
8/30/2018 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated

by Vikram Adve, Gul Agha, and Elsa Gunter

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

8/30/2018 2

Contact Information – Sasa Misailovic

 Office: 4110 SC

 Office hours:

 Tuesday, Thursday 8:30am – 9:30am

 Also by appointment

 Email: misailo@illinois.edu

8/30/2018 3

Course Website

 https://courses.engr.illinois.edu/cs421/fa2018/CS421A

 Main page - summary of news items

 Policy - rules governing course

 Lectures - syllabus and slides

 MPs - information about assignments

 Exams

 Unit Projects - for 4 credit students

 Resources - tools and helpful info

 FAQ

https://courses.engr.illinois.edu/cs421/fa2018/CS421A

Some Course References

 No required textbook

 Some suggested references

8/30/2018 4

8/30/2018 6

Course Grading

 Assignments 20%

 About 12 Web Assignments (WA) (~7%)

 About 6 MPs (in Ocaml) (~7%)

 About 5 Labs (~6%)

 All WAs and MPs Submitted through PrairieLearn

 Late submission penalty: 20%

 Labs in Computer-Based Testing Center (Grainger)

 Self-scheduled over a three day period

 No extensions beyond the three day period

 Fall back: Labs become MPs

8/30/2018 7

Course Grading

 2 Midterms - 20% each

 Labs in Computer-Based Testing Center (Grainger)

 Self-scheduled over a three day period

 No extensions beyond the three day period

 Dates: Oct 2-4 (Midterm 1) Nov 6-8 (Midterm 2)

 Fall back: In class backup dates – Oct 9, Nov 13

 DO NOT MISS EXAM DATES!

 Final 40% - Dec 19, 8:00am – 11:00am (nominally)

 Will likely use CBTF for Final (3 day window)

 Percentages are approximate

8

Course Assingments – WA & MP

 You may discuss assignments and their solutions
with others

 You may work in groups, but you must list
members with whom you worked if you
share solutions or solution outlines

 Each student must write up and turn in
their own solution separately

 You may look at examples from class and other
similar examples from any source – cite
appropriately
 Note: University policy on plagiarism still holds - cite

your sources if you are not the sole author of your
solution

8/30/2018 9

Course Objectives

 New programming paradigm
 Functional programming

 Environments and Closures

 Patterns of Recursion

 Continuation Passing Style

 Phases of an interpreter / compiler
 Lexing and parsing

 Type systems

 Interpretation

 Programming Language Semantics
 Lambda Calculus

 Operational Semantics

 Axiomatic Semantics

Programming Languages & Compilers

8/30/2018 10

I

New

Programming

Paradigm

II

Language

Translation

III

Language

Semantics

Three Main Topics of the Course

Programming Languages & Compilers

8/30/2018 11

I

New

Programming

Paradigm

II

Language

Translation

III

Language

Semantics

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

8/30/2018 12

Functional

Programming

Environments

and

Closures

Continuation

Passing

Style

Patterns of

Recursion

I : New Programming Paradigm

Programming Languages & Compilers

8/30/2018 13

Functional

Programming

Environments

and

Closures

Continuation

Passing

Style

Patterns of

Recursion

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

8/30/2018 14

Lexing and

Parsing

Type

Systems

Interpretation

II : Language Translation

Programming Languages & Compilers

8/30/2018 15

Lexing and

Parsing

Type

Systems

Interpretation

Order of Evaluation

Specification to Implementation

Programming Languages & Compilers

8/30/2018 16

Operational

Semantics

Lambda

Calculus

Axiomatic

Semantics

III : Language Semantics

Programming Languages & Compilers

8/30/2018 17

Operational

Semantics

Lambda

Calculus

Axiomatic

Semantics

CS422
CS426

CS477

Order of Evaluation

Specification to Implementation

8/30/2018 18

OCAML

 Locally:

 Compiler is on the EWS-linux systems at

/usr/local/bin/ocaml

 Be sure to module load ocaml/2.07.0 in EWS!

 Globally:

 Main CAML home: http://ocaml.org

 To install OCAML on your computer see:

http://ocaml.org/docs/install.html

 Or use one of the online OCAML compilers…

http://ocaml.org
http://ocaml.org/docs/install.html

8/30/2018 19

References for OCaml

 Supplemental texts (not required):

 The Objective Caml system release 4.07, by
Xavier Leroy, online manual

 Introduction to the Objective Caml
Programming Language, by Jason Hickey

 Developing Applications With Objective Caml,
by Emmanuel Chailloux, Pascal Manoury, and
Bruno Pagano, on O’Reilly

 Available online from course resources

8/30/2018 20

Why learn OCAML?

 Many features not clearly in languages you have already

learned

 Assumed basis for much research in programming

language research

 OCAML is particularly efficient for programming tasks

involving languages (eg parsing, compilers, user

interfaces)

Why Learn OCAML?

 Industrially Relevant: Jane Street trades billions

of dollars per day using OCaml programs

 Similar languages: Microsoft F#, SML, Haskell,

Scala, Scheme

 Who uses functional programming?

 Google – MapReduce

 Microsoft – LinQ

 Twitter – Scala

 Bonus: who likes set comprehensions in Python?

8/30/2018

>>> squares = [x**2 for x in range(10)]

8/30/2018 22

OCAML Background

 CAML is European descendant of original ML

 American/British version is SML

 O is for object-oriented extension

 ML stands for Meta-Language

 ML family designed for implementing theorem
provers (back in 1970s)

 It was the meta-language for programming the
“object” language of the theorem prover

 Despite obscure original application area, OCAML is a
full general-purpose programming language

8/30/2018 23

Session in OCAML

% ocaml

Objective Caml version 4.07

_

(* Read-eval-print loop; expressions and declarations *)

2 + 3;; (* Expression *)

- : int = 5

3 < 2;;

- : bool = false

8/30/2018 24

No Overloading for Basic Arithmetic Operations

15 * 2;;

- : int = 30

1.35 + 0.23;; (* Wrong type of addition *)

Characters 0-4:

1.35 + 0.23;; (* Wrong type of addition *)

^^^^

Error: This expression has type float but an expression
was expected of type int

1.35 +. 0.23;;

- : float = 1.58

No Implicit Coercion

1.0 * 2;; (* No Implicit Coercion *)

Characters 0-3:

1.0 * 2;;

^^^

Error: This expression has type float but an expression
was expected of type int

1.0 *. 2;; (* No Implicit Coercion *)

Characters 7-8:

1.0 *. 2;;

^^

Error: This expression has type int but an expression was
expected of type float
8/30/2018 25

8/30/2018 26

Sequencing Expressions

"Hi there";; (* has type string *)

- : string = "Hi there"

print_string "Hello world\n";; (* has type unit *)

Hello world

- : unit = ()

(print_string "Bye\n"; 25);; (* Sequence of exp *)

Bye

- : int = 25

Declarations; Sequencing of Declarations

let x = 2 + 3;; (* declaration *)

val x : int = 5

let test = 3 < 2;;

val test : bool = false

let a = 1 let b = a + 4;; (* Sequence of dec *)

val a : int = 1

val b : int = 5

8/30/2018 27

8/30/2018 28

Environments

 Environments record what value is associated with a

given identifier

 Central to the semantics and implementation of a

language

 Notation

 = {name1 value1, name2 value2, …}

Using set notation, but describes a partial function

 Implementation: Often stored as list, or stack

 To find value start from left and take first match

Environments

8/30/2018 29

X 3

y 17

name “Steve”

b true

region (5.4, 3.7)

id {Name = “Paul”,

Age = 23,

SSN = 999888777}

. . .

8/30/2018 30

Global Variable Creation

2 + 3;; (* Expression *)

// doesn’t affect the environment

let test = 3 < 2;; (* Declaration *)

val test : bool = false

// 1 = {test false}

let a = 1 let b = a + 4;; (* Seq of dec *)

// 2 = {b 5, a 1, test false}

New Bindings Hide Old

// 2 = {b 5, a 1, test false}

let test = 3.7;;

 What is the environment after this declaration?

8/30/2018 32

New Bindings Hide Old

// 2 = {b 5, a 1, test false}

let test = 3.7;;

 What is the environment after this declaration?

// 3 = {test 3.7, a 1, b 5}

8/30/2018 33

Environments

8/30/2018 34

b 5

test 3.7

a 1

8/30/2018 36

Local Variable Creation

// 3 = {test 3.7, a 1, b 5}

let b = 5 * 4

// 4 = {b 20, test 3.7, a 1}

in 2 * b;;

- : int = 40

// 5 = 3= {test 3.7, a 1, b 5}

b;;

- : int = 5

b 5

test 3.7

a 1

b 5

test 3.7

a 1
b 20

b 5

test 3.7

a 1

// 5 = {test 3.7, a 1, b 5}

let c =

let b = a + a

in b * b;;

b;;

8/30/2018 37

Local let binding

// 5 = {test 3.7, a 1, b 5}

let c =

let b = a + a

// 6 = {b 2} + 5

// = {b 2, test 3.7, a 1}

in b * b;;

val c : int = 4

// 7 = {c 4, test 3.7, a 1, b 5}

b;;

- : int = 5

8/30/2018 38

Local let binding

b 5

test 3.7a 1

// 5 = {test 3.7, a 1, b 5}

let c =

let b = a + a

// 6 = {b 2} + 5

// = {b 2, test 3.7, a 1}

in b * b;;

val c : int = 4

// 7 = {c 4, test 3.7, a 1, b 5}

b;;

- : int = 5

b 5

test 3.7a 1

8/30/2018 39

Local let binding

b 5

test 3.7a 1

b 2

// 5 = {test 3.7, a 1, b 5}

let c =

let b = a + a

// 6 = {b 2} + 5

// = {b 2, test 3.7, a 1}

in b * b;;

val c : int = 4

// 7 = {c 4, test 3.7, a 1, b 5}

b;;

- : int = 5

b 5

test 3.7a 1

8/30/2018 40

Local let binding

b 5

test 3.7a 1

b 2

b 5

test 3.7a 1

c 4

8/30/2018 42

Booleans (aka Truth Values)

true;;

- : bool = true

false;;

- : bool = false

// 7 = {c 4, test 3.7, a 1, b 5}

if b > a then 25 else 0;;

- : int = 25

8/30/2018 43

Booleans and Short-Circuit Evaluation

3 > 1 && 4 > 6;;

- : bool = false

3 > 1 || 4 > 6;;

- : bool = true

not (4 > 6);;

- : bool = true

(print_string "Hi\n"; 3 > 1) || 4 > 6;;

Hi

- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;

- : bool = true

Tuples as Values

// 0 = {c 4, a 1, b 5}

let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

// = {s (5, "hi", 3.2), c 4, a 1, b 5}

8/30/2018 44

Pattern Matching with Tuples

// = {s (5, "hi", 3.2), a 1, b 5, c 4}

let (a,b,c) = s;; (* (a,b,c) is a pattern *)

val a : int = 5

val b : string = "hi"

val c : float = 3.2

let (a, _, _) = s;;

val a : int = 5

let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)

val x : int * float = (2, 9.3)

8/30/2018 45

Nested Tuples

(*Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;

val d : (int * int * int) * (string * int) * float =

((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)

let (p, (st,_), _) = d;;
(* _ matches all, binds nothing *)

val p : int * int * int = (1, 4, 62)

val st : string = "bye"

8/30/2018 46

8/30/2018 48

Functions

let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- : int = 19

8/30/2018 49

Functions

let plus_two n = n + 2;;

plus_two 17;;

- : int = 19

8/30/2018 50

Nameless Functions (aka Lambda Terms)

fun n -> n + 2;;

(fun n -> n + 2) 17;;

- : int = 19

8/30/2018 51

Functions

let plus_two n = n + 2;;

val plus_two : int -> int = <fun>

plus_two 17;;

- : int = 19

let plus_two = fun n -> n + 2;;

val plus_two : int -> int = <fun>

plus_two 14;;

- : int = 16

First definition syntactic sugar for second

8/30/2018 52

Using a nameless function

(* An application *)

(fun x -> x * 3) 5;;

: int = 15

(* As data *)

((fun y -> y +. 2.0), (fun z -> z * 3));;

- : (float -> float) * (int -> int) = (<fun>, <fun>)

Note: in fun v -> exp(v), scope of variable is only
the body exp(v)

8/30/2018 53

Values fixed at declaration time

let x = 12;;

val x : int = 12

let plus_x y = y + x;;

val plus_x : int -> int = <fun>

plus_x 3;;

What is the result?

X 12

…

8/30/2018 54

Values fixed at declaration time

let x = 12;;

val x : int = 12

let plus_x y = y + x;;

val plus_x : int -> int = <fun>

plus_x 3;;

- : int = 15

8/30/2018 55

Values fixed at declaration time

let x = 7;; (* New declaration, not an update *)

val x : int = 7

plus_x 3;;

What is the result this time?

8/30/2018 56

Values fixed at declaration time

let x = 7;; (* New declaration, not an update *)

val x : int = 7

plus_x 3;;

What is the result this time?

X 12

…

X 7

…

8/30/2018 57

Values fixed at declaration time

let x = 7;; (* New declaration, not an update *)

val x : int = 7

plus_x 3;;

- : int = 15

8/30/2018 58

Question

 Observation: Functions are first-class values

in this language

 Question: What value does the environment

record for a function variable?

 Answer: a closure

8/30/2018 59

Save the Environment!

 A closure is a pair of an environment and an

association of a sequence of variables (the input

variables) with an expression (the function

body), written:

< (v1,…,vn) exp, >

 Where is the environment in effect when the

function is defined (for a simple function)

Recall: let plus_x = fun x => y + x

8/30/2018 60

X 12

…
let x = 12

let plus_x = fun y -> y + x

let x = 7

X 12 …

plus_x

X 12
…

y y + x

plus_x

…

x 7

X 12
…

y y + x

8/30/2018 61

Closure for plus_x

 When plus_x was defined, had environment:

plus_x = {…, x 12, …}

 Recall: let plus_x y = y + x

is really let plus_x = fun y -> y + x

 Closure for fun y -> y + x:

<y y + x, plus_x >

 Environment just after plus_x defined:

{plus_x <y y + x, plus_x >} + plus_x

Like set

union!

(but subtle

differences;

new decl.

replaces old)

8/30/2018 62

Functions with more than one argument

let add_three x y z = x + y + z;;

val add_three : int -> int -> int -> int = <fun>

let t = add_three 6 3 2;;

val t : int = 11

let add_three =

fun x -> (fun y -> (fun z -> x + y + z));;

val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second

Functions on tuples

let plus_pair (n,m) = n + m;;

val plus_pair : int * int -> int = <fun>

plus_pair (3,4);;

- : int = 7

let twice x = (x,x);;

val twice : 'a -> 'a * 'a = <fun>

twice 3;;

- : int * int = (3, 3)

twice "hi";;

- : string * string = ("hi", "hi")

8/30/2018 63

8/30/2018 64

Curried vs Uncurried

 Recall
let add_three u v w = u + v + w;;

val add_three : int -> int -> int -> int = <fun>

 How does it differ from
let add_triple (u,v,w) = u + v + w;;

val add_triple : int * int * int -> int = <fun>

 add_three is curried;

 add_triple is uncurried

8/30/2018 65

Curried vs Uncurried

add_three 6 3 2;;

- : int = 11

add_triple (6,3,2);;

- : int = 11

add_triple 5 4;;

Characters 0-10: add_triple 5 4;;

^^^^^^^^^^

This function is applied to too many arguments,

maybe you forgot a `;'

fun x -> add_triple (5,4,x);;

: int -> int = <fun>

8/30/2018 66

Partial application of functions

let add_three x y z = x + y + z;;

let h = add_three 5 4;;

val h : int -> int = <fun>

h 3;;

- : int = 12

h 7;;

- : int = 16

Partial application also called sectioning

8/30/2018 67

•Each clause: pattern on

left, expression on right

•Each x, y has scope of

only its clause

•Use first matching clause

Match Expressions

let triple_to_pair triple =

match triple

with (0, x, y) -> (x, y)

| (x, 0, y) -> (x, y)

| (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int =

<fun>

