Tuples as Values

Programming Languages and Compilers (CS 42I)

Sasa Misailovic
4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, and Elsa L Gunter

Pattern Matching with Tuples

```
// \rho={s -> (5, "hi", 3.2), a }->1,\textrm{b}->5,\textrm{c}->4
# let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2
# let (a, _, _) = s;;
val a : int = 5
# let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)
val x : int * float = (2, 9.3)
```


Functions on tuples

```
```


let plus_pair (n,m) = n + m;;

```
```


let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>
val plus_pair : int * int -> int = <fun>

plus_pair (3,4);;

plus_pair (3,4);;

- : int = 7
- : int = 7

let twice x = (x,x); ;

let twice x = (x,x); ;

val twice : 'a -> 'a * 'a = <fun>
val twice : 'a -> 'a * 'a = <fun>

twice 3;;

twice 3;;

- : int * int = (3, 3)
- : int * int = (3, 3)

twice "hi";;

twice "hi";;

- : string * string = ("hi", "hi")
- : string * string = ("hi", "hi")
9/6/2018

```
9/6/2018
```

```
*)
```

```
*)
```

Save the Environment!

- A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

$$
\langle(v 1, \ldots, v n) \rightarrow \exp , \rho\rangle
$$

- Where ρ is the environment in effect when the function is defined (for a simple function)

Closure for plus_pair

- Assume $\rho_{\text {plus_pair }}$ was the environment just before plus_pair defined and recall
- let plus_pair $(n, m)=n+m ;$
- Closure for fun (n, m) -> $\mathrm{n}+\mathrm{m}$:

$$
\left\langle(n, m) \rightarrow n+m, \rho_{\rho l u s _p a i r}\right\rangle
$$

- Environment just after plus_pair defined:
 9/6/2018

Curried vs Uncurried

```
- Recall
# let add_three u v w = u + v + w;;
val add_three : int -> int -> int -> int = <fun>
```


- How does it differ from

\# let add_triple $(u, v, w)=u+v+w ;$
val add_triple : int * int * int -> int $=\langle f u n\rangle$

- add_three is curried;
- add_triple is uncurried

Partial application of functions

let add_three $x y z=x+y+z ;$;

\# let h = add_three 5 4;
val h : int -> int = 〈fun>
\# h 3; ;

- : int = 12
\# h 7;
- : int = 16

Partial application also called sectioning 9/6/2018

Functions with more than one argument

```
# let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
# let t = add_three 6 3 2;;
val t : int = 11
# let add_three =
    fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>
```


Again, first syntactic sugar for second

Curried vs Uncurried

```
# add_three 6 3 2;;
- : int = 11
# add_triple (6,3,2);;
- : int = 11
# add_triple 5 4;;
Characters 0-10: add_triple 5 4;;
                                    ^^^^^^^^^^^
This function is applied to too many arguments,
maybe you forgot a `;'
# fun x -> add_triple (5,4,x);;
: int -> int = <fun>
9/6/2018
```

10

Recall: let plus_x $=$ fun $y->y+x$

Closure for plus_x

- When plus_x was defined, had environment:

$$
\rho_{\text {plus_ }}=\{\ldots, x \rightarrow 12, \ldots\}
$$

- Recall: let plus_ $x y=y+x$
is really let plus_ $x=$ fun $y->y+x$
- Closure for fun $y->y+x$:

$$
<y \rightarrow y+x, \rho_{\text {plus_x }}>
$$

- Environment just after plus_x defined:

$$
\left\{\text { plus_ } x \rightarrow<y \rightarrow y+x, \rho_{\text {plus_x }}>\right\}+\rho_{\text {plus_ }} x
$$

Evaluating Declarations

- Evaluation uses a starting environment ρ
- To evaluate a (simple) declaration let $x=e$
- Evaluate expression e in ρ to value v
- Update ρ with the mapping from x to $v:\{x \rightarrow v\}+\rho$

Definition of + on environments!

- Update: $\rho_{1}+\rho_{2}$ has all the bindings in ρ_{1} and all those in ρ_{2} that are not rebound in ρ_{1}

It is not commutative!

$$
\{x \rightarrow 2, y \rightarrow 3, a \rightarrow " h i "\}
$$

$+\{y \rightarrow 100, b \rightarrow 6\}$
$=\{x \rightarrow 2, y \rightarrow 3, a \rightarrow$ "hi", $b \rightarrow 6\}$

Evaluating Expressions (Rules)

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate a variable x, look it up in ρ i.e., use $\rho(x)$
- To evaluate tuples, evaluate each tuple element
- To evaluate uses of $\boldsymbol{+}^{\text {, }}$, etc, first eval the arguments, then do the operation
- To evaluate a local declaration: let $\mathrm{x}=\mathrm{el}$ in e2 - Evaluate el to v , evaluate e 2 using $\{\mathrm{x} \rightarrow \mathrm{v}\}+\rho$
- Function application ($f x$) -- see next slide

Evaluation

- Running Ocaml source:
- Parse the program to detect each expression
- Keep an internal environment at each time step
- For each expression, interpret the program using the (mathematical) function Eval
- Nice property of Ocaml: everything is a declaration or an expression!
- How does Eval (expression, environment) work:
- Evaluation uses a starting environment ρ
- Define the rules for evaluating declarations, constants, arithmetic expressions, function applications...
9/6/2018

Evaluating Declarations

- Evaluation uses a starting environment ρ
- To evaluate a (simple) declaration let $x=e$
- Evaluate expression e in ρ to value v
- Update ρ with the mapping from x to $v:\{x \rightarrow v\}+\rho$

Warm-up: we evaluate this case:

```
\rho={x->2}
let y = 2*x+1;;
\rho'}={x->2;y->5
```

9/6/2018

Evaluation of Function Application with Closures

Function defined as: let $\mathrm{f}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right)=$ body
Function application: $f\left(e_{1}, \ldots, e_{n}\right)$;
Let us define Eval($\left.f\left(e_{1}, \ldots, e_{n}\right), p\right)$:

- In the environment ρ, evaluate the left term (f) to closure, i.e., $\mathrm{c}=\left\langle\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \rightarrow\right.$ body, $\left.\rho^{*}\right\rangle$
- Evaluate the arguments in the application $e_{1} \ldots e_{n}$ to their values v_{1}, \ldots, v_{n} in the environment ρ
- Call helper function App(Closure, Value) to evaluate the function body (body) in the environment ρ^{*}
- Conjoin the mapping of the arguments to values with the environment ρ^{*}

$$
\rho^{\prime}=\left\{x_{1} \rightarrow v_{1}, \ldots, x_{n} \rightarrow v_{n}\right\}+\rho^{*}
$$

- The App then calls Eval again for the expressions in body in the env. ρ_{18}^{\prime}

Evaluation of Application of plus_x;;

- Have environment:

$$
\rho=\left\{\text { plus_ } x \rightarrow<y \rightarrow y+x, \rho_{\text {plus_ }}>, \ldots, y \rightarrow 3, \ldots\right\}
$$

where $\rho_{\text {plus_x }}=\{x \rightarrow 12, \ldots, y \rightarrow 24, \ldots\}$

- Eval (plus_x y, ρ) rewrites to
- App (Eval(plus_x, $\rho), \operatorname{Eval}(y, \rho))$ rewrites to
- App $\left(<y \rightarrow y+x, \rho_{\text {plus_x }}>, 3\right)$ rewrites to
- Eval $\left(y+x,\{y \rightarrow 3\}+\rho_{\text {plus_x }}\right)$ rewrites to
- $\operatorname{Eval}\left(3+12, \rho_{\text {plus_x }}\right)=I \overline{5}$

19

Closure question

- If we start in an empty environment, and we execute:

```
let f = fun n -> n + 5;;
(* 0 *)
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at $(* 0 *)$?

Closure question

- If we start in an empty environment, and we execute:
let $f=$ fun $n \rightarrow n+5 ;$;
let pair_map $g(n, m)=(g n, g m) ;$
(* 1 *)
let $f=$ pair_map $f ;$; let $a=f(4,6) ;$;
What is the environment at $\left(*{ }^{*}\right)$?

Evaluation of Application of plus_pair

- Assume environment

$\rho=\{x \rightarrow 3, \ldots$,

$$
\text { plus_pair } \left.\rightarrow<(\mathrm{n}, \mathrm{~m}) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}>\right\}+\rho_{\text {plus_pair }}
$$

- Eval (plus_pair $(4, x), \rho)=$
- App (Eval (plus_pair, ρ), Eval $((4, x), \rho))=$
- App $\left(\left\langle(n, m) \rightarrow \mathrm{n}+\mathrm{m}, \rho_{\text {plus_pair }}\right\rangle,(4,3)\right)=$
- Eval $\left(\mathrm{n}+\mathrm{m},\{\mathrm{n} \rightarrow 4, \mathrm{~m} \rightarrow>3\}+\rho_{\text {plus_pair }}\right)=$
- Eval $\left(4+3,\{n->4, m->3\}+\rho_{\text {plus_pair }}\right)=7$

9/6/2018
20

Answer

$\rho_{\text {start }}=\{ \}$
let $f=$ fun $n->n+5 ;$;
$\rho_{0}=\{\mathrm{f} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}$

Answer

```
\rho
let pair_map g ( n,m) = (g n, g m);;
\rho
        f }->\langlen->n+5,{ }>
        pair_map }
            <g -> (fun (n,m) -> (g n, g m)),
                {f-><n->n + 5, { }>}
```

 \(>\)
 \}

Closure question

- If we start in an empty environment, and we execute:
let $f=$ fun $n->n+5$;
let pair_map g (n, m) = ($\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m}$); ;
let $f=$ pair_map f;
(* 2 *)
let $a=f(4,6) ;$;
What is the environment at (* 2 *)?

Evaluate pair_map f

```
\rho
\rho
    pair_map }
        <g -> (fun (n,m) -> (g n, g m)),
        {f }-><n->n+5,{ }>}>
let f = pair_map f;;
Eval(pair_map f, }\mp@subsup{\rho}{\textrm{l}}{\prime})
```

Evaluate pair_map f

$$
\begin{aligned}
& \rho_{\ominus}=\{f \rightarrow<n \rightarrow n+5,\{ \}>\} \\
& \rho_{1}=\{f \rightarrow<n \rightarrow n+5,\{ \}>, \\
& \text { pair_map } \rightarrow \\
&<g \rightarrow(\text { fun }(n, m)->(g n, g m)), \\
&\{f \rightarrow\langle n \rightarrow n+5,\{ \}>\}>\}
\end{aligned}
$$

let $f=$ pair_map $f ;$
Eval(pair_map f, ρ_{l}) $=$
App (<g \rightarrow fun (n, m) -> (g n, g m), $\left.\rho_{0}>,<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\right)=$

Eval(fun $\left.(\mathrm{n}, \mathrm{m})->(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m}),\{\mathrm{g} \rightarrow<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\}+\rho_{0}\right)=$ $<(n, m) \rightarrow(g n, g m),\{g \rightarrow<n \rightarrow n+5,\{ \}>\}+\rho_{0}>=$
$<(n, m) \rightarrow(g n, g m),\{g \rightarrow<n \rightarrow n+5,\{ \}>, f \rightarrow<n \rightarrow n+5,\{ \}>\}$

Evaluate pair_map f

```
\rho
\rho
    pair_map }
        <g }->(fun (n,m) -> (g n, g m))
        {f}-><n->n+5,{}>}>}
let f = pair_map f;;
```


9/6/2018

Evaluate pair_map f

```
\rho
\rho
    pair_map }
        <g (fun (n,m) -> (g n, g m)),
            {f-><n }->\textrm{n}+5,{}>}>
let f = pair_map f;;
Eval(pair_map f, \(\left.\rho_{l}\right)=\)
App \(\left(<\mathrm{g} \rightarrow\right.\) fun \(\left.(\mathrm{n}, \mathrm{m})->(\mathrm{g} \mathrm{n}, \mathrm{g} \mathrm{m}), \rho_{0}>,<\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}>\right)=\)
```


Answer

```
\rho
\rho
    pair_map }
            <g (fun (n,m) -> (g n, g m)),
            {f-><n->n+5,{ }>}>}
let f = pair_map f;;
\rho
            {g->\langlen->n+5,{ }>,
                f }->\langlen->n+5,{ }>}>
        pair_map }-><g->\mathrm{ fun (n,m) -> (g n, g m),
            {f}->\langlen->n+5,{}>
    }
9/6/2018

\section*{Closure question}
- If we start in an empty environment, and we execute:
```

let f = fun n -> n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
(* 3 *)

```

What is the environment at \((* 3 *)\) ?

9/6/2018
32

Evaluate f(4,6);;
```

\rho
{g < <n }->\mathrm{ n + 5, { }>,
f }-><n->n+5,{}>}>
pair_map }->\langleg->\mathrm{ fun (n,m) -> (g n, g m),
{f }->\mathrm{ <n }->\textrm{n}+5,{ }>
}
let a = f (4,6);;
Eval(f (4,6), \rho}\mp@subsup{\rho}{2}{})

```

Evaluate f(4,6);;
\[
\begin{aligned}
& \text { App (<(n,m) } \rightarrow(g \mathrm{n}, \mathrm{~g} \mathrm{~m}), \quad\{\mathrm{g} \rightarrow\langle\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}\rangle, \\
& \mathrm{f}\rightarrow\langle\mathrm{n} \rightarrow \mathrm{n}+5,\{ \}\rangle\}\rangle, \\
&(4,6))=
\end{aligned}
\]
```

Eval((g n, g m), {n -> 4, m -> 6} +
{g > <n -> n + 5, { }>,
f }->\langlen->n+5,{ }>})
(App(<n -> n + 5, { }>, 4),
App (<n -> n + 5, { }>, 6)) =

```

Evaluate \(f(4,6) ;\)
```

\rho
{g < <n }->\textrm{n}+5,{ }>
f}->\langlen->n+5,{ }>}>>
pair_map }->\langleg->\mathrm{ fun (n,m) -> (g n, g m),
{f }-><n->n+5,{ }>
}
let a = f (4,6);;
Eval(f (4,6), \rho}\mp@subsup{\rho}{2}{})
App(< (n,m) ->(g n, g m), {g -> <n -> n + 5, { }>,
f}->\langlen->n+5,{ }>}
(4,6)) =

```

Evaluate f(4,6);;
```

(App (<n $\rightarrow \mathrm{n}+5,\{ \}\rangle, 4)$,
$\operatorname{App}(\langle n \rightarrow n+5,\{ \}\rangle, 6))=$
(Eval $(n+5,\{n \rightarrow 4\}+\{ \})$,
$\operatorname{Eval}(\mathrm{n}+5,\{\mathrm{n} \rightarrow 6\}+\{ \}))=$
(Eval $(4+5,\{n \rightarrow 4\}+\{ \})$,
$\operatorname{Eval}(6+5,\{n \rightarrow 6\}+\{ \}))=(9,11)$

```

Finally:
\(\rho_{3}=\{a->(9,11)\}+\rho_{2}\)
9/6/2018
36

\section*{Functions as arguments}
```


let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

```
\# let \(\mathrm{g}=\) thrice plus_two; ; (* plus_two x is \(\mathrm{x}+2\) *)
val g : int -> int = 〈fun>
\# g 4;
- : int = 10
\# thrice (fun s -> "Hi! " ^ s) "Good-bye!";
- : string = "Hi! Hi! Hi! Good-bye!"
9/6/2018

\section*{Thrice}
```

- Recall:

let thrice f x = f (f (f x));;

val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

```
－How do you write thrice with compose？
\＃let thrice \(f=\) compose \(f\)（compose \(f\) f）；； val thrice ：（＇a－＞＇a）－＞＇a－＞＇a＝＜fun＞

\section*{Lambda Lifting}
－You must remember the rules for evaluation when you use partial application
```


let add_two = (+) (print_string "test\n"; 2);;

test
val add_two : int -> int = <fun>

let add2 = (* lambda lifted *)

 fun x -> (+) (print_string "test\n"; 2) x;;
 val add2 : int -> int = <fun>

```

\section*{Higher Order Functions}
－A function is higher－order if it takes a function as an argument or returns one as a result
－Example：
\＃let compose f g＝fun x－＞f（g x）；；
val compose ：（＇a－＞＇b）－＞（＇c－＞＇a）－＞＇c－＞＇b
＝〈fun＞
－The type（＇a－＞＇b）－＞（＇c－＞＇a）－＞＇c－＞＇b is a higher order type because of （＇a－＞＇b）and（＇c－＞＇a）and－＞＇c－＞＇b
9／6／2018
38

\section*{Lambda Lifting}
\＃（＋）
－：int－＞int－＞int＝〈fun＞
\＃let add＿two＝（＋）（print＿string＂test\n＂；2）；
```


let add2 = (* lambda lifted *)

 fun x -> (+) (print_string "test\n"; 2) x;;
    ```

9／6／2018
40

\section*{Reminder: Pattern Matching with Tuples}
```


let (a,b,c) = s;; (* (a,b,c) is a pattern *)

val a : int = 5
val b : string = "hi"
val c : float = 3.2

let (a, _, _) = s;;

val a : int = 5

(*Patterns can be nested *)

let (p, (st,_), _) = d;;

 (* _ matches all, binds nothing *)
 val p : int * int * int = (1, 4, 62)
val st : string = "bye"
9/6/2018

Recursive Functions

```
# let rec factorial n =
    if n = 0 then 1
    else n * factorial (n - 1);;
    val factorial : int -> int = <fun>
# factorial 5;;
- : int = 120
# (* rec is needed for recursive function
    declarations *)
```

```
# let rec nthsq n =
    match n with
            0 -> 0 (*Base case!*)
            | n -> (2 * n - 1) + nthsq (n - 1) ; ;
```

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- if or match must contain the base case (!!!)
- Failure of selecting base case will cause non-termination
- But the program will crash because it exhausts the stack!

Match Expressions

```
# let triple_to_pair triple =
    match triple with
        (0, x, y) -> (x, y)
    | (x, 0, y) >> (x, y)
    (x, y, _) -> (x, y)
val triple_to_pair : int * int * int -> int * int
    = <fun>
9/6/2018
-Each clause: pattern on
left, expression on right
-Each x, y has scope of
only its clause
-Use first matching clause
44
```

Recursion Example

```
Compute n}\mp@subsup{n}{}{2}\mathrm{ recursively using:
n
# let rec nthsq n = (* rec for recursion *)
    match n with (* pattern matching for cases *)
        0 -> 0 (* base case *)
```



```
val nthsq : int -> int = <fun>
# nthsq 3;;
    : int = 9
```

Structure of recursion similar to inductive proof
9/6/2018

Lists

- First example of a recursive datatype (aka algebraic datatype)
- Unlike tuples, lists are homogeneous in type (all elements same type)

Lists

- List can take one of two forms:
- Empty list, written []
- Non-empty list, written x :: xs
- x is head element,
- xs is tail list, :: called "cons"
- How we typically write them (syntactic sugar):
- [x] == x : : []
- [xI; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []

Lists are Homogeneous

```
# let bad_list = [1; 3.2; 7];;
Characters 19-22:
    let bad_list = [1; 3.2; 7];;
```

This expression has type float but is here used with type int

Functions Over Lists

```
# let rec double_up list =
    match list with
        [ ] -> [ ] (* pattern before ->,
        expression after *)
        | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>
(* fib5 = [8;5;3;2;1;1] *)
# let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2;
    1; 1; 1; 1]
```

Lists

```
# let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
# let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
# (8::5::3::2::1::1::[ ]) = fib5;;
    : bool = true
# fib5 @ fib6;;
- : int list =
    [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
```

9/6/2018

Question

- Which one of these lists is invalid?
I. $[2 ; 3 ; 4 ; 6]$

2. $[2,3 ; 4,5 ; 6,7]$

3 is invalid because of
3. $[(2.3,4) ;(3.2,5) ;(6,7.2)]$ the last pair
4. [["hi"; "there"]; ["wahcha"]; []; ["doin"]]

9/6/2018

Functions Over Lists

```
# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there";
    "there"]
# let rec poor_rev list =
    match list
    with [] -> []
        | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
# poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]
9/6/2018
54
```

Question: Length of list

- Problem: write code for the length of the list - How to start?
let length $1=$
- Problem: write code for the length of the list - What patterns should we match against?
let rec length $1=$ match 1 with

Question: Length of list

- Problem: write code for the length of the list - How to start?
let rec length 1 = match 1 with
- Problem: write code for the length of the list
- What result do we give when I is empty?
let rec length $1=$
match 1 with [] -> 0
| (a : : bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What patterns should we match against?
let rec length $1=$
match 1 with [] ->
| (a :: bs) ->

Question: Length of list

- Problem: write code for the length of the list
- What result do we give when I is not empty?
let rec length $1=$
match 1 with [] -> 0
| (a : : bs) ->

Question: Length of list

- Problem: write code for the length of the list - What result do we give when I is not empty?
let rec length $1=$
match l with [] -> 0
| (a :: bs) -> 1 + length bs

Same Length

- How can we efficiently answer if two lists have the same length?
let rec same_length list1 list2 = match list1 with
[] -> (
match list2 with [] -> true
| (y::ys) -> false
)
| (x::xs) -> (
match list2 with [] -> false
| (y::ys) -> same_length xs ys)

Iterating over lists

```
# let rec fold_left f a list =
    match list with
        [] -> a
    | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list
# fold_left
    (fun () -> print_string)
    ()
    ["hi"; "there"];;
hithere- : unit = ()
```


Same Length

- How can we efficiently answer if two lists have the same length?

Tactics:

- First list is empty: then true if second list is empty else false
- First list in not empty: then if second list empty return false, or otherwise compare whether the sublists (after the first element) have the same length

9/6/2018
62

Functions Over Lists

```
# let rec map f list =
    match list with
        [] -> []
    | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
# map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
# map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
9/6/2018

Iterating over lists
```

\# let rec fold_right f list b =
match list with
[] -> b
| (x :: xs) -> f x (fold_right f xs b); ;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b
\# fold_right
(fun s -> fun () -> print_string s)
["hi"; "there"]
(); ;
therehi- : unit = ()

```

\section*{Structural Recursion}

\section*{- Functions on recursive datatypes (eg lists) tend to be recursive}
- Recursion over recursive datatypes generally by structural recursion
- Recursive calls made to components of structure of the same recursive type
- Base cases of recursive types stop the recursion of the function

9/6/2018
67

\section*{Forward Recursion}
- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion is a form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer

\section*{Encoding Recursion with Fold}
```


let rec append list1 list2 = match list1 with

 [] -> list2 | x::xs -> x :: append xs list2;;
 val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;

 - : int list = [1; 2; 3; 4; 5; 6]

let append_alt list1 list2 =

 fold_right (fun x y -> x :: y) list1 list2;;
 val append_alt : 'a list -> 'a list -> 'a list = <fun>

```

\section*{Mapping Recursion}
- Can use the higher-order recursive map function instead of direct recursion
```


let doubleList list =

 List.map (fun x -> 2 * x) list;;
 val doubleList : int list -> int list = <fun>

```
\# doubleList [2;3;4];
    : int list \(=[4 ; 6 ; 8]\)
- Same function, but no recursion
9/6/2018

\section*{Folding Recursion}
- multList folds to the right
- Same as:
```


let multList list =

 List.fold_right
 (fun x -> fun p -> x * p)
 list 1;;
 val multList : int list -> int = <fun>

multList [2;4;6];;

- : int = 48

```

\section*{Linear Time}
- Expect most list operations to take linear time \(O(n)\)
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial

\section*{Folding Recursion}
```

- Another common form "folds" an operation
over the elements of the structure
\# let rec multList list = match list
with [] -> 1
| x::xs -> x * multList xs;
val multList : int list -> int = <fun>
\# multList [2;4;6];
: int = 48

```
    Computes ( 2 * ( 4 * (6 * I) ))

How long will it take?
Common big-O times:
- Constant time \(O\) (I)
- input size doesn't matter
- Linear time \(O(n)\)
- \(2 x\) input size \(\Rightarrow 2 x\) time
- Quadratic time \(O\left(n^{2}\right)\)
- \(3 x\) input size \(\Rightarrow 9 x\) time
- Exponential time \(O\left(2^{n}\right)\)
- Input size \(\mathrm{n}+\mathrm{I} \Rightarrow 2 \mathrm{x}\) time

\section*{Quadratic Time}
```

- Each step of the recursion takes time
proportional to input
- Each step of the recursion makes only one
recursive call.
List example:

let rec poor_rev list =

 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
 val poor_rev : 'a list -> 'a list = <fun>

Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear
- When a function call is made, the
 return address needs to be saved to the stack so we know to where to return when the call is finished
What if f calls g and g calls h, but calling h is the last thing g does (a tail cal/)?

Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls
- Tail recursion generally requires extra "accumulator" arguments to pass partial results
- May require an auxiliary function

Exponential running time

```
# let rec naiveFib n = match n
    with 0 -> 0
    | 1 -> 1
    | _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>
```

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished
- What if f calls g and g calls h, but calling h is the last thing g does (a tail cal/)?
- Then h can return directly to f instead of g

Tail Recursion - Example

```
# let rec rev_aux list revlist =
        match list with [ ] -> revlist
        | x :: xs -> rev_aux xs (x::revlist);;
    val rev_aux : 'a list -> 'a list -> 'a list =
        <fun>
    # let rev list = rev_aux list [ ];;
    val rev : 'a list -> 'a list = <fun>
```

 What is its running time?

Folding Functions over Lists

```
How are the following functions similar?
    # let rec sumlist list = match list with
    [ ] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
# sumlist [2;3;4];;
    : int = 9
# let rec prodlist list = match list with
    [ ] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
- : int = 24
9/6/2018
```

Folding - Forward Recursion

```
# let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
# sumlist [2;3;4];;
    : int = 9
# let prodlist list = fold_right ( * ) list 1;;
val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
    : int = 24
```

Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
- Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition

Folding

```
# let rec fold_left f a list = match list
    with [] -> a- (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
    = <fun>
```


\# let rec fold_right f list $b=$ match list with [] -> \bar{b} ($x:: x s$) $->f x$ (fold right f xs b); ;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b $=\langle$ fun>
fold_right $f\left[x_{1} ; x_{2} ; . . ; x_{n}\right] b=f x_{1}\left(f x_{2}\left(\ldots\left(f x_{n} b\right) \ldots\right)\right)$

9/6/2018
88

Folding - Tail Recursion

```
# let rev list =
```

 fold_left
 (fun 1 -> fun \(x->x:: 1\)) //comb op
 [] //accumulator cell
 list
 90

