Programming Languages and Compilers
(CS 421)

Sasa Misailovic &
4110 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated
by Vikram Adve, Gul Agha, and Elsa L Gunter

9/11/2018 1

Structural Recursion : List Example

let rec length list = match list with
[1->0 (* Nil case *)
| x :: xs -> 1 + length Xs;; (* cons case *)
val length : 'a list -> int = <fun>

length [5; 4; 3; 21;;
- int =4

= Nil case [] is base case

= Cons case recurses on component list xs

9/11/2018 3

Forward Recursion: Examples

let rec double_up list =
match list with
[1->1[1
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list with
[1->11
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/2018 5

Structural Recursion

= Functions on recursive datatypes (eg lists)
tend to be recursive

= Recursion over recursive datatypes generally by
structural recursion

= Recursive calls made to components of structure of
the same recursive type

= Base cases of recursive types stop the recursion of
the function

9/11/2018 2

Forward Recursion

= In Structural Recursion, split input into
components and (eventually) recurse on
components

Forward Recursion form of Structural Recursion

In forward recursion, first call the function
recursively on all recursive components, and
then build final result from partial results

Wait until whole structure has been traversed to
start building answer

9/11/2018 4

Question
= How do you write length with forward

recursion?
let rec length 1 =

9/11/2018 6

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Question

= How do you write length with forward
recursion?

let rec length 1 =
match 1 with [] ->
| (a :: bs) ->

9/11/2018 7

Question

= How do you write length with forward
recursion?

let rec length 1 =
match 1 with [] -> ©
| (a :: bs) -> 1 + length bs

9/11/2018 9

Functions Over Lists

let rec double_up list =
match list
with [] -> [] (* pattern before ->,
expression after *)
| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2;
1; 1; 15 1]

9/11/2018 11

Question

= How do you write length with forward
recursion?

let rec length 1 =
match 1 with [] ->
| (a :: bs) -> length bs

9/11/2018 8

Question

= How do you write length with forward
recursion?

let rec length 1 =
match 1 with [] -> ©
| (a :: bs) -> let t = length bs

inl+t
9/11/2018 10
Functions Over Lists
let rec poor_rev list =
match list
with [] -> []
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]

9/11/2018 12

Your Turn

Write a function odd_count fr : int list -> int such
that it returns the number of odd integers found in
the input list. The function is required to use (only)
forward recursion (no other form of recursion).

let rec odd_count_fr 1 =

odd_count_fr [1;2;3];;
- tint =2

9/11/2018 13

An Important Optimization

= When a function call is made, the

Tail return address needs to be saved
call to the stack so we know to where
. to return when the call is finished
[= What if f calls g and g calls h, but

f calling h is the last thing g does (a
tail call)?
= Then h can return directly to f
instead of g

9/11/2018 15

Example of Tail Recursion

let rec prod 1 =

match 1 with [] -> 1

| (x :: rem) -> x * prod rem;;
val prod : int list -> int = <fun>

let prod list =
let rec prod_aux 1 acc =
match 1 with [] -> acc
| (y :: rest) -> prod_aux rest (acc * y)
(* Uses associativity of multiplication *)
in prod_aux list 1;;
val prod : int list -> int = <fun>

9/11/2018 17

An Important Optimization

= When a function call is made, the

Normal return address needs to be saved
call to the stack so we know to
where to return when the call is
p B finished
: g = What if f calls g and g calls h, but
W calling h is the last thing g does
(a tail call)?
wlet f x=(gx)+1
= let g x = h (x+1)
= let h x =

9/11/2018 14

Tail Recursion

= A recursive program is tail recursive if all
recursive calls are tail calls

= Tail recursive programs may be optimized to be
implemented as loops, thus removing the
function call overhead for the recursive calls

= Tail recursion generally requires extra
“accumulator” arguments to pass partial results
= May require an auxiliary function

9/11/2018 16

Question

= How do you write length with tail recursion?
let length 1 =

9/11/2018 18

Question

= How do you write length with tail recursion?
let length 1 =
let rec length_aux list n =

in

9/11/2018 19

Question

= How do you write length with tail recursion?
let length 1 =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) ->
in

9/11/2018 21

Question

= How do you write length with tail recursion?
let length 1 =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux bs
in

9/11/2018 23

Question

= How do you write length with tail recursion?
let length 1 =
let rec length_aux list n =
match list with [] ->
| (a :: bs) ->
in

9/11/2018 20

Question

= How do you write length with tail recursion?
let length 1 =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux
in

9/11/2018 22

Question

= How do you write length with tail recursion?
let length 1 =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux bs (n + 1)
in

9/11/2018 24

Question

= How do you write length with tail recursion?
let length 1 =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length _aux bs (n + 1)
in length_aux 1 ©

9/11/2018 25

Mapping Recursion

» One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list with
[1->11
| x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>

doublelist [2;3;4];;
- @ int list = [4; 6; 8]

9/11/2018 28

Mapping Recursion

= Can use the higher-order recursive map function
instead of direct recursion

let doublelList list =
List.map (fun x -> 2 * x) list;;
val doublelList : int list -> int list = <fun>

doublelist [2;3;4];;
- : int list = [4; 6; 8]

= Same function, but no rec

9/11/2018 30

Your Turn

= Write a function odd_count_tr : int list -> int such
that it returns the number of odd integers found in
the input list. The function is required to use (only)
tail recursion (no other form of recursion).

let rec odd_count_tr 1 =

odd_count_tr [1;2;3];;
- tint =2

9/11/2018 26

Mapping Functions Over Lists

let rec map f list =
match list with
[1->11
| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b)-> 'a list-> 'b list = <fun>

map plus_two fib5;;
- ¢ int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; @]

9/11/2018 29

Your turn now
Write a function
make_app : ((‘a -> ‘b) * a) list -> ‘b list

that takes a list of function — input pairs and gives
the result of applying each function to its
argument. Use map, no explicit recursion.

let make_app lst =

9/11/2018 31

Folding Recursion

= Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list with
[1->1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>

multList [2;4;6];;
: int = 48

= Computes (2 * (4 * (6 * 1)))

9/11/2018

Folding Functions over Lists

[How are the following functions similar?
let rec sumlist list = match list with

sumlist

[2;3;4];;
:int =9

| x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- int = 24

9/11/2018

Folding Functions over Lists

[How are the following functions similar?
let rec sumlist list = match list with
[1->[e]
| x:ixs -> [+ fsunlist xsf;

sumlist [2;3;4];;
:int = 9

Head Element

let rec prodlist Xist = match list with
[1->[]
| x::xs ->*;
prodlist [2;3;4];;
- int = 24

9/11/2018

Folding Functions over Lists

[How are the following functions similar?
let rec sumlist list = match list with
[]1->0
| x::ixs -> x + sumlist xs;;

sumlist [2;3;4];;
:int =9
let rec prodlist list = match list with
[1->1
| x::xs -> x * prodlist xs;;
prodlist [2;3;4];;
- ¢ int = 24

9/11/2018 33

Folding Functions over Lists

[How are the following functions similar?
let rec sumlist list = match list with
[1 ->[e]
| x:ixs -> x + [sumlist xsf;;

sumlist [2;3;4];; Recursive Call

:int =9
= match list with

let rec prodlist list
[1->[]
| x::xs -> x *[prodlist xsb;
prodlist [2;3;4];;
- int = 24

9/11/2018 35

Folding Functions over Lists

[How are the following functions similar?
let rec sumlist list = match list with
[1->[e]
| x:ixs > [x]+) umlist xsl;;

sumlist [2;3;4];;
:int = 9

let rec prodlist list = match list with
[1->[1l
| x::xs ->*;
prodlist [2;3;4];;
- int = 24

9/11/2018 37

Recursing over lists

let rec fold_right f list b =
match list with
[1->b
| (x :: xs) -> f x (fold_right f xs b);;

fold_right
(fun val init -> val + init)
[1; 2; 3]
0;;

- :int =6

9/11/2018 38

Folding Recursion

= multList folds to the right
= Same as:

let multList list =
List.fold_right
(fun x -> fun p -> x * p)
list 1;;
val multList : int list -> int = <fun>

multlist [2;4;6];;
- : int = 48

9/11/2018 20

Question

let rec length 1 =
match 1 with [] -> @
| (a :: bs) -> 1 + length bs

Recursing over lists

let rec fold_right f list b =
match list with
[1->b
| (x :: xs) -> f x (fold_right f xs b);;

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
(OFF

therehi- : unit = ()

9/11/2018 39

Encoding Recursion with Fold

let rec append listl 1list2 = match listl with
[1->1list2 | x::xs -> x :: append xs list2;;
val appe : 'a list -> '@/list -> \'a list = <fun>

| Base Case | |Operation ||Recursive caII|

let append list ist2 =
fold_right™(fun x y -> x :: y) listl list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;
- :int list = [1; 2; 3; 4; 5; 6]

9/11/2018 41

Question

let rec length 1 =
match 1 with [] -> @
| (a :: bs) -> 1 + length bs

= How do you write length with fold_right, but no
explicit recursion?

= How do you write length with fold_right, but no
explicit recursion?

9/11/2018 2

let length list =

List.fold_right (fun x -> fun n -> n + 1)
list o

9/11/2018 3

Question

let rec length 1 =
match 1 with [] -> ©
| (a :: bs) -> 1 + length bs

= How do you write length with fold_right, but no
explicit recursion?

let length list =

List.fold_right (fun x -> fun n -> n + 1)
list o

Can you write fold_right (or fold_left) with just
map?! How, or why not?

S71172018 44

Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux 1 acc =
match 1 with
[1 -> acc

| (y :: rest) -> prod_aux rest (acc * y)

in prod_aux list, 1;;

Init Acc Value Recursive Call
T prod It

1 list;;

List.fold_left™ (fun acc y -> acc

prod [4;5;6];;
- : int =120

9/11/2018 P

Question

let length 1 =
let rec length_aux list n =
match list with [] -> n
| (a :: bs) -> length_aux bs (n + 1)
in length_aux 1 @

= How do you write length with fold_Tleft, but no
explicit recursion?

let length list =

List.fold_left (fun n -> fun x -> n + 1)
0 list

9/11/2018 48

Iterating over lists

let rec fold_left f a list =
match list with
[1->a
| (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list

-> 'a = <fun>

fold_left
(fun () -> print_string)

["hi"; "there"];;
hithere- : unit = ()

9/11/2018

Question

let length 1 =
let rec length_aux list n =
match list with [] -> n

| (a :: bs) -> length_aux bs (n + 1)

in length_aux 1 @

45

explicit recursion?

= How do you write length with fold_left, but no

9/11/2018

Folding

let rec fold_left f a list = match list with

[1->a

| (x :: xs) -> fold_left f (f a x) xs;;

47

|fold_left fa [Xg5 Xp5.5%,] = F(.(F (f a xq) X,).)X,

let rec fold_right f list b = match list with

[1->b

| (x :: xs) -> f x (fold_right f xs b);;

|fold_right f [X5 Xo5.5%,] b = F x,(f %, (..(f x, b)..))

9/11/2018

49

Recall

let rec poor_rev list = match list with

[1->11
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

=| What is its running time?

9/11/2018

Comparison

= poor_rev [1,2,3] =

(poor_rev [23]) @[] =
((poor_rev[3) @ [2]) @ [1] =
(((poor_rev[) @B @[2) @[] =
((1epyer)@l=
Blae@nR)@ll=
G:(l@R)@ll]=

Ba@Ill]=

3z([l@([l) =
3z2:([1@II))=10321]

9/11/2018

Comparison

= rev[1,2,3] =

= rev_aux [1,2,3][]=

= rev_aux [2,3] [I] =

= rev_aux [3] [2,1] =

= rev_aux [][3,2,1] = [3,2,1]

9/11/2018

Quadratic Time

» Each step of the recursion takes time
proportional to input

= Each step of the recursion makes only one
recursive call.

= List example:

let rec poor_rev list = match list with

[1->11
| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/2018 51

Tail Recursion - Example

let rec rev_aux list revlist =
match list with
[1 -> revlist

| x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list =
<fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

= What is its running time?

9/11/2018 53

Folding - Tail Recursion

let rec rev_aux list revlist =
match list with
[1 -> revlist
| x :: xs -> rev_aux xs (x::revlist);;
let rev list = rev_aux list [];;

let rev list =

fold_left
(fun 1 -> fun x -> x :: 1) (* comb op *)
[1] (* accumulator cell *)

list

9/11/2018 55

Folding

= Can replace recursion by fold_right in any
forward primitive recursive definition

= Primitive recursive means it only recurses on
immediate subcomponents of recursive data
structure

= Can replace recursion by fold_left in any
tail primitive recursive definition

9/11/2018 56

Continuation Passing Style

= A programming technique for all forms of
“non-local” control flow:
= non-local jumps
= exceptions

= general conversion of non-tail calls to tail calls

= Essentially it’ s a higher-order function
version of GOTO

9/11/2018 58

Continuation Passing Style

= Writing procedures so that they take a
continuation to which to give (pass) the
result, and return no result, is called
continuation passing style (CPS)

9/11/2018 60

Example of Tail Recursion

let rec app fl x =
match f1 with [] -> x

| (f :: rem_fs) -> (app rem_fs x);;

val app : ('a -> 'a) list ->\la -> 'a = <fun>

let app fs x =
let rec app_aux fl acc =
match f1 with [] -> acc
| (f :: rem_fs) -> app_aux
(fun z -> acc (f z))

in app_aux fs (funy ->y) x;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun>

9/11/2018 57

Continuations

= |dea: Use functions to represent the control flow
of a program

= Method: Each procedure takes a function as an
argument to which to pass its result; outer
procedure “returns” no result

= Function receiving the result called a
continuation

. . “ ”
= Continuation acts as ~accumulator™ for work
still to be done

9/11/2018 59

Example

|- Simple reporting continuation: |

let report x = (print_int x;
print_newline());;

val report : int -> unit = <fun>

|- Simple function using a continuation: |

let plusk a b k = k (a + b)
val plusk : int -> int -> (int -> 'a) -> ’a

= <fun>
plusk 20 22 report;;
42
9-/11/%018unj't = ()

61

10

Example of Tail Recursion & CSP

let app fs x =
let rec app_aux fl acc=
match f1 with
[1 -> acc
| (f :: rem_fs) -> app_aux rem_fs
(fun z -> acc (f z))
in app_aux fs (funy ->y) X;;
val app : ('a -> 'a) list -> 'a -> 'a = <fun> -
let rec appk fl x k =
match f1 with
[1->k x
| (f :: rem_fs) -> appk rem_fs x (fun z -> k (f 2));.
hval appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

9/11/2018 62

Continuation Passing Style

= A compilation technique to implement non-local
control flow, especially useful in interpreters.

= A formalization of non-local control flow in
denotational semantics

= Possible intermediate state in compiling
functional code

9/11/2018 64

Continuation Passing Style

= A compilation technique to implement non-local
control flow, especially useful in interpreters.

m A formalization of non-local control flow in
denotational semantics

» Possible intermediate state in compiling
functional code

9/11/2018 66

Example of Tail Recursion & CSP

let rec appk fl x k =

match fl with
[1->kx

| (f :: rem_fs) -> appk rem_fs x (fun z -> k (f 2));;

appk [(fun x->x+1); (fun x -> x*5)] 2 (fun x->Xx);;

:int =11

9/11/2018 63

Terms

= A function is in Direct Style when it returns its
result back to the caller.

= A Tail Call occurs when a function returns the
result of another function call without any more
computations (e.g. tail recursion)

= A function is in Continuation Passing Style
when it passes its result to another function.

= Instead of returning the result to the caller, we pass
it forward to another function.

9/11/2018 65

Example

|- Simple reporting continuation: |

let report x = (print_int x;
print_newline());;

val report : int -> unit = <fun>

|- Simple function using a continuation: |

let plusk a b k = k (a + b)

val plusk : int -> int -> (int -> 'a) -> ’a
= <fun>

plusk 20 22 report;;

42

9-/11/%018un:i-t = () 67

11

Simple Functions Taking Continuations

= Given a primitive operation, can convert it to
pass its result forward to a continuation

= Examples:

let subk x y k = k(x + y);;

val subk : int -> int -> (int -> 'a) -> 'a = <fum>

let egk x y k = k(x =y);;

val egk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>

let timesk x y k = k(x * y);;

val timesk : int -> int -> (int -> 'a) -> 'a =
<fun>

9/11/2018 68

Nesting Continuations

let add_three xy z = x +y + z;;
val add_three : int -> int -> int -> int = <fun>

let add_three x y z = let p=x +y in p + z;;
val add_three : int -> int -> int -> int = <fun>

let add_three_k x y z k =
addk x y kfun p -> addk p z kK])f;;
val add_three_k : int -> int -> int -> (int -> 'c
-> 'a = <fun>

9/11/2018 69

12

