + sum_tree t2

9/27/2018 37

9/27/2018 38

Recursion over Recursive Data Types

type exp = VarExp of string

| ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp

| AppExp of exp * exp

 How to count the number of variables in an exp?

39

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp | AppExp of exp * exp

 How to count the number of variables in an exp?

let rec varCnt exp =

match exp with

VarExp x ->

| ConstExp c ->

| BinOpAppExp (b, e1, e2) ->

| FunExp (x,e) ->

| AppExp (e1, e2) ->

40

Recursion over Recursive Data Types

type exp = VarExp of string | ConstExp of const

| BinOpAppExp of bin_op * exp * exp

| FunExp of string * exp | AppExp of exp * exp

 How to count the number of variables in an exp?

let rec varCnt exp =

match exp with

VarExp x -> 1

| ConstExp c -> 0

| BinOpAppExp (b, e1, e2) -> varCnt e1 +varCnt e2

| FunExp (x,e) -> 1 + varCnt e

| AppExp (e1, e2) -> varCnt e1 + varCnt e2

9/27/2018 41

Mapping over Recursive Types

let rec ibtreeMap f tree =

match tree with

(Leaf n) ->

| Node (left_tree, right_tree) ->

9/27/2018 42

Mapping over Recursive Types

let rec ibtreeMap f tree =

match tree with

(Leaf n) -> Leaf (f n)

| Node (left_tree, right_tree) ->

Node (ibtreeMap f left_tree,

IbtreeMap f right_tree);;

val ibtreeMap : (int -> int) -> int_Bin_Tree ->

int_Bin_Tree = <fun>

9/27/2018 43

Mapping over Recursive Types

let bin_tree =

Node(Node(Leaf 3, Leaf 6),Leaf (-7));;

ibtreeMap ((+) 2) bin_tree;;

- : int_Bin_Tree = Node (Node (Leaf 5, Leaf 8),

Leaf (-5))

9/27/2018 44

Summing up Elements of a Tree

let rec tree_sum_0 tree =

match tree with

Leaf n ->

| Node (left_tree, right_tree) ->

9/27/2018 45

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =

match tree with

Leaf n ->

| Node (left_tree, right_tree) ->

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree

-> 'a = <fun>

9/27/2018 46

Folding over Recursive Types

let rec ibtreeFoldRight leafFun nodeFun tree =

match tree with

Leaf n -> leafFun n

| Node (left_tree, right_tree) ->

nodeFun

(ibtreeFoldRight leafFun nodeFun left_tree)

(ibtreeFoldRight leafFun nodeFun right_tree);;

val ibtreeFoldRight : (int -> 'a) -> ('a -> 'a -> 'a) -> int_Bin_Tree

-> 'a = <fun>

9/27/2018 47

Folding over Recursive Types

let tree_sum =

ibtreeFoldRight (fun x -> x) (+);;

val tree_sum : int_Bin_Tree -> int = <fun>

tree_sum bin_tree;;

- : int = 2

48

Mutually Recursive Types

type 'a tree =

TreeLeaf of 'a

| TreeNode of 'a treeList

and

'a treeList =

Last of 'a tree

| More of ('a tree * 'a treeList);;

type 'a tree = TreeLeaf of 'a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a

treeList)

9/27/2018 49

Mutually Recursive Types - Values

let tree =

TreeNode

(More (TreeLeaf 5,

(More (TreeNode

(More (TreeLeaf 3,

Last (TreeLeaf 2))),

Last (TreeLeaf 7)))));;

9/27/2018 50

Mutually Recursive Types - Values

val tree : int tree =

TreeNode

(More

(TreeLeaf 5,

More

(TreeNode (More (TreeLeaf 3, Last (TreeLeaf

2))), Last (TreeLeaf 7))))

9/27/2018 51

Mutually Recursive Types - Values

TreeNode

More More Last

TreeLeaf TreeNode TreeLeaf

5 More Last 7

TreeLeaf TreeLeaf

3 2

9/27/2018 52

Mutually Recursive Types - Values

A more conventional picture

5 7

3 2

9/27/2018 53

Mutually Recursive Functions

let rec fringe tree =
match tree with

(TreeLeaf x) -> [x]
| (TreeNode list) -> list_fringe list

and list_fringe tree_list =
match tree_list with

(Last tree) -> fringe tree
| (More (tree,list)) ->

(fringe tree) @ (list_fringe list);;

val fringe : 'a tree -> 'a list = <fun>

val list_fringe : 'a treeList -> 'a list = <fun>

9/27/2018 54

Mutually Recursive Functions

fringe tree;;

- : int list = [5; 3; 2; 7]

9/27/2018 55

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

9/27/2018 56

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

let rec tree_size t =

match t with TreeLeaf _ ->

| TreeNode ts ->

9/27/2018 57

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

9/27/2018 58

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

9/27/2018 59

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t ->

| More t ts’ ->

9/27/2018 60

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t -> tree_size t

| More t ts’ -> tree_size t + treeList_size ts’

9/27/2018 61

Problem

type 'a tree = TreeLeaf of ’a | TreeNode of 'a treeList

and 'a treeList = Last of 'a tree | More of ('a tree * 'a treeList);;

Define tree_size and treeList_size

let rec tree_size t =

match t with TreeLeaf _ -> 1

| TreeNode ts -> treeList_size ts

and treeList_size ts =

match ts with Last t -> tree_size t

| More t ts’ -> tree_size t + treeList_size ts’

9/27/2018 62

Nested Recursive Types

type intlist =

Nil | Cons of (int * intlist)

type ‘a mylist =

Nil | Cons of (‘a * ‘a mylist)

If only we had control over extra syntax:

“ type ‘a list = [] | (::) of ‘a * ‘a list ”

9/27/2018 63

Nested Recursive Types

type 'a labeled_tree =

TreeNode of ('a * 'a labeled_tree list);;

type 'a labeled_tree = TreeNode of ('a * 'a

labeled_tree list)

Compare:

type 'a tree =

TreeLeaf of 'a

| TreeNode of 'a treeList

and 'a treeList =

Last of 'a tree

| More of ('a tree * 'a treeList);;

9/27/2018 64

Nested Recursive Type Values

let ltree =

TreeNode(5,

[TreeNode (3, []);

TreeNode (2, [TreeNode (1, []);

TreeNode (7, [])]);

TreeNode (5, [])]);;

9/27/2018 65

Nested Recursive Type Values

Ltree = TreeNode(5)

:: :: :: []

TreeNode(3) TreeNode(2) TreeNode(5)

[] :: :: [] []

TreeNode(1) TreeNode(7)

[] []

9/27/2018 66

Nested Recursive Type Values

5

3 2 5

1 7

9/27/2018 67

Mutually Recursive Functions

let rec flatten_tree labtree =

match labtree with

TreeNode (x,treelist) ->

x::flatten_tree_list treelist

and flatten_tree_list treelist =

match treelist with

[] -> []

| labtree::labtrees ->

flatten_tree labtree

@ (flatten_tree_list labtrees);;

9/27/2018 68

Mutually Recursive Functions

val flatten_tree : 'a labeled_tree -> 'a list = <fun>

val flatten_tree_list : 'a labeled_tree list -> 'a list =
<fun>

flatten_tree ltree;;

- : int list = [5; 3; 2; 1; 7; 5]

 Nested recursive types lead to mutually

recursive functions

9/27/2018 72

Records

 Records serve the same programming purpose

as tuples

 Provide better documentation, more readable

code

 Allow components to be accessed by label

instead of position

 Labels (aka field names) must be unique

 Fields accessed by suffix dot notation

9/27/2018 73

Record Types

 Record types must be declared before they can

be used in OCaml

type person = {name : string;

ss : (int * int * int);

age : int};;

type person = { name : string; ss :
int * int * int; age : int; }

 person is the type being introduced

 name, ss and age are the labels, or fields

9/27/2018 74

Record Values

 Records built with labels; order does not matter

let teacher = {name = "Elsa L. Gunter"; age
= 102; ss = (119,73,6244)};;

val teacher : person =

{name = "Elsa L. Gunter"; ss = (119, 73,
6244); age = 102}

teacher.name;;

- : string = "Elsa L. Gunter"

9/27/2018 75

Record Pattern Matching

let {name = elsa; age = age; ss =
(_,_,s3)} = teacher;;

val elsa : string = "Elsa L. Gunter"

val age : int = 102

val s3 : int = 6244

9/27/2018 76

Record Field Access

let soc_sec = teacher.ss;;

val soc_sec : int * int * int = (119, 73,
6244)

9/27/2018 77

Record Values

let student = {

ss=(325,40,1276);

name=“Usain Bolt";

age=22};;

val student : person =

{name = “Usain Bolt"; ss = (325, 40,
1276); age = 22}

student = teacher;;

- : bool = false

9/27/2018 78

New Records from Old

let birthday person =

{person with age = person.age + 1};;

val birthday : person -> person = <fun>

birthday teacher;;

- : person = {name = "Elsa L. Gunter"; ss =
(119, 73, 6244); age = 103}

9/27/2018 79

New Records from Old

let new_id name soc_sec person =

{person with name = name; ss = soc_sec};;

val new_id : string -> int * int * int -> person -
> person = <fun>

new_id “Lionel Messi" (523,04,6712) student;;

- : person = {name = “Lionel Messi";

- ss = (523, 4, 6712); age = 22}

