Programming Languages and Compilers (CS 421)

Sasa Misailovic 4110 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, and Elsa L Gunter

9/6/2018

Tuples as Values

// $\rho_0 = \{c \rightarrow 4, a \rightarrow 1, b \rightarrow 5\}$ # let s = (5, "hi", 3.2);; val s : int * string * float = (5, "hi", 3.2)

// $\rho = \{s \rightarrow (5, "hi", 3.2), c \rightarrow 4, a \rightarrow 1, b \rightarrow 5\}$

Pattern Matching with Tuples

// $\rho = \{s \rightarrow (5, "hi", 3.2), a \rightarrow 1, b \rightarrow 5, c \rightarrow 4\}$

let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2

let (a, _, _) = s;;
val a : int = 5

let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)
val x : int * float = (2, 9.3)

Nested Tuples

(*Tuples can be nested *)
let d = ((1,4,62),("bye",15),73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)

Functions on tuples

let plus_pair (n,m) = n + m;; val plus pair : int * int -> int = <fun> # plus pair (3,4);; -: int = 7# let twice x = (x, x);;val twice : 'a -> 'a * 'a = <fun> # twice 3;; -: int * int = (3, 3) # twice "hi";; - : string * string = ("hi", "hi")

Save the Environment!

A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

< (v1,...,vn) \rightarrow exp, ρ >

 Where p is the environment in effect when the function is defined (for a simple function)

Closure for plus_pair

- Assume p_{plus_pair} was the environment just before plus_pair defined and recall
 - let plus_pair (n,m) = n + m;;

Closure for fun (n,m) -> n + m:

<(n,m) \rightarrow n + m, $\rho_{\text{plus_pair}}$ >

Like set union! (but subtle differences, see slide 17)

Environment just after plus_pair defined:

{plus_pair $\rightarrow \langle (n,m) \rightarrow n + m, \rho_{plus_pair} \rangle$ } + ρ_{plus_pair}

Functions with more than one argument

let add_three x y z = x + y + z;; val add_three : int -> int -> int -> int = <fun>

```
# let t = add_three 6 3 2;;
val t : int = 11
```

```
# let add_three =
   fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>
```

Again, first syntactic sugar for second

Curried vs Uncurried

Recall

let add_three u v w = u + v + w;;
val add three : int -> int -> int -> int = <fun>

How does it differ from # let add_triple (u,v,w) = u + v + w;; val add_triple : int * int * int -> int = <fun>

- add_three is curried;
- add_triple is uncurried

Curried vs Uncurried

- # add_three 6 3 2;;
- -: int = 11
- # add_triple (6,3,2);;
- -: int = 11
- # add_triple 5 4;;
- Characters 0-10: add_triple 5 4;;

^^^^^

- This function is applied to too many arguments, maybe you forgot a `;'
- # fun x -> add_triple (5,4,x);;
- : int -> int = $\langle fun \rangle$

Partial application of functions

```
# let h = add_three 5 4;;
val h : int -> int = <fun>
```

```
# h 3;;
```

-: int = 12

```
# h 7;;
```

```
-: int = 16
```

Partial application also called *sectioning* 9/6/2018

Recall: let $plus_x = fun y -> y + x$

Closure for plus_x

When plus_x was defined, had environment:

$$\rho_{\text{plus}_x} = \{..., \mathbf{x} \rightarrow \mathbf{I2}, ...\}$$

is really let plus_x = fun y -> y + x

Closure for fun y -> y + x:

\rightarrow y + x,
$$\rho_{plus_x}$$
 >

Environment just after plus_x defined:

{plus_x \rightarrow <y \rightarrow y + x, ρ_{plus_x} >} + ρ_{plus_x}

Evaluation

- Running Ocaml source:
 - Parse the program to detect each expression
 - Keep an internal environment at each time step
 - For each expression, interpret the program using the (mathematical) function Eval
 - Nice property of Ocaml: everything is a declaration or an expression!
- How does Eval (expression, environment) work:
 - Evaluation uses a starting environment ρ
 - Define the rules for evaluating declarations, constants, arithmetic expressions, function applications...

Evaluating Declarations

- Evaluation uses a starting environment ρ
- To evaluate a (simple) declaration let x = e
 - Evaluate expression e in ρ to value v
 - Update ρ with the mapping from x to v: $\{x \rightarrow v\} + \rho$

Definition of + on environments!

• Update: $\rho_1 + \rho_2$ has all the bindings in ρ_1 and all those in ρ_2 that are not rebound in ρ_1 .

It is not commutative!

$$\{x \rightarrow 2, y \rightarrow 3, a \rightarrow \text{``hi''}\}$$

+ { $y \rightarrow 100$, b \rightarrow 6}

= {x \rightarrow 2, y \rightarrow 3, a \rightarrow "hi", b \rightarrow 6}

Evaluating Declarations

- Evaluation uses a starting environment ρ
- To evaluate a (simple) declaration let x = e
 - Evaluate expression e in ρ to value v
 - Update ρ with the mapping from x to v: $\{x \rightarrow v\} + \rho$

Warm-up: we evaluate this case:

$$\rho = \{ x \rightarrow 2 \}$$

let y = 2*x+1;;
$$\rho' = \{ x \rightarrow 2; y \rightarrow 5 \}$$

Evaluating Expressions (Rules)

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate a **variable** \times , look it up in ρ i.e., use $\rho(\times)$
- To evaluate tuples, evaluate each tuple element
- To evaluate uses of +, _, etc, first eval the arguments, then do the operation
- To evaluate a local declaration: let x = el in e2
 - Evaluate el to v, evaluate e2 using $\{x \rightarrow v\} + \rho$
- Function application (f x) -- see next slide

Evaluation of Function Application with Closures

Function **defined** as: let $f(x_1, ..., x_n) = body$

Function **application**: $f(e_1, ..., e_n)$;

Let us define Eval($f(e_1, ..., e_n), \rho$):

- In the environment ρ , evaluate the left term (f) to closure, i.e., c = <(x₁,...,x_n) → body, ρ^* >
- Evaluate the arguments in the application $e_1 \dots e_n$ to their values v_1, \dots, v_n in the environment ρ
- Call helper function App(Closure, Value) to evaluate the function body (body) in the environment ρ*
 - Conjoin the mapping of the arguments to values with the environment ρ^*

$$\rho' = {\mathbf{x}_1 \rightarrow \mathbf{v}_1, \dots, \mathbf{x}_n \rightarrow \mathbf{v}_n} + \rho^*$$

• The App then calls Eval again for the expressions in body in the env. ρ'_{18}

Evaluation of Application of plus_x;;

Have environment:

- Eval (plus_x y, ρ) rewrites to
- App (Eval(plus_x, ρ), Eval(y, ρ)) rewrites to
- App (<y \rightarrow y + x, ρ_{plus_x} >, 3) rewrites to
- Eval (y + x, {y \rightarrow 3} + ρ_{plus_x}) rewrites to
- Eval (3 + 12, ρ_{plus_x}) = 15

Evaluation of Application of plus_pair

- Assume environment
- $\label{eq:rho_product} \begin{array}{l} \rho = \{ \textbf{x} \rightarrow \textbf{3, ..., } \\ \text{plus_pair} \rightarrow <(\textbf{n,m}) \rightarrow \textbf{n + m, } \rho_{\text{plus_pair}} > \} + \rho_{\text{plus_pair}} \end{array}$
- Eval (plus_pair (4,x), ρ)=
- App (Eval (plus_pair, ρ), Eval ((4,x), ρ)) =
- App (<(n,m) \rightarrow n + m, ρ_{plus_pair} >, (4,3)) =
- Eval (n + m, {n -> 4, m -> 3} + ρ_{plus_pair}) =
- Eval (4 + 3, {n -> 4, m -> 3} + $\rho_{plus_{pair}}$) = 7

Closure question

If we start in an empty environment, and we execute:

What is the environment at (* 0 *)?

 $\rho_{\text{start}} = \{\}$

let f = fun n -> n + 5;;

 $\rho_0 = \{f \rightarrow \langle n \rightarrow n + 5, \{ \} \}$

Closure question

If we start in an empty environment, and we execute:

```
let f = fun n -> n + 5;;
let pair_map g (n,m) = (g n, g m);;
(* 1 *)
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (* 1 *)?

Answer

 $\rho_{\Theta} = \{f \rightarrow \langle n \rightarrow n + 5, \{ \} \}$ let pair_map g (n,m) = (g n, g m);; $\rho_1 = \{$ $f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle$, $pair_map \rightarrow$ $\langle g \rightarrow (fun (n,m) - \rangle (g n, g m)),$ $\{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle\}$ > }

Closure question

If we start in an empty environment, and we execute:

```
let f = fun n -> n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
(* 2 *)
let a = f (4,6);;
```

What is the environment at (* 2 *)?

$$\begin{array}{l} \rho_0 = \{f \to \} \\ \rho_1 = \{f \to , \\ pair_map \to \\ & \ (g \ n, \ g \ m)), \\ & \{f \to \} > \} \\ \end{array}$$
let f = pair_map f;;

$$\begin{array}{l} \rho_0 = \{f \to \} \\ \rho_1 = \{f \to , \\ pair_map \to \\ & \, (g \ n, \ g \ m)), \\ & \{f \to \} > \} \\ \\ let \ f = pair_map \ f;; \end{array}$$

Eval(pair_map f, ρ_1) =

$$\begin{array}{l} \rho_0 = \{f \to \} \\ \rho_1 = \{f \to , \\ pair_map \to \\ & \ (g \ n, \ g \ m)), \\ & \{f \to \} > \} \\ \\ let \ f = pair_map \ f;; \end{array}$$

Eval(pair_map f, ρ_1) = App (<g \rightarrow fun (n,m) -> (g n, g m), ρ_0 >, <n \rightarrow n + 5, { }>) =

$$\begin{array}{l} \rho_0 = \{f \to \} \\ \rho_1 = \{f \to , \\ pair_map \to \\ & \ (g \ n, \ g \ m)), \\ & \{f \to \} > \} \\ \\ let \ f = pair_map \ f;; \end{array}$$

Eval(pair_map f,
$$\rho_1$$
) =
App (\rightarrowfun (n,m) -> (g n, g m), ρ_0 >, \rightarrow n + 5, { }>) =

 $\begin{aligned} & \text{Eval(fun (n,m)->(g n, g m), } \{g \rightarrow <n \rightarrow n + 5, \{ \} > \} + \rho_0) = \\ & <(n,m) \rightarrow (g n, g m), \{g \rightarrow <n \rightarrow n + 5, \{ \} > \} + \rho_0 > = \\ & <(n,m) \rightarrow (g n, g m), \{g \rightarrow <n \rightarrow n + 5, \{ \} >, f \rightarrow <n \rightarrow n + 5, \{ \} > \} \end{aligned}$

Answer

}

Closure question

If we start in an empty environment, and we execute:

let f = fun n -> n + 5;; let pair_map g (n,m) = (g n, g m);; let f = pair_map f;; let a = f (4,6);; (* 3 *)

What is the environment at (* 3 *)?

Final Evalution?

$$\begin{array}{l} \rho_2 = \{f \rightarrow <(n,m) \rightarrow (g \ n, \ g \ m), \\ \{g \rightarrow , \\ f \rightarrow \} >, \\ pair_map \rightarrow \ (g \ n, \ g \ m), \\ \{f \rightarrow \} \\ > \\ \} \\ \end{array}$$

$$\begin{array}{l} \label{eq:phi} \end{tabular}$$

$$\begin{array}{l} \rho_2 = \{f \to <(n,m) \to (g \ n, \ g \ m), \\ \{g \to , \\ f \to \} >, \\ pair_map \to \ (g \ n, \ g \ m), \\ \{f \to \} \\ > \\ \end{array}$$

Eval(f (4,6), ρ_2) =

 $\rho_2 = \{f \rightarrow \langle (n,m) \rightarrow (g n, g m), \}$ $\{g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle,$ $f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle$ pair_map $\rightarrow \langle g \rightarrow fun(n,m) - \rangle (g n, g m)$, $\{f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle\}$ > let a = f(4,6);;Eval(f (4,6), ρ_2) = App(<(n,m) \rightarrow (g n, g m), {g \rightarrow <n \rightarrow n + 5, { }>, $f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle$ 2 (4,6)) =

 $\begin{array}{l} {\rm App}(<(n,m) \to (g \ n, \ g \ m), \ \{g \to <n \to \ n \ + \ 5, \ \{ \ \}>, \\ & f \to <n \to \ n \ + \ 5, \ \{ \ \}>\}>, \\ (4,6)) = \end{array}$

Eval((g n, g m), {n
$$\rightarrow$$
 4, m \rightarrow 6} +
{g \rightarrow \rightarrow n + 5, { }>,
f \rightarrow \rightarrow n + 5, { }>}) =
(App(\rightarrow n + 5, { }>, 4),
App (\rightarrow n + 5, { }>, 6)) =

 $(App(<n \rightarrow n + 5, \{ \}>, 4),$ App (<n \rightarrow n + 5, { }>, 6)) =

(Eval(n + 5, {n \rightarrow 4} + { }), Eval(n + 5, {n \rightarrow 6} + { })) =

(Eval(4 + 5, {n \rightarrow 4} + { }), Eval(6 + 5, {n \rightarrow 6} + { })) = (9, 11)

Finally:

 $\rho_3 = \{a \rightarrow (9, 11)\} + \rho_2$

Functions as arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

let g = thrice plus_two;; (* plus_two x is x+2 *)
val g : int -> int = <fun>

g 4;;

-: int = 10

thrice (fun s -> "Hi! " ^ s) "Good-bye!";;

- : string = "Hi! Hi! Hi! Good-bye!"

Higher Order Functions

A function is *higher-order* if it takes a function as an argument or returns one as a result

• Example:

- # let compose f g = fun x -> f (g x);;

Thrice

Recall:

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

How do you write thrice with compose?
let thrice f = compose f (compose f f);;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

Lambda Lifting

let add_two = (+) (print_string "test\n"; 2);;

let add2 = (* lambda lifted *)
fun x -> (+) (print_string "test\n"; 2) x;;

Lambda Lifting

You must remember the rules for evaluation when you use partial application

- # let add_two = (+) (print_string "test\n"; 2);;
 test
 val add_two : int -> int = <fun>
- # let add2 = (* lambda lifted *)
 fun x -> (+) (print_string "test\n"; 2) x;;
 val add2 : int -> int = <fun>

Lambda Lifting

```
# thrice add_two 5;;
- : int = 11
```

```
# thrice add2 5;;
```

```
test
```

```
test
```

```
test
```

```
-: int = 11
```

 Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied

Reminder: Pattern Matching with Tuples

let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2

let (a, _, _) = s;;
val a : int = 5

Match Expressions

let triple_to_pair triple =

match triple with
 (0, x, y) -> (x, y)
 (x, 0, y) -> (x, y)
 (x, y, _) -> (x, y)

•Each clause: pattern on left, expression on right

•Each x, y has scope of only its clause

•Use first matching clause

val triple_to_pair : int * int * int -> int * int = <fun>

Recursive Functions

```
# let rec factorial n =
    if n = 0 then 1
    else n * factorial (n - 1);;
    val factorial : int -> int = <fun>
```

- # factorial 5;;
- -: int = 120

(* rec is needed for recursive function
 declarations *)

Recursion Example

Compute n ² recursively using: $n^2 = (2 * n - 1) + (n - 1)^2$
<pre># let rec nthsq n = (* rec for recursion * match n with (* pattern matching for cases *)</pre>
val nthsq : int -> int = <fun></fun>
nthsq 3;; - : int = 9

Structure of recursion similar to inductive proof

Recursion and Induction

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain the base case (!!!)
 - Failure of selecting base case will cause non-termination
 - But the program will crash because it exhausts the stack!

First example of a recursive datatype (aka algebraic datatype)

 Unlike tuples, lists are homogeneous in type (all elements same type)

- List can take one of two forms:
 - Empty list, written []
 - **Non-empty list**, written x :: xs
 - x is head element,
 - xs is tail list, :: called "cons"
- How we typically write them (syntactic sugar):
 - [x] == x :: []
 - [xl;x2;...;xn] == xl :: x2 :: ... :: xn :: []

Lists

```
# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
```

```
# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
```

```
# (8::5::3::2::1::1::[]) = fib5;;
```

- : bool = true

```
# fib5 @ fib6;;
```

```
- : int list =
    [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
```

Lists are Homogeneous

This expression has type float but is here used with type int

Question

- Which one of these lists is invalid?
- I. [2; 3; 4; 6]
- [2,3; 4,5; 6,7]
 3 is invalid because of because of the last pair
- 4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

Functions Over Lists

```
(* fib5 = [8;5;3;2;1;1] *)
# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2;
1; 1; 1; 1]
```

Functions Over Lists

```
# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there";
    "there"]
```

poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

Problem: write code for the length of the list

How to start?

let length 1 =

Problem: write code for the length of the list

How to start?

let rec length l =
 match l with

Problem: write code for the length of the list

- What patterns should we match against?
- let rec length l =
 match l with

Problem: write code for the length of the list

What patterns should we match against?

Problem: write code for the length of the list

What result do we give when I is empty?

Problem: write code for the length of the list

- What result do we give when I is not empty?

Problem: write code for the length of the list
 What result do we give when I is not empty?

Same Length

How can we efficiently answer if two lists have the same length?

Tactics:

- First list is empty: then true if second list is empty else false
- First list in not empty: then if second list empty return false, or otherwise compare whether the sublists (after the first element) have the same length

Same Length

How can we efficiently answer if two lists have the same length?

```
let rec same_length list1 list2 =
 match list1 with
   [] -> (
         match list2 with [] -> true
                       (y::ys) -> false
  (x::xs) -> (
         match list2 with [] -> false
                       (y::ys) -> same_length xs ys
```

Functions Over Lists

```
# let rec map f list =
   match list with
   [] -> []
   [ (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
```

map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;

: int list = [12; 7; 4; 2; 1; 0; 0]

Iterating over lists

```
# let rec fold_left f a list =
    match list with
    [] -> a
    [ (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list
    -> 'a = <fun>
```

```
# fold_left
   (fun () -> print_string)
   ()
   ["hi"; "there"];;
hithere- : unit = ()
```

Iterating over lists

```
# let rec fold_right f list b =
    match list with
    [] -> b
    | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b
    -> 'b = <fun>
```

```
# fold_right
    (fun s -> fun () -> print_string s)
    ["hi"; "there"]
    ();;
therehi- : unit = ()
```

Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
 - Recursive calls made to components of structure of the same recursive type
 - Base cases of recursive types stop the recursion of the function

Structural Recursion : List Example

-: int = 4

Nil case [] is base case Cons case recurses on component list xs

Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- **Forward Recursion** is a form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

Forward Recursion: Examples

```
# let rec double up list =
    match list
    with [ ] -> [ ]
       (x :: xs) -> (x :: x :: double_up xs);;
val double up : 'a list -> 'a list = <fun>
# let rec poor_rev list =
  match list
  with [] -> []
     (x::xs) -> poor_rev xs @ [x];;
val poor rev : 'a list -> 'a list = <fun>
```

Encoding Recursion with Fold

```
# let rec append list1 list2 = match list1 with
  [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>
```

append [1;2;3] [4;5;6];;

- : int list = [1; 2; 3; 4; 5; 6]

```
# let append_alt list1 list2 =
    fold_right (fun x y -> x :: y) list1 list2;;
val append_alt : 'a list -> 'a list -> 'a list = <fun>
```

Mapping Recursion

 One common form of structural recursion applies a function to each element in the structure

- # doubleList [2;3;4];;
- : int list = [4; 6; 8]

Mapping Recursion

Can use the higher-order recursive map function instead of direct recursion

let doubleList list =
 List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>

- # doubleList [2;3;4];;
- : int list = [4; 6; 8]

Same function, but no recursion

Folding Recursion

- Another common form "folds" an operation over the elements of the structure
- # let rec multList list = match list
 with [] -> 1
 | x::xs -> x * multList xs;;
 val multList : int list -> int = <fun>
- # multList [2;4;6];;
- -: int = 48

Computes (2 * (4 * (6 * 1)))

Folding Recursion

```
multList folds to the rightSame as:
```

```
# let multList list =
   List.fold_right
   (fun x -> fun p -> x * p)
   list 1;;
val multList : int list -> int = <fun>
```

```
# multList [2;4;6];;
```

```
-: int = 48
```

How long will it take?

Common big-O times: • Constant time O(I)input size doesn't matter Linear time O(n) • 2x input size \Rightarrow 2x time • Quadratic time $O(n^2)$ • 3x input size \Rightarrow 9x time • Exponential time $O(2^n)$ • Input size $n+1 \Rightarrow 2x$ time

Linear Time

- Expect most list operations to take linear time O(n)
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial

Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.
- List example:

Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear

Exponential running time

let rec naiveFib n = match n
with 0 -> 0
| 1 -> 1
| _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>

An Important Optimization

When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished

What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?

An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
 May require an auxiliary function

Tail Recursion - Example

let rec rev_aux list revlist =
 match list with [] -> revlist
 | x :: xs -> rev_aux xs (x::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list =
 <fun>

let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>

What is its running time?

Folding Functions over Lists

```
How are the following functions similar?
# let rec sumlist list = match list with
  [ ] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
# sumlist [2;3;4];;
-: int = 9
# let rec prodlist list = match list with
  [ ] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
```

```
# prodlist [2;3;4];;
```

```
-: int = 24
```

Folding

- # let rec fold_left f a list = match list with [] -> a | (x :: xs) -> fold left f (f a x) xs;; val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun> fold_left f a [x₁; x₂;...;x_n] = f(...(f (f a x₁) x₂)...)x_n
- # let rec fold_right f list b = match list with [] -> b | (x :: xs) -> f x (fold_right f xs b);; val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun> fold_right f [x₁; x₂;...;x_n] b = f x₁(f x₂ (...(f x_n b)...))

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

```
# sumlist [2;3;4];;
```

```
-: int = 9
```

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

```
# prodlist [2;3;4];;
```

```
-: int = 24
```

```
Folding - Tail Recursion
```

```
- # let rev list =
- fold_left
- (fun l -> fun x -> x :: l) //comb op
[] //accumulator cell
list
```

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition