
9/6/2018 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated

by Vikram Adve, Gul Agha, and Elsa L Gunter

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Tuples as Values

// 0 = {c 4, a 1, b 5}

let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

// = {s (5, "hi", 3.2), c 4, a 1, b 5}

9/6/2018 2

Pattern Matching with Tuples

// = {s (5, "hi", 3.2), a 1, b 5, c 4}

let (a,b,c) = s;; (* (a,b,c) is a pattern *)

val a : int = 5

val b : string = "hi"

val c : float = 3.2

let (a, _, _) = s;;

val a : int = 5

let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)

val x : int * float = (2, 9.3)

9/6/2018 3

Nested Tuples

(*Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =

((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p, (st,_), _) = d;;
(* _ matches all, binds nothing *)

val p : int * int * int = (1, 4, 62)

val st : string = "bye"

9/6/2018 4

Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>

plus_pair (3,4);;

- : int = 7

let twice x = (x,x);;

val twice : 'a -> 'a * 'a = <fun>

twice 3;;

- : int * int = (3, 3)

twice "hi";;

- : string * string = ("hi", "hi")

9/6/2018 5

9/6/2018 6

Save the Environment!

 A closure is a pair of an environment and an

association of a sequence of variables (the input

variables) with an expression (the function

body), written:

< (v1,…,vn) exp, >

 Where is the environment in effect when the

function is defined (for a simple function)

9/6/2018 7

Closure for plus_pair

 Assume plus_pair was the environment just before

plus_pair defined and recall

 let plus_pair (n,m) = n + m;;

 Closure for fun (n,m) -> n + m:

<(n,m) n + m, plus_pair>

 Environment just after plus_pair defined:

{plus_pair <(n,m) n + m, plus_pair >} + plus_pair

Like set

union!

(but subtle

differences,

see slide 17)

9/6/2018 8

Functions with more than one argument

let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

let t = add_three 6 3 2;;

val t : int = 11

let add_three =

fun x -> (fun y -> (fun z -> x + y + z));;

val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

9/6/2018 9

Curried vs Uncurried

 Recall
let add_three u v w = u + v + w;;

val add_three : int -> int -> int -> int = <fun>

 How does it differ from
let add_triple (u,v,w) = u + v + w;;

val add_triple : int * int * int -> int = <fun>

 add_three is curried;

 add_triple is uncurried

9/6/2018 10

Curried vs Uncurried

add_three 6 3 2;;

- : int = 11

add_triple (6,3,2);;

- : int = 11

add_triple 5 4;;

Characters 0-10: add_triple 5 4;;

^^^^^^^^^^

This function is applied to too many arguments,

maybe you forgot a `;'

fun x -> add_triple (5,4,x);;

: int -> int = <fun>

9/6/2018 11

Partial application of functions

let add_three x y z = x + y + z;;

let h = add_three 5 4;;

val h : int -> int = <fun>

h 3;;

- : int = 12

h 7;;

- : int = 16

Partial application also called sectioning

Recall: let plus_x = fun y -> y + x

9/6/2018 12

X 12

…
let x = 12

let plus_x = fun y -> y + x

let x = 7

X 12 …

plus_x

X 12
…

y y + x

plus_x

…

x 7

X 12
…

y y + x

9/6/2018 13

Closure for plus_x

 When plus_x was defined, had environment:

plus_x = {…, x 12, …}

 Recall: let plus_x y = y + x

is really let plus_x = fun y -> y + x

 Closure for fun y -> y + x:

<y y + x, plus_x >

 Environment just after plus_x defined:

{plus_x <y y + x, plus_x >} + plus_x

Evaluation

 Running Ocaml source:

 Parse the program to detect each expression

 Keep an internal environment at each time step

 For each expression, interpret the program using the

(mathematical) function Eval

 Nice property of Ocaml: everything is a declaration or

an expression!

 How does Eval (expression, environment) work:

 Evaluation uses a starting environment

 Define the rules for evaluating declarations, constants,

arithmetic expressions, function applications…

9/6/2018 14

Evaluating Declarations

 Evaluation uses a starting environment

 To evaluate a (simple) declaration let x = e

 Evaluate expression e in to value v

 Update with the mapping from x to v: {x v} +

 Update: 1+ 2 has all the bindings in 1 and all those

in 2 that are not rebound in 1

{x 2, y 3, a “hi”}

+ {y 100, b 6}

= {x 2, y 3, a “hi”, b 6}

9/6/2018 15

Definition of + on environments!

It is not

commutative!

Evaluating Declarations

 Evaluation uses a starting environment

 To evaluate a (simple) declaration let x = e

 Evaluate expression e in to value v

 Update with the mapping from x to v: {x v} +

Warm-up: we evaluate this case:

 = { x → 2 }

let y = 2*x+1;;

’ = { x → 2; y → 5 }

9/6/2018 16

Evaluating Expressions (Rules)

 Evaluation uses an environment

 A constant evaluates to itself

 To evaluate a variable x, look it up in i.e., use (x)

 To evaluate tuples, evaluate each tuple element

 To evaluate uses of +, _ , etc, first eval the arguments,

then do the operation

 To evaluate a local declaration: let x = e1 in e2

 Evaluate e1 to v, evaluate e2 using {x v} +

 Function application (f x) -- see next slide

9/6/2018 17

18

Evaluation of Function Application with Closures

Function defined as: let f (x1, … xn)= body

Function application: f (e1, …, en);

Let us define Eval(f (e1, …, en),):

 In the environment , evaluate the left term (f) to closure, i.e.,
c = <(x1,…,xn) body, *>

 Evaluate the arguments in the application e1 … en to their values
v1,…,vn in the environment

 Call helper function App(Closure, Value) to evaluate the
function body (body) in the environment *

 Conjoin the mapping of the arguments to values with the environment *

’ = {x1 v1,…, xn vn} + *

 The App then calls Eval again for the expressions in body in the env. ’

9/6/2018 19

Evaluation of Application of plus_x;;

 Have environment:

 = {plus_x <y y + x, plus_x >, … , y 3, …}

where plus_x = {x 12, … , y 24, …}

 Eval (plus_x y,) rewrites to

 App (Eval(plus_x,) , Eval(y,)) rewrites to

 App (<y y + x, plus_x >, 3) rewrites to

 Eval (y + x, {y 3} +plus_x) rewrites to

 Eval (3 + 12 , plus_x) = 15

9/6/2018 20

Evaluation of Application of plus_pair

 Assume environment

 = {x 3, … ,

plus_pair <(n,m) n + m, plus_pair>} + plus_pair

 Eval (plus_pair (4,x),)=

 App (Eval (plus_pair,), Eval ((4,x),)) =

 App (<(n,m) n + m, plus_pair>, (4,3)) =

 Eval (n + m, {n -> 4, m -> 3} + plus_pair) =

 Eval (4 + 3, {n -> 4, m -> 3} + plus_pair) = 7

Closure question

 If we start in an empty environment, and we

execute:

let f = fun n -> n + 5;;

(* 0 *)

let pair_map g (n,m) = (g n, g m);;

let f = pair_map f;;

let a = f (4,6);;

What is the environment at (* 0 *)?

9/6/2018 21

Answer

start = {}

let f = fun n -> n + 5;;

0 = {f <n n + 5, { }>}

9/6/2018 22

Closure question

 If we start in an empty environment, and we

execute:
let f = fun n -> n + 5;;

let pair_map g (n,m) = (g n, g m);;

(* 1 *)

let f = pair_map f;;

let a = f (4,6);;

What is the environment at (* 1 *)?

9/6/2018 23

Answer

0 = {f <n n + 5, { }>}

let pair_map g (n,m) = (g n, g m);;

1 = {

f <n n + 5, { }>,

pair_map

<g (fun (n,m) -> (g n, g m)),

{f <n n + 5, { }>}

>

}

9/6/2018 24

Closure question

 If we start in an empty environment, and we

execute:
let f = fun n -> n + 5;;

let pair_map g (n,m) = (g n, g m);;

let f = pair_map f;;

(* 2 *)

let a = f (4,6);;

What is the environment at (* 2 *)?

9/6/2018 25

Evaluate pair_map f

0 = {f <n n + 5, { }>}

1 = {f <n n + 5, { }>,

pair_map

<g (fun (n,m) -> (g n, g m)),

{f <n n + 5, { }>}>}

let f = pair_map f;;

9/6/2018 26

Evaluate pair_map f

0 = {f <n n + 5, { }>}

1 = {f <n n + 5, { }>,

pair_map

<g (fun (n,m) -> (g n, g m)),

{f <n n + 5, { }>}>}

let f = pair_map f;;

Eval(pair_map f, 1) =

9/6/2018 27

Evaluate pair_map f

0 = {f <n n + 5, { }>}

1 = {f <n n + 5, { }>,

pair_map

<g (fun (n,m) -> (g n, g m)),

{f <n n + 5, { }>}>}

let f = pair_map f;;

Eval(pair_map f, 1) =

App (<gfun (n,m) -> (g n, g m), 0>, <n n + 5, { }>) =

9/6/2018 28

Evaluate pair_map f

0 = {f <n n + 5, { }>}

1 = {f <n n + 5, { }>,

pair_map

<g (fun (n,m) -> (g n, g m)),

{f <n n + 5, { }>}>}

let f = pair_map f;;

Eval(pair_map f, 1) =

App (<gfun (n,m) -> (g n, g m), 0>, <n n + 5, { }>) =

Eval(fun (n,m)->(g n, g m), {g<nn + 5, { }>}+0) =

<(n,m) (g n, g m), {g<nn + 5, { }>}+0> =

<(n,m) (g n, g m), {g<nn + 5, { }>, f<nn + 5, { }>}

9/6/2018 29

Answer

0 = {f <n n + 5, { }>}

1 = {f <n n + 5, { }>,

pair_map

<g (fun (n,m) -> (g n, g m)),

{f <n n + 5, { }>}>}

let f = pair_map f;;

2 = {f <(n,m) (g n, g m),

{g <n n + 5, { }>,

f <n n + 5, { }>}>,

pair_map <g fun (n,m) -> (g n, g m),

{f <n n + 5, { }>}

>

}

9/6/2018 30

Closure question

 If we start in an empty environment, and we

execute:

let f = fun n -> n + 5;;

let pair_map g (n,m) = (g n, g m);;

let f = pair_map f;;

let a = f (4,6);;

(* 3 *)

What is the environment at (* 3 *)?

9/6/2018 31

Final Evalution?

2 = {f <(n,m) (g n, g m),

{g <n n + 5, { }>,

f <n n + 5, { }>}>,

pair_map <g fun (n,m) -> (g n, g m),

{f <n n + 5, { }>}

>

}

let a = f (4,6);;

9/6/2018 32

Evaluate f (4,6);;

2 = {f <(n,m) (g n, g m),

{g <n n + 5, { }>,

f <n n + 5, { }>}>,

pair_map <g fun (n,m) -> (g n, g m),

{f <n n + 5, { }>}

>

}

let a = f (4,6);;

Eval(f (4,6), 2) =

9/6/2018 33

Evaluate f (4,6);;

2 = {f <(n,m) (g n, g m),

{g <n n + 5, { }>,

f <n n + 5, { }>}>,

pair_map <g fun (n,m) -> (g n, g m),

{f <n n + 5, { }>}

>

}

let a = f (4,6);;

Eval(f (4,6), 2) =

App(<(n,m) (g n, g m), {g <n n + 5, { }>,

f <n n + 5, { }>}>

,

(4,6)) =
34

Evaluate f (4,6);;

App(<(n,m) (g n, g m), {g <n n + 5, { }>,

f <n n + 5, { }>}>,

(4,6)) =

Eval((g n, g m), {n 4, m 6} +

{g <n n + 5, { }>,

f <n n + 5, { }>}) =

(App(<n n + 5, { }>, 4),

App (<n n + 5, { }>, 6)) =

9/6/2018 35

Evaluate f (4,6);;

(App(<n n + 5, { }>, 4),

App (<n n + 5, { }>, 6)) =

(Eval(n + 5, {n 4} + { }),

Eval(n + 5, {n 6} + { })) =

(Eval(4 + 5, {n 4} + { }),

Eval(6 + 5, {n 6} + { })) = (9, 11)

Finally:

3 = {a -> (9, 11)} + 2

9/6/2018 36

9/6/2018 37

Functions as arguments

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

let g = thrice plus_two;; (* plus_two x is x+2 *)

val g : int -> int = <fun>

g 4;;

- : int = 10

thrice (fun s -> "Hi! " ^ s) "Good-bye!";;

- : string = "Hi! Hi! Hi! Good-bye!"

9/6/2018 38

Higher Order Functions

 A function is higher-order if it takes a function as
an argument or returns one as a result

 Example:
let compose f g = fun x -> f (g x);;

val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b
= <fun>

 The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b is a
higher order type because of
('a -> 'b) and ('c -> 'a) and -> 'c -> 'b

9/6/2018 39

Thrice

 Recall:
let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

 How do you write thrice with compose?
let thrice f = compose f (compose f f);;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

9/6/2018 40

Lambda Lifting

(+)

- : int -> int -> int = <fun>

let add_two = (+) (print_string "test\n"; 2);;

let add2 = (* lambda lifted *)

fun x -> (+) (print_string "test\n"; 2) x;;

9/6/2018 41

Lambda Lifting

 You must remember the rules for evaluation
when you use partial application

let add_two = (+) (print_string "test\n"; 2);;

test

val add_two : int -> int = <fun>

let add2 = (* lambda lifted *)

fun x -> (+) (print_string "test\n"; 2) x;;

val add2 : int -> int = <fun>

9/6/2018 42

Lambda Lifting

thrice add_two 5;;
- : int = 11

thrice add2 5;;
test
test
test
- : int = 11

 Lambda lifting delayed the evaluation of the
argument to (+) until the second argument was
supplied

Reminder: Pattern Matching with Tuples

let (a,b,c) = s;; (* (a,b,c) is a pattern *)

val a : int = 5

val b : string = "hi"

val c : float = 3.2

let (a, _, _) = s;;

val a : int = 5

(*Patterns can be nested *)

let (p, (st,_), _) = d;;
(* _ matches all, binds nothing *)

val p : int * int * int = (1, 4, 62)

val st : string = "bye"

9/6/2018 43

9/6/2018 44

•Each clause: pattern on

left, expression on right

•Each x, y has scope of

only its clause

•Use first matching clause

Match Expressions

let triple_to_pair triple =

match triple with

(0, x, y) -> (x, y)

| (x, 0, y) -> (x, y)

| (x, y, _) -> (x, y)

val triple_to_pair : int * int * int -> int * int

= <fun>

9/6/2018 45

Recursive Functions

let rec factorial n =

if n = 0 then 1

else n * factorial (n - 1);;

val factorial : int -> int = <fun>

factorial 5;;

- : int = 120

(* rec is needed for recursive function
declarations *)

9/6/2018 46

Recursion Example

Compute n2 recursively using:
n2 = (2 * n - 1) + (n - 1)2

let rec nthsq n = (* rec for recursion *)
match n with (* pattern matching for cases *)
0 -> 0 (* base case *)

| n -> (2 * n -1) (* recursive case *)
+ nthsq (n -1);; (* recursive call *)

val nthsq : int -> int = <fun>

nthsq 3;;
- : int = 9

Structure of recursion similar to inductive proof

9/6/2018 47

Recursion and Induction

let rec nthsq n =

match n with

0 -> 0 (*Base case!*)

| n -> (2 * n - 1) + nthsq (n - 1) ;;

 Base case is the last case; it stops the computation

 Recursive call must be to arguments that are somehow

smaller - must progress to base case

 if or match must contain the base case (!!!)

 Failure of selecting base case will cause non-termination

 But the program will crash because it exhausts the stack!

9/6/2018 48

Lists

 First example of a recursive datatype (aka

algebraic datatype)

 Unlike tuples, lists are homogeneous in type

(all elements same type)

9/6/2018 49

Lists

 List can take one of two forms:

 Empty list, written []

 Non-empty list, written x :: xs

 x is head element,

 xs is tail list, :: called “cons”

 How we typically write them (syntactic sugar):

 [x] == x :: []

 [x1; x2; …; xn] == x1 :: x2 :: … :: xn :: []

9/6/2018 50

Lists

let fib5 = [8;5;3;2;1;1];;

val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;

val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;

- : bool = true

fib5 @ fib6;;

- : int list =
[8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]

9/6/2018 51

Lists are Homogeneous

let bad_list = [1; 3.2; 7];;

Characters 19-22:

let bad_list = [1; 3.2; 7];;

^^^

This expression has type float but is here used

with type int

9/6/2018 52

Question

 Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2,3; 4,5; 6,7]

3. [(2.3,4); (3.2,5); (6,7.2)]

4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

3 is invalid

because of

the last pair

9/6/2018 53

Functions Over Lists

let rec double_up list =

match list with

[] -> [] (* pattern before ->,

expression after *)

| (x :: xs) -> (x :: x :: double_up xs);;

val double_up : 'a list -> 'a list = <fun>

(* fib5 = [8;5;3;2;1;1] *)

let fib5_2 = double_up fib5;;

val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2;
1; 1; 1; 1]

9/6/2018 54

Functions Over Lists

let silly = double_up ["hi"; "there"];;

val silly : string list = ["hi"; "hi"; "there";
"there"]

let rec poor_rev list =

match list

with [] -> []

| (x::xs) -> poor_rev xs @ [x];;

val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;

- : string list = ["there"; "there"; "hi"; "hi"]

Question: Length of list

 Problem: write code for the length of the list

 How to start?

let length l =

9/6/2018 55

Question: Length of list

 Problem: write code for the length of the list

 How to start?

let rec length l =

match l with

9/6/2018 56

Question: Length of list

 Problem: write code for the length of the list

 What patterns should we match against?

let rec length l =

match l with

9/6/2018 57

Question: Length of list

 Problem: write code for the length of the list

 What patterns should we match against?

let rec length l =

match l with [] ->

| (a :: bs) ->

9/6/2018 58

Question: Length of list

 Problem: write code for the length of the list

 What result do we give when l is empty?

let rec length l =

match l with [] -> 0

| (a :: bs) ->

9/6/2018 59

Question: Length of list

 Problem: write code for the length of the list

 What result do we give when l is not empty?

let rec length l =

match l with [] -> 0

| (a :: bs) ->

9/6/2018 60

Question: Length of list

 Problem: write code for the length of the list

 What result do we give when l is not empty?

let rec length l =

match l with [] -> 0

| (a :: bs) -> 1 + length bs

9/6/2018 61

Same Length

 How can we efficiently answer if two lists have

the same length?

Tactics:

 First list is empty: then true if second list is empty else false

 First list in not empty: then if second list empty return false,

or otherwise compare whether the sublists (after the

first element) have the same length

9/6/2018 62

Same Length

 How can we efficiently answer if two lists have

the same length?
let rec same_length list1 list2 =

match list1 with

[] -> (

match list2 with [] -> true

| (y::ys) -> false

)

| (x::xs) -> (

match list2 with [] -> false

| (y::ys) -> same_length xs ys

)

9/6/2018 63

9/6/2018 64

Functions Over Lists

let rec map f list =

match list with

[] -> []

| (h::t) -> (f h) :: (map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map plus_two fib5;;

- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;

: int list = [12; 7; 4; 2; 1; 0; 0]

9/6/2018 65

Iterating over lists

let rec fold_left f a list =
match list with

[] -> a
| (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list
-> 'a = <fun>

fold_left
(fun () -> print_string)
()
["hi"; "there"];;

hithere- : unit = ()

9/6/2018 66

Iterating over lists

let rec fold_right f list b =
match list with

[] -> b
| (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b
-> 'b = <fun>

fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
();;

therehi- : unit = ()

9/6/2018 67

Structural Recursion

 Functions on recursive datatypes (eg lists)

tend to be recursive

 Recursion over recursive datatypes generally by

structural recursion

 Recursive calls made to components of structure of

the same recursive type

 Base cases of recursive types stop the recursion of

the function

9/6/2018 68

Structural Recursion : List Example

let rec length list =

match list with

[] -> 0 (* Nil case *)

| x :: xs -> 1 + length xs;; (* Cons case *)

val length : 'a list -> int = <fun>

length [5; 4; 3; 2];;

- : int = 4

 Nil case [] is base case

 Cons case recurses on component list xs

9/6/2018 69

Forward Recursion

 In Structural Recursion, split input into components

and (eventually) recurse

 Forward Recursion is a form of Structural Recursion

 In forward recursion, first call the function recursively

on all recursive components, and then build final result

from partial results

 Wait until whole structure has been traversed to start

building answer

9/6/2018 70

Forward Recursion: Examples

let rec double_up list =
match list
with [] -> []

| (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

let rec append list1 list2 = match list1 with

[] -> list2 | x::xs -> x :: append xs list2;;

val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;

- : int list = [1; 2; 3; 4; 5; 6]

let append_alt list1 list2 =

fold_right (fun x y -> x :: y) list1 list2;;

val append_alt : 'a list -> 'a list -> 'a list = <fun>

9/6/2018 71

Encoding Recursion with Fold

9/6/2018 72

Mapping Recursion

 One common form of structural recursion
applies a function to each element in the
structure

let rec doubleList list = match list

with [] -> []

| x::xs -> 2 * x :: doubleList xs;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

9/6/2018 73

Mapping Recursion

 Can use the higher-order recursive map function
instead of direct recursion

let doubleList list =

List.map (fun x -> 2 * x) list;;

val doubleList : int list -> int list = <fun>

doubleList [2;3;4];;

- : int list = [4; 6; 8]

 Same function, but no recursion

9/6/2018 74

Folding Recursion

 Another common form “folds” an operation
over the elements of the structure

let rec multList list = match list

with [] -> 1

| x::xs -> x * multList xs;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

 Computes (2 * (4 * (6 * 1)))

9/6/2018 75

Folding Recursion

 multList folds to the right

 Same as:

let multList list =

List.fold_right

(fun x -> fun p -> x * p)

list 1;;

val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

9/6/2018 76

How long will it take?

Common big-O times:

 Constant time O (1)

 input size doesn’t matter

 Linear time O (n)

 2x input size 2x time

 Quadratic time O (n2)

 3x input size 9x time

 Exponential time O (2n)

 Input size n+1 2x time

9/6/2018 77

Linear Time

 Expect most list operations to take linear

time O (n)

 Each step of the recursion can be done in

constant time

 Each step makes only one recursive call

 List example: multList, append

 Integer example: factorial

9/6/2018 78

Quadratic Time

 Each step of the recursion takes time
proportional to input

 Each step of the recursion makes only one
recursive call.

 List example:

let rec poor_rev list =
match list
with [] -> []

| (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

9/6/2018 79

Exponential running time

 Hideous running times on input of any size

 Each step of recursion takes constant time

 Each recursion makes two recursive calls

 Easy to write naïve code that is exponential for

functions that can be linear

9/6/2018 80

Exponential running time

let rec naiveFib n = match n

with 0 -> 0

| 1 -> 1

| _ -> naiveFib (n-1) + naiveFib (n-2);;

val naiveFib : int -> int = <fun>

9/6/2018 81

Normal

call

h

g

f

…

An Important Optimization

 When a function call is made, the
return address needs to be saved
to the stack so we know to
where to return when the call is
finished

 What if f calls g and g calls h, but
calling h is the last thing g does (a
tail call)?

9/6/2018 82

Tail

call

h

f

…

An Important Optimization

 When a function call is made, the
return address needs to be saved
to the stack so we know to where
to return when the call is finished

 What if f calls g and g calls h, but
calling h is the last thing g does (a
tail call)?

 Then h can return directly to f
instead of g

9/6/2018 83

Tail Recursion

 A recursive program is tail recursive if all

recursive calls are tail calls

 Tail recursive programs may be optimized to be

implemented as loops, thus removing the

function call overhead for the recursive calls

 Tail recursion generally requires extra

“accumulator” arguments to pass partial results

 May require an auxiliary function

9/6/2018 84

Tail Recursion - Example

let rec rev_aux list revlist =

match list with [] -> revlist

| x :: xs -> rev_aux xs (x::revlist);;

val rev_aux : 'a list -> 'a list -> 'a list =
<fun>

let rev list = rev_aux list [];;

val rev : 'a list -> 'a list = <fun>

 What is its running time?

9/6/2018 87

Folding Functions over Lists

How are the following functions similar?
let rec sumlist list = match list with
[] -> 0 | x::xs -> x + sumlist xs;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
[] -> 1 | x::xs -> x * prodlist xs;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;
- : int = 24

9/6/2018 88

Folding

let rec fold_left f a list = match list
with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
= <fun>

fold_left f a [x1; x2;…;xn] = f(…(f (f a x1) x2)…)xn

let rec fold_right f list b = match list
with [] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
= <fun>

fold_right f [x1; x2;…;xn] b = f x1(f x2 (…(f xn b)…))

9/6/2018 89

Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;

val sumlist : int list -> int = <fun>

sumlist [2;3;4];;

- : int = 9

let prodlist list = fold_right (*) list 1;;

val prodlist : int list -> int = <fun>

prodlist [2;3;4];;

- : int = 24

9/6/2018 90

Folding - Tail Recursion

- # let rev list =

- fold_left

- (fun l -> fun x -> x :: l) //comb op

[] //accumulator cell

list

9/6/2018 91

Folding

 Can replace recursion by fold_right in any

forward primitive recursive definition

 Primitive recursive means it only recurses on

immediate subcomponents of recursive data

structure

 Can replace recursion by fold_left in any tail

primitive recursive definition

