
1

9/11/2018 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated

by Vikram Adve, Gul Agha, and Elsa L Gunter

9/11/2018 2

Structural Recursion

 Functions on recursive datatypes (eg lists)

tend to be recursive

 Recursion over recursive datatypes generally by

structural recursion

 Recursive calls made to components of structure of

the same recursive type

 Base cases of recursive types stop the recursion of

the function

9/11/2018 3

Structural Recursion : List Example

let rec length list = match list with

[] -> 0 (* Nil case *)

| x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

- : int = 4

 Nil case [] is base case

 Cons case recurses on component list xs

9/11/2018 4

Forward Recursion

 In Structural Recursion, split input into

components and (eventually) recurse on

components

 Forward Recursion form of Structural Recursion

 In forward recursion, first call the function

recursively on all recursive components, and

then build final result from partial results

 Wait until whole structure has been traversed to

start building answer

9/11/2018 5

Forward Recursion: Examples

let rec double_up list =
match list with

[] -> []
| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list with

[] -> []
| (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>

Question

 How do you write length with forward

recursion?

let rec length l =

9/11/2018 6

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

2

Question

 How do you write length with forward

recursion?

let rec length l =

match l with [] ->

| (a :: bs) ->

9/11/2018 7

Question

 How do you write length with forward

recursion?

let rec length l =

match l with [] ->

| (a :: bs) -> 1 + length bs

9/11/2018 8

Question

 How do you write length with forward

recursion?

let rec length l =

match l with [] -> 0

| (a :: bs) -> 1 + length bs

9/11/2018 9

Question

 How do you write length with forward

recursion?

let rec length l =

match l with [] -> 0

| (a :: bs) -> let t = length bs
in 1 + t

9/11/2018 10

9/11/2018 11

Functions Over Lists

let rec double_up list =

match list

with [] -> [] (* pattern before ->,

expression after *)

| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;

val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2;
1; 1; 1; 1]

9/11/2018 12

Functions Over Lists

let rec poor_rev list =

match list

with [] -> []

| (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

3

Your Turn

9/11/2018 13

 Write a function odd_count fr : int list -> int such

that it returns the number of odd integers found in

the input list. The function is required to use (only)

forward recursion (no other form of recursion).

let rec odd_count_fr l =

odd_count_fr [1;2;3];;

- : int = 2

9/11/2018 14

Normal

call

h

g

f

…

An Important Optimization

 When a function call is made, the
return address needs to be saved
to the stack so we know to
where to return when the call is
finished

 What if f calls g and g calls h, but
calling h is the last thing g does
(a tail call)?
 let f x = (g x) + 1

 let g x = h (x+1)

 let h x = …

9/11/2018 15

Tail

call

h

f

…

An Important Optimization

 When a function call is made, the
return address needs to be saved
to the stack so we know to where
to return when the call is finished

 What if f calls g and g calls h, but
calling h is the last thing g does (a
tail call)?

 Then h can return directly to f
instead of g

9/11/2018 16

Tail Recursion

 A recursive program is tail recursive if all

recursive calls are tail calls

 Tail recursive programs may be optimized to be

implemented as loops, thus removing the

function call overhead for the recursive calls

 Tail recursion generally requires extra

“accumulator” arguments to pass partial results

 May require an auxiliary function

9/11/2018 17

Example of Tail Recursion

let rec prod l =

match l with [] -> 1

| (x :: rem) -> x * prod rem;;

val prod : int list -> int = <fun>

let prod list =

let rec prod_aux l acc =

match l with [] -> acc

| (y :: rest) -> prod_aux rest (acc * y)

(* Uses associativity of multiplication *)

in prod_aux list 1;;

val prod : int list -> int = <fun>

Question

 How do you write length with tail recursion?

let length l =

9/11/2018 18

4

Question

 How do you write length with tail recursion?

let length l =

let rec length_aux list n =

in

9/11/2018 19

Question

 How do you write length with tail recursion?

let length l =

let rec length_aux list n =

match list with [] ->

| (a :: bs) ->

in

9/11/2018 20

Question

 How do you write length with tail recursion?

let length l =

let rec length_aux list n =

match list with [] -> n

| (a :: bs) ->

in

9/11/2018 21

Question

 How do you write length with tail recursion?

let length l =

let rec length_aux list n =

match list with [] -> n

| (a :: bs) -> length_aux

in

9/11/2018 22

Question

 How do you write length with tail recursion?

let length l =

let rec length_aux list n =

match list with [] -> n

| (a :: bs) -> length_aux bs

in

9/11/2018 23

Question

 How do you write length with tail recursion?

let length l =

let rec length_aux list n =

match list with [] -> n

| (a :: bs) -> length_aux bs (n + 1)

in

9/11/2018 24

5

Question

 How do you write length with tail recursion?

let length l =

let rec length_aux list n =

match list with [] -> n

| (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0

9/11/2018 25

Your Turn

9/11/2018 26

 Write a function odd_count_tr : int list -> int such

that it returns the number of odd integers found in

the input list. The function is required to use (only)

tail recursion (no other form of recursion).

let rec odd_count_tr l =

odd_count_tr [1;2;3];;

- : int = 2

9/11/2018 28

Mapping Recursion

 One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list with

[] -> []

| x::xs -> 2 * x :: doubleList xs;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

9/11/2018 29

Mapping Functions Over Lists

let rec map f list =

match list with

[] -> []

| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b)-> 'a list-> 'b list = <fun>

map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;

: int list = [12; 7; 4; 2; 1; 0; 0]

9/11/2018 30

Mapping Recursion

 Can use the higher-order recursive map function
instead of direct recursion

let doubleList list =

List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

 Same function, but no rec

Your turn now

Write a function

make_app : ((‘a -> ‘b) * ‘a) list -> ‘b list

that takes a list of function – input pairs and gives

the result of applying each function to its

argument. Use map, no explicit recursion.

let make_app lst =

9/11/2018 31

6

9/11/2018 32

Folding Recursion

 Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list with

[] -> 1

| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

 Computes (2 * (4 * (6 * 1)))

9/11/2018 33

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with

[] -> 0
| x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
[] -> 1

| x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

9/11/2018 34

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with

[] -> 0
| x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
[] -> 1

| x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

Base Case

9/11/2018 35

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with

[] -> 0
| x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
[] -> 1

| x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

Recursive Call

9/11/2018 36

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with

[] -> 0
| x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
[] -> 1

| x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

Head Element

9/11/2018 37

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with

[] -> 0
| x::xs -> x + sumlist xs;;

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
[] -> 1

| x::xs -> x * prodlist xs;;

prodlist [2;3;4];;
- : int = 24

Combining Operator

7

9/11/2018 38

Recursing over lists

let rec fold_right f list b =
match list with
[] -> b

| (x :: xs) -> f x (fold_right f xs b);;

fold_right
(fun val init -> val + init)
[1; 2; 3]
0;;

- : int = 6

9/11/2018 39

Recursing over lists

let rec fold_right f list b =
match list with
[] -> b

| (x :: xs) -> f x (fold_right f xs b);;

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()

9/11/2018 40

Folding Recursion

 multList folds to the right

 Same as:

let multList list =

List.fold_right

(fun x -> fun p -> x * p)

list 1;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

9/11/2018 41

Encoding Recursion with Fold

let rec append list1 list2 = match list1 with

[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

let append list1 list2 =

fold_right (fun x y -> x :: y) list1 list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;

- : int list = [1; 2; 3; 4; 5; 6]

Base Case Operation Recursive call

Question

let rec length l =

match l with [] -> 0

| (a :: bs) -> 1 + length bs

 How do you write length with fold_right, but no

explicit recursion?

9/11/2018 42

Question

let rec length l =

match l with [] -> 0

| (a :: bs) -> 1 + length bs

 How do you write length with fold_right, but no

explicit recursion?

let length list =

List.fold_right (fun x -> fun n -> n + 1)
list 0

9/11/2018 43

8

Question

let rec length l =

match l with [] -> 0

| (a :: bs) -> 1 + length bs

 How do you write length with fold_right, but no

explicit recursion?

let length list =

List.fold_right (fun x -> fun n -> n + 1)
list 0

Can you write fold_right (or fold_left) with just

map? How, or why not?
9/11/2018 44 9/11/2018 45

Iterating over lists

let rec fold_left f a list =
match list with
[] -> a

| (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list

-> 'a = <fun>

fold_left
(fun () -> print_string)
()
["hi"; "there"];;

hithere- : unit = ()

9/11/2018 46

Encoding Tail Recursion with fold_left

let prod list = let rec prod_aux l acc =

match l with

[] -> acc

| (y :: rest) -> prod_aux rest (acc * y)

in prod_aux list 1;;

let prod list =

List.fold_left (fun acc y -> acc * y) 1 list;;

prod [4;5;6];;

- : int =120

Init AccValue OperationRecursive Call

Question

let length l =

let rec length_aux list n =

match list with [] -> n

| (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0

 How do you write length with fold_left, but no

explicit recursion?

9/11/2018 47

Question

let length l =

let rec length_aux list n =

match list with [] -> n

| (a :: bs) -> length_aux bs (n + 1)

in length_aux l 0

 How do you write length with fold_left, but no

explicit recursion?

let length list =

List.fold_left (fun n -> fun x -> n + 1)
0 list

9/11/2018 48 9/11/2018 49

Folding

let rec fold_left f a list = match list with
[] -> a

| (x :: xs) -> fold_left f (f a x) xs;;

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list with
[] -> b

| (x :: xs) -> f x (fold_right f xs b);;

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9

9/11/2018 50

Recall

let rec poor_rev list = match list with
[] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

 What is its running time?

9/11/2018 51

Quadratic Time

 Each step of the recursion takes time
proportional to input

 Each step of the recursion makes only one
recursive call.

 List example:

let rec poor_rev list = match list with
[] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/11/2018 52

Comparison

 poor_rev [1,2,3] =

 (poor_rev [2,3]) @ [1] =

 ((poor_rev [3]) @ [2]) @ [1] =

 (((poor_rev []) @ [3]) @ [2]) @ [1] =

 (([] @ [3]) @ [2]) @ [1]) =

 ([3] @ [2]) @ [1] =

 (3:: ([] @ [2])) @ [1] =

 [3,2] @ [1] =

 3 :: ([2] @ [1]) =

 3 :: (2:: ([] @ [1])) = [3, 2, 1]

9/11/2018 53

Tail Recursion - Example

let rec rev_aux list revlist =

match list with

[] -> revlist

| x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list =
<fun>

let rev list = rev_aux list [];;

val rev : 'a list -> 'a list = <fun>

 What is its running time?

9/11/2018 54

Comparison

 rev [1,2,3] =

 rev_aux [1,2,3] [] =

 rev_aux [2,3] [1] =

 rev_aux [3] [2,1] =

 rev_aux [] [3,2,1] = [3,2,1]

9/11/2018 55

Folding - Tail Recursion

let rec rev_aux list revlist =

match list with

[] -> revlist

| x :: xs -> rev_aux xs (x::revlist);;

let rev list = rev_aux list [];;

let rev list =

fold_left
(fun l -> fun x -> x :: l) (* comb op *)

[] (* accumulator cell *)

list

10

9/11/2018 56

Folding

 Can replace recursion by fold_right in any

forward primitive recursive definition

 Primitive recursive means it only recurses on

immediate subcomponents of recursive data

structure

 Can replace recursion by fold_left in any

tail primitive recursive definition

9/11/2018 57

Example of Tail Recursion

let rec app fl x =

match fl with [] -> x

| (f :: rem_fs) -> f (app rem_fs x);;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let app fs x =

let rec app_aux fl acc =

match fl with [] -> acc
| (f :: rem_fs) -> app_aux rem_fs

(fun z -> acc (f z))
in app_aux fs (fun y -> y) x;;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

9/11/2018 58

Continuation Passing Style

 A programming technique for all forms of

“non-local” control flow:

 non-local jumps

 exceptions

 general conversion of non-tail calls to tail calls

 Essentially it’s a higher-order function

version of GOTO

9/11/2018 59

Continuations

 Idea: Use functions to represent the control flow

of a program

 Method: Each procedure takes a function as an

argument to which to pass its result; outer

procedure “returns” no result

 Function receiving the result called a

continuation

 Continuation acts as “accumulator” for work

still to be done

9/11/2018 60

Continuation Passing Style

 Writing procedures so that they take a

continuation to which to give (pass) the

result, and return no result, is called

continuation passing style (CPS)

9/11/2018 61

Example

 Simple reporting continuation:

let report x = (print_int x;
print_newline());;

val report : int -> unit = <fun>

 Simple function using a continuation:

let plusk a b k = k (a + b)

val plusk : int -> int -> (int -> ’a) -> ’a
= <fun>

plusk 20 22 report;;

42

- : unit = ()

11

9/11/2018 62

Example of Tail Recursion & CSP

let app fs x =

let rec app_aux fl acc=

match fl with

[] -> acc
| (f :: rem_fs) -> app_aux rem_fs

(fun z -> acc (f z))
in app_aux fs (fun y -> y) x;;

val app : ('a -> 'a) list -> 'a -> 'a = <fun>

let rec appk fl x k =

match fl with

[] -> k x

| (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;

hval appk : ('a -> 'a) list -> 'a -> ('a -> 'b) -> 'b

9/11/2018 63

Example of Tail Recursion & CSP

let rec appk fl x k =

match fl with

[] -> k x

| (f :: rem_fs) -> appk rem_fs x (fun z -> k (f z));;

appk [(fun x->x+1); (fun x -> x*5)] 2 (fun x->x);;

- : int = 11

9/11/2018 64

Continuation Passing Style

 A compilation technique to implement non-local

control flow, especially useful in interpreters.

 A formalization of non-local control flow in

denotational semantics

 Possible intermediate state in compiling

functional code

9/11/2018 65

Terms

 A function is in Direct Style when it returns its

result back to the caller.

 A Tail Call occurs when a function returns the

result of another function call without any more

computations (e.g. tail recursion)

 A function is in Continuation Passing Style

when it passes its result to another function.

 Instead of returning the result to the caller, we pass

it forward to another function.

9/11/2018 66

Continuation Passing Style

 A compilation technique to implement non-local

control flow, especially useful in interpreters.

 A formalization of non-local control flow in

denotational semantics

 Possible intermediate state in compiling

functional code

9/11/2018 67

Example

 Simple reporting continuation:

let report x = (print_int x;
print_newline());;

val report : int -> unit = <fun>

 Simple function using a continuation:

let plusk a b k = k (a + b)

val plusk : int -> int -> (int -> ’a) -> ’a
= <fun>

plusk 20 22 report;;

42

- : unit = ()

12

Simple Functions Taking Continuations

 Given a primitive operation, can convert it to

pass its result forward to a continuation

 Examples:

let subk x y k = k(x + y);;

val subk : int -> int -> (int -> 'a) -> 'a = <fun>

let eqk x y k = k(x = y);;

val eqk : 'a -> 'a -> (bool -> 'b) -> 'b = <fun>

let timesk x y k = k(x * y);;

val timesk : int -> int -> (int -> 'a) -> 'a =
<fun>

9/11/2018 68

Nesting Continuations

let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

let add_three x y z = let p = x + y in p + z;;

val add_three : int -> int -> int -> int = <fun>

let add_three_k x y z k =

addk x y (fun p -> addk p z k);;

val add_three_k : int -> int -> int -> (int -> 'a)
-> 'a = <fun>

9/11/2018 69

