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4 SABRY AND FELLEISEN1. Compiling with and without ContinuationsMany compilers for higher-order applicative languages use the continuation-passing style (CPS) transformation [21, 41] to generate an intermediaterepresentation [3, 30, 43, 46]. The CPS intermediate language has thefollowing desirable properties:� The language consists only of basic primitive operations and proce-dure applications whose semantics is independent of the parameterevaluation technique [39, 41]; many optimizations are therefore se-quences of �- and �-reductions [2, 43, 46].� It exposes the control 
ow of the program; complicated control fa-cilities in the source language, e.g., exception handlers and call-with-current-continuation [40], are translated to simple procedures thatmanipulate their continuation arguments in non-standard ways [41,47].� It constitutes an abstract assembly language whose standard reduc-tion sequence mimics the behavior of typical target machines [2, 3,24, 29, 49].The CPS transformation is a global transformation that a�ects everysubexpression in a program. It restructures programs to the extent thatmany of their original aspects are unrecognizable. The transformationmight even obscure the analysis of optimizations that rely on executionpaths having matching call/return pairs [Private Communication, HansBoehm, October 1992]. For these reasons and others, a fair number ofcompilers (usually called direct compilers) do not rely on the CPS interme-diate representation [5, 6, 28, 32].The choice of compilation strategy would not be signi�cant if both classesof compilers performed the same optimizations. However for the importantclass of optimizations that is expressible in the framework of the �-cal-culus, CPS compilers have an advantage. While CPS compilers can usethe full �-calculus reductions to perform optimizations, direct compilerscan apparently only rely on weaker calculi like the �v-calculus [39] and the�v-C-calculus [18, 19]. Naturally we ask: what optimizations do CPS com-pilers perform that are not also performed by direct compilers? Or in tech-nical terms, what set of call-by-value axioms corresponds to ��-reductionson CPS terms. With such a set, CPS compilers could report optimizationsin terms of the original program, and direct compilers could bene�t byperforming all the optimizations that correspond to ��-reductions on CPSprograms.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 5The main technical result of this paper is the identi�cation of axiomsfor call-by-value languages that correspond to ���-reductions on CPS pro-grams.1 In order to simplify the technical exposition, we �rst focus ona pure, constant-free call-by-value language. Speci�cally, we strengthenPlotkin's Translation Theorem (cf. Theorem 1) by identifying an axiomset X such that:��vX `M = N if and only if ��� ` cps(M) = cps(N):Our strategy for the identi�cation of the axioms X consists of three steps:1. First, we develop a new CPS transformation that produces a canonicalform of CPS programs. The new transformation provides a simplecharacterization of a CPS language that is closed under ��-reductions.It also identi�es a subset A of the call-by-value axioms X .2. Second, we develop an \inverse" transformation that maps canon-ical CPS programs back to the original language. As Danvy andLawall [11, 14] convincingly argue, this translation from CPS to di-rect terms is useful in its own right.3. Finally, by studying the connection between the CPS transformationand the inverse mapping, we systematically derive the remaining ax-ioms in the set X . The resulting calculus is a variant of Moggi'suntyped computational �-calculus [36].A complete treatment of the relationship between programs and theirCPS transforms must also analyze a language with control operators sincethese are the language facilities for which continuations were conceived [34,37, 41, 47]. To this end, we extend our language with two typical controloperators expressible in the CPS framework: abort and call-with-current-continuation. These operators su�ce to express a wide variety of controlabstractions such as error exits, jumps, intelligent backtracking, coroutines,and exception handling [23, 27].21For call-by-name languages, the reductions �� are valid in both the source languageand the CPS language and the CPS translation does not create any new opportunitiesfor equational reasoning [39, page 153].2The CPS framework can also express a control delimiting facility [44], e.g.,prompt [15]. However, we do not include prompt in our language for two reasons. First,current language implementations do not include such facilities. Second, the CPS trans-lation of prompt generates expressions that are no longer independent of the timing ofparameter evaluation [12, 20]. As a consequence, we can associate two di�erent seman-tics with the CPS language: a call-by-value semantics which is the classic semantics forcontrol delimiters [13, 15], and a call-by-name semantics which yields a lazy prompt . The�rst semantics is incompatible with the ��-reductions we use for the CPS language and,at this point, there seems to be little practical motivation to pursue the analysis of thelazy prompt.



6 SABRY AND FELLEISENThe addition of abort and call-with-current-continuation extends the setof CPS programs and generates a new set of program equivalences thatare provable using �- and �-reductions. In order to re-establish the cor-respondence between the source and CPS calculi, we extend both theCPS transformation and its inverse and proceed in the same way as forthe pure language. The resulting calculus includes the reductions of the�v-C-calculus [18, 19] and is equivalent to the equational subtheory of thelogic IOCC (Impredicative theory of Operations, Control abstractions, andClasses) [48].Finally, since Lisp and similar languages include more facilities than justprocedures and control operators, we consider the language Core Scheme,which also includes constants, conditionals, and assignments. We developa theory for reasoning about Core Scheme that proves all the equationsthat hold in the CPS framework. To illustrate the power of the theory,we optimize a Scheme program that implements a coroutine facility using�rst-class continuations. The left program in Figure 1, due to Haynes,(de�ne make-coroutine(lambda (f )(callcc(lambda (maker)(let ([LCS 'any])(let ([resume(lambda (dest val)(callcc(lambda (k)(set! LCS k)(dest val))))])(f resume(resume maker(lambda (v) (LCS v))))(error "fell o� end")))))))
(de�ne make-coroutine(lambda (f )(letrec ([LCS(lambda (x )(f (lambda (dest val)(callcc(lambda (k)(set! LCS k)(dest val))))x )(error "fell o� end"))])(lambda (v) (LCS v)))))Figure 1: Coroutines from Continuations.Friedman, and Wand [27], is the result of clear and well-understood designsteps but is far more complicated than necessary. The initialization partof the coroutine is non-trivial: it involves capturing a continuation and anarti�cial use of the procedure resume that assigns the proper value to thelocal control state (LCS). The second program, a variant of the �rst ac-cording to folklore, avoids the clumsy initialization phase and immediatelyreturns a closure. Using our new set of axioms, we can rewrite the leftprogram to the second. The derivation is subject of Section 10.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 7The next section introduces the basic terminology and notation of the�-calculus and its semantics. Sections 3 to 6 are dedicated to the purecall-by-value language. Section 3 includes a short history of CPS transfor-mations that motivates the ideas that lead to our new CPS transformationin Section 4. The inverse mapping is the subject of Section 5. In Section 6,we identify the complete set of axioms X and prove its completeness withrespect to �- and �-reductions on CPS terms. Section 7 extends the resultto a language that includes the non-local control operators abort and call-with-current-continuation. Section 8 deals with the addition of constants,assignments, and conditionals. Finally, we conclude with a brief discussionof the theoretical and practical implications of our work and future direc-tions of research. The appendix includes the tedious but straightforwardportions of the proofs.2. �: Calculi and SemanticsThe language � is a pure (constant-free) functional language. The setof terms is generated inductively over an in�nite set of variables Vars ;it includes values and applications. Values consist of variables and �-abstractions, applications are juxtapositions of terms:M ::= V j (M M) (�)V ::= x j (�x:M) (Values)x 2 VarsWe adopt Barendregt's [4, chapters 2, 3] notation and terminology for�'s syntax. Thus, in the abstraction (�x:M), the variable x is bound in M .Variables that are not bound by a �-abstraction are free; the set of freevariables in a term M is FV (M). A term is closed if it has no free vari-ables. We identify terms modulo bound variables, and we assume thatfree and bound variables do not interfere in de�nitions or theorems. Inshort, we follow common practice and work with the quotient of � under�-equivalence. We write M � N for �-equivalent terms M and N .The term M [x := N ] is the result of the capture-free substitution of allfree occurrences of x in M by N , e.g., (�x:xz)[z := (�y:x)]� (�u:u(�y:x)).A context C is a term with a \hole", [ ], in the place of one subterm. Theoperation of �lling the context C with a term M yields the term C[M ],possibly capturing some free variables of M in the process, e.g., the resultof �lling (�x:x[ ]) with (�y:x) is (�x:x(�y:x)). The variables that may becaptured when �lling a context C are called the trapped variables of C andare denoted by trap(C).



8 SABRY AND FELLEISENCalculiA �-calculus is an equational theory over � with a �nite number of axiomschemas and inference rules. The most familiar axiom schemas, also callednotions of reduction, are the following:((�x:M) N) �! M [x := N ] N : arbitrary (�)((�x:M) V ) �! M [x := V ] V : Value (�v)�x:Mx �! M x 62 FV (M) (�)�x:V x �! V x 62 FV (V ) (�v)A reduction may also be applied to a context C1 yielding another contextC2. In that case, the holes in both contexts are treated as placeholders toan arbitrary term. We only use such reductions when the sets of trappedvariables in both contexts are empty (cf. evaluation contexts below).The set of inference rules is identical for all �-calculi. It extends somenotions of reduction to an equivalence relation compatible with syntacticcontexts:M �! N ) C[M ] = C[N ] for all contexts C (Compatibility)M =M (Re
exivity)M = L; L = N ) M = N (Transitivity)M = N ) N =M (Symmetry)The underlying set of axioms completely identi�es a theory. For example,� generates the theory ��, �v generates the theory ��v , and the union of� and � generates the theory ���. In general, we write �X to refer tothe theory generated by a set of axioms X . When a theory �X proves anequation M = N , we write �X ` M = N . If the proof does not use theinference rule (Symmetry), we write �X `M �!�!N .A notion of reduction R is Church-Rosser (CR) if �R `M = N impliesthat there exists a term L such that both M and N reduce to L, i.e.,�R `M �!�!L and �R ` N �!�!L. A termM is in R-normal form if thereare no R-reductions starting with M .Many of the results in the paper relate the calculi for di�erent languages.To provide a uniform terminology for the relationships between such sys-tems, we introduce the concept of \equational correspondence".De�nition 1 (Equational Correspondence) Let S and T be two lan-guages with calculi �XS and �XT respectively. Also let f : S ! T be atranslation from S to T , and g : T ! S be a translation from T to S. Fi-nally let s; s1; s2 2 S and t; t1; t2 2 T . Then the calculus �XS equationallycorresponds to the calculus �XT if the following four conditions hold:



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 91. �XS ` s = (g � f)(s).2. �XT ` t = (f � g)(t).3. �XS ` s1 = s2 if and only if �XT ` f(s1) = f(s2).4. �XT ` t1 = t2 if and only if �XS ` g(t1) = g(t2).The above correspondence is similar to the correspondence between the�-calculus and combinatory logic [4, 10]. In the third clause, the left-to-right implication refers to the soundness of the calculus �XS , and the right-to-left implication refers the completeness of the calculus �XS (relative to�XT , f , and g).SemanticsThe semantics of the language � is a (partial) function, eval , from pro-grams to answers. A program is a term with no free variables and, inpractical languages, an answer is a member of the syntactic category ofvalues. Typically, eval is de�ned via an abstract machine that manipulatesabstract counterparts to hardware stacks, stores, registers, etc. Examplesare the SECD machine [31] and the CEK machine [16].An equivalent method for specifying the semantics is based on the Curry-Feys Standard Reduction Theorem [16, 39]. The Standard Reduction The-orem de�nes a partial function, 7�!, from programs to programs that cor-responds to a single evaluation step of an abstract machine for �.A standard step (i) decomposes the program into a special context E anda leftmost-outermost redex R (not inside an abstraction), and (ii) �lls Ewith the contractum of R. The special contexts are evaluation contexts andhave the following de�nition for the call-by-value and call-by-name variantsof �, respectively [16]:Ev ::= [ ] j (V Ev) j (Ev M)En ::= [ ] j (En M)Conceptually, the hole of an evaluation context ([ ]) points to the currentinstruction, which must be a �v or � redex. The decomposition of M intoE[(V N)] where (V N) is a redex means that the current instruction is(V N) and that the rest of the computation, the continuation, is E [16].For a call-by-value language, the syntax of the terms can therefore be re-formulated as follows:M ::= V j Ev[(V V )] (�)V ::= x j (�x:M) (Values)Ev ::= [ ] j (V Ev) j (Ev M) (EvCont)



10 SABRY AND FELLEISENA similar de�nition exists for the call-by-name language except that argu-ments are not evaluated before a function call, i.e., evaluation contexts donot include contexts of the shape (V En).Using evaluation contexts, the de�nitions of the standard reduction func-tions for call-by-value and call-by-name respectively are as follows:Ev[((�x:M) V )] 7�!v Ev[M [x := V ]]En[((�x:M) N)] 7�!n En[M [x := N ]]A complete evaluation applies the single-step functions repeatedly and ei-ther reaches an answer or diverges. The notation 7�!� denotes the re
exive,transitive closure of the relation 7�!. The semantics of � is de�ned as fol-lows: evalv(M) = V if and only if M 7�!�v V (call-by-value)evaln(M) = V if and only if M 7�!�n V (call-by-name)3. The Origins and Practice of CPSThe idea of transforming programs to \continuation-passing style" �rstappeared in the mid-sixties.3 For a few years, the transformation remainedpart of the folklore of computer science until Fischer and Reynolds codi�edit in 1972.The �rst subsection brie
y reviews the original encoding of the CPStransformation. In the second subsection, we analyze the universe of CPSterms and the so-called administrative CPS reductions.3.1. The Original EncodingFischer [21] studied two implementation strategies for �: a heap-basedretention strategy in which all variable bindings are retained until no longerneeded, and a stack-based deletion strategy in which variable bindings aredestroyed when control leaves the procedure (or block) in which they werecreated. He concluded thatno real power is lost in restricting oneself to a deletion strat-egy implementation, for any program can be translated into anequivalent one which will work correctly under such an imple-mentation [21, page 104].3The origin of the concept of \continuation" can be traced back to A. van Wijn-gaarden [45] who de�ned a source to source transformation that eliminates jumps (gotoinstructions) from a program in favor of procedures that never return.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 11The translation he refers to is the Fischer CPS transformation.De�nition 2 (Fischer CPS) Let k, m, n 2 Vars be variables that do notoccur in the argument to F .F : � ! �F [[V ]] = �k:(k Fv [[V ]])F [[MN ]] = �k:(F [[M ]] (�m:(F [[N ]] �n:((m k) n))))Fv : Values ! �Fv[[x]] = xFv[[�x:M ]] = �k:�x:(F [[M ]] k)Reynolds [41] investigated de�nitional interpreters for higher-order lan-guages. One of his goals was the desire to liberate the de�nition of alanguage from the parameter-passing technique of the de�ning language.He developed a method to transform an interpreter such that it becomesindi�erent to whether the underlying parameter passing technique is call-by-value or call-by-name. His transformation is essentially the same trans-formation as Fischer's.4 Plotkin [39] later proved Reynolds's ideas correct.Theorem 1 (Plotkin [39]) Let M 2 �.Simulation: Fv[[evalv(M)]] = evalv(F [[M ]] (�x:x))Indi�erence: evaln(F [[M ]] (�x:x)) = evalv(F [[M ]] (�x:x))Translation: If ��v `M = N then �� ` F [[M ]] = F [[N ]]. Theimplication is not reversible. Also, ��v ` F [[M ]] = F [[N ]]if and only if �� ` F [[M ]] = F [[N ]].The Simulation Theorem shows that the evaluation of the CPS programproduces correct outputs. The Indi�erence Theorem establishes that thisevaluation yields the same result under call-by-value and call-by-name. TheTranslation Theorem establishes the soundness and incompleteness of ��vfor reasoning about CPS programs.3.2. The Universe of CPS TermsSince we are interested in the analysis of ��-equality on CPS terms, ouruniverse of discourse consists of all terms that contribute to the proofs ofequations like: ��� ` F [[M ]] = F [[N ]]:4In Reynolds's transformation, the continuation is the second argument to aprocedure.



12 SABRY AND FELLEISENBecause the notion of reduction �� is CR [4], it su�ces to consider equationsof the form: ��� ` F [[M ]]�!�! P:Hence, the universe of discourse for CPS terms is the set:fP j 9M 2 �: ��� ` F [[M ]]�!�! Pg:Unfortunately, this set includes a large of terms that have no counterpartin the source language. For example, the source reduction:((�x:x) y) �! ycorresponds to the following derivation on CPS terms:F [[((�x:x) y)]] = �k:((�k:(k �k:�x:((�k:kx) k)))(�m:((�k:ky)(�n:((m k) n)))))�! �k:((�m:((�k:ky) (�n:((m k) n))))(�k:�x:((�k:kx) k)))�! �k:((�k:ky)(�n:(((�k:�x:((�k:kx) k)) k) n))�! �k:((�n:(((�k:�x:((�k:kx) k)) k) n)) y)�! �k:(((�k:�x:((�k:kx) k)) k) y)�! �k:((�x:((�k:kx) k)) y)�! �k:((�k:ky) k)�! �k:(k y)= F [[y]]:The derivation mostly consists of reductions that do not correspond toreductions of source terms.The \new" reductions on CPS terms are known as administrative reduc-tions [39]. In order to give a precise de�nition of these new reductions,we modify the Fischer CPS transformation by overlining all �-abstractionsthat are introduced during the translation. The reduction of any of theseoverlined �-abstractions constitutes an administrative reduction.De�nition 3 (F , �, �) Let k;m; n 2 Vars be variables that do not occurin the argument to F .F : � ! �F [[V ]] = �k:(k Fv[[V ]])F [[MN ]] = �k:(F [[M ]] (�m:(F [[N ]] �n:((m k) n))))



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 13Fv : Values ! �Fv[[x]] = xFv[[�x:M ]] = �k:�x:(F [[M ]] k)A �- or �-reduction is an administrative reduction if it involves overlinedabstractions:((�x:M) N) �! M [x := N ] (�)(�x:Mx) �! M x 62 FV (M) (�)To simplify the derivation of the source reductions that correspond to ��on CPS terms, we split the problem in two parts: �nding source reductionsthat correspond to administrative CPS reductions (Section 4), and �ndingsource reductions that correspond to proper CPS reductions (Sections 5and 6).4. A Compacting CPS TransformationTo identify all the source reductions that correspond to the CPS admin-istrative reductions at once, we de�ne a compacting CPS transformationthat performs the administrative reductions in the output of F and pro-duces terms in ��-normal form.The �rst subsection formally de�nes the process of eliminating the ad-ministrative reductions from the output of F and analyzes the connectionbetween the elimination process and the evaluation of CPS programs. Thesecond subsection includes a new compacting CPS transformation that il-luminates the e�ect of administrative reductions. Subsection 3 includes thesource reductions that correspond to the elimination of the administrativeCPS reductions. Finally, the last subsection includes the de�nition of asimpli�ed universe of CPS terms based on the new CPS transformation.4.1. The Two-Pass CPS TransformationThe relation F2 combines the Fischer CPS transformation with the elim-ination of the administrative reductions.De�nition 4 (F2) Let M 2 �, then F2[[M ]] = P if and only if ��� `F [[M ]] = P and P is in ��-normal form.Each source term is related by F2 to exactly one CPS term in ��-normalform.Proposition 2 The relation F2 is a total function from � to �.



14 SABRY AND FELLEISENProof: 5 It is su�cient to show that F [[M ]] has a unique ��-normalform. The �-reductions starting with F [[M ]] are a special kind ofreductions called developments [4, section 11.2]. It follows that F [[M ]]has a unique �-normal form [4, corollary 11.2.24]. Moreover, a �-term has a �-normal form if and only it has a ��-normal form [4,corollary 15.1.5]. It follows that F [[M ]] has a unique ��-normal form.In other words, the function F2 speci�es a CPS transformation that pro-duces terms without any administrative redexes.6The proposition also establishes that administrative reductions can beperformed in any order without a�ecting the result. A quick look at theire�ect on standard reduction sequences is particularly illuminating.According to Plotkin [39], the standard reduction sequence of a sourceprogram relates to the standard reduction sequence of its CPS counterpartas described in the following diagram:�M 7�!v - �N 7�!v - �L . . . .F [[M ]]K� F [[N ]]K� F [[L]]K�?� ?� ?�M : K�������3N : K�������3L : K. . . . . .5Improved by Robert Harper.6The function F2 eliminates more administrative than other CPS transforma-tions [3, 13, 30, 43, 46]. For example, applying F2 to (((�x:�y:x) a) b) yields�k:((�x:((�y:kx) b)) a). For the same example, both Steele's Rabbit transformation [46]and the Danvy/Filinski transformation [13] yield the term:�k:((�xk1:(k1 �yk2:k2x)) a (�m:mbk)):Even though this term only contains source redexes, we could still optimize it withouteliminating source redexes:��� ` �k:((�xk1:(k1�yk2:k2x)) a (�m:mbk)) = �k:((�m:mbk) (�yk2:k2a))= �k:((�yk2:k2a) b k)= �k:ka= �k:((�y:ka) b)= �k:((�x:((�y:kx) b)) a):



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 15The term M : K is the result of eliminating all the administrative reduc-tions before the �rst (in a standard reduction sequence) proper reductionin (F [[M ]] K). The solid lines represent the reduction of source redexes;the dashed lines correspond to the reduction of administrative redexes.By Plotkin's analysis, the role of the administrative reductions is to locatethe next source redex in a standard reduction sequence, and to restructurethe CPS program such that this redex occurs at the top level. For example,in the term: M df= ((�y:y) ((�x:x) z));the �rst redex in a standard reduction sequence is ((�x:x) z). After CPSconversion and the elimination of all administrative reductions, we get:P df= (F2[[M ]] (�a:a)) = ((�x:((�y:((�a:a) y)) x)) z);where the redex ((�x: � � �) z) occurs at the top level.Although the action of \lifting" the redex ((�x: � � �) z) to the top levelhappens naturally in the CPS framework, it does not require an explicitCPS conversion, i.e., we can rewrite the original program as follows:((�y:y) ((�x:x) z)) �! ((�x:((�y:y) x)) z):This example suggests that administrative CPS reductions are naturallyexpressible in the source language. We investigate the exact nature ofthese source reductions in the next subsection.4.2. The CPS Transformation CkBy specifying the function F2 in a new and original way that illuminatesthe e�ect of administrative reductions on the reduction of source and CPSterms, we can directly identify two notions of reduction on source termsthat perform the same task as administrative reductions.The key insights that are necessary to derive the new CPS transformationare the following:� The evaluation context is a syntactic representation of the continua-tion (cf. Section 2).� The �rst redex in a standard reduction sequence always occurs insidethe evaluation context (cf. Section 2).� Administrative reductions \lift" the redex that occurs inside the eval-uation context to the top level (cf. Section 4.1).



16 SABRY AND FELLEISENBased on these insights, we develop the new compacting CPS transfor-mation Ck. The transformation relies on the following de�nition of the setof evaluation contexts, which is more suitable for the following de�nition:E ::= [ ] j E[(V [ ])] j E[([ ] M)]The de�nition generates the same set as the one in Section 2.De�nition 5 (Ck ;�;Kk) The CPS transformation uses three mutually re-cursive functions: Ck to transform terms, � to transform values, and Kkto transform evaluation contexts. Let k; ui 2 Vars be variables that do notoccur in the argument to Ck.7Ck : � ! �Ck[[V ]] = (k �[[V ]])Ck[[E[(x V )]]] = ((x Kk[[E]]) �[[V ]])Ck [[E[((�x:M) V )]]] = ((�x:Ck[[E[M ]]]) �[[V ]])� : Values ! ��[[x]] = x�[[�x:M ]] = �k:�x:Ck[[M ]]Kk : EvCont ! �Kk[[[ ]]] = kKk[[E[(x [ ])]]] = (x Kk[[E]])Kk[[E[((�x:M) [ ])]]] = (�x:Ck[[E[M ]]])Kk[[E[([ ] M)]]] = (�ui:Ck[[E[(ui M)]]])The transformation of a complete program M is �k:Ck[[M ]]. The functionCk is parametrized over a variable k that represents the current continua-tion. The CPS transform of values is straightforward. The translation ofE[(x V )] generates a term in which the unknown procedure x is appliedto the continuation Kk[[E]] and the result applied to the argument �[[V ]].The CPS transform of E[((�x:M) V )] conceptually lifts the redex outsidethe evaluation context producing ((�x:E[M ]) V ) and then converts the re-sulting term to CPS. The �rst three cases in the translation of evaluationcontexts to continuations have the same intuitive explanation. In the last7The CPS transformation Ck is, in spirit, similar to the CPS transformation by Fried-man, Wand, and Haynes [24, chapter 8], but di�ers signi�cantly in its formal part.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 17case E[([ ] M)], the term in function position is the result of an intermedi-ate computation. The CPS transformation gives the intermediate result afresh name ui and proceeds with the translation of a simpler term.While Ck ;� and Kk are not de�ned by structural induction, it is relativelyeasy to check that the functions are well-de�ned using an appropriate notionof \size".De�nition 6 (Size) The size of a term M , jM j, is the number of variablesin M (including binding occurrences). The size of a context E, jEj, is thenumber of variables in E (including binding occurrences) plus 2.In particular, the size of E[(ui M)] is smaller than the size of E[([ ] M)]because the empty context always replaces an application. Also, the sizeof (�x:M) is greater than the size of M by 1.The following proposition veri�es that the outputs of Ck and F2 areidentical. As a consequence, the result also establishes that Ck is a totalfunction.Proposition 3 Let M 2 �. Then, F2[[M ]] � �k:Ck[[M ]].Proof: By the de�nition of F2, it su�ces to establish the followingstatements:� ��� ` (F [[M ]] k) = Ck[[M ]].� Ck[[M ]] is in ��-normal form.� (F [[M ]] k) has a unique ��-normal form.The last claim follows from Proposition 2. The proofs of the �rst twoclaims are in the Appendix (Page 48).4.3. Administrative Source Reductions: The A-ReductionsThe function Ck incorporates the reduction of all administrative redexesfrom the output of the Fischer CPS. Hence, if F [[M ]] and F [[N ]] reduce toa common term by administrative reductions only, Ck[[M ]] is identical toCk[[N ]]. The de�nition of the function Ck shows that, in two cases, di�erentinputs are indeed mapped to the same output. (Proposition 11 veri�es thatthere are indeed only two such cases.)Lemma 4 (�lift , �
at) Let M;N;L 2 �, E 2 EvCont, and z 2 Vars:Ck[[E[((�x:M) N)]]] � Ck[[((�x:E[M ]) N)]] where x 62 FV (E)Ck[[((z M) L)]] � Ck[[((�u:uL) (z M))]] where u 62 FV (L)



18 SABRY AND FELLEISENProof: The proof of the �rst claim is straightforward. The proofof the second claim8 is in the Appendix (Page 50). The identity inthe second statement holds modulo the decorating overlines aboveadministrative �-abstractions.To characterize these e�ects of the Ck-translation, we introduce two re-ductions on � that capture the e�ect of the administrative reductions.De�nition 7 (A-reductions, �lift , �
at) The set of axioms A containstwo reductions:E[((�x:M) N)] �! ((�x:E[M ]) N) (�lift)where E 6= [ ] and x 62 FV (E)((z M) L) �! ((�u:(u L)) (z M)) (�
at)where u 62 FV (L)As Lemma 4 shows, the A-reductions de�ne equivalence classes of sourceterms that map to the same CPS term.At this point, the decorating overlines above the special �-abstractionsbecome irrelevant. In the remainder of the paper, we ignore the distinctionbetween � and �.4.4. The CPS LanguageUsing the equivalence of the functions F2 and Ck, we can specify theuniverse of CPS terms as follows:S df= fP j 9M 2 �: ��� ` Ck [[M ]]�!�! Pg;ignoring the outermost binding of the continuation.The context-free grammar that generates the set S can be directly de-rived from the right hand sides of the equations in De�nition 5. Accordingto the de�nition, all terms in the CPS language are an application of acontinuation to a value. Values are either variables or abstractions thattransform continuations. Continuations are either variables, or the resultof the application of a value to a continuation, or an abstraction that trans-forms a value to an answer.8The earlier version of the paper [42] erroneously included an arbitrary term M inplace of the variable z.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 19De�nition 8 (CPS grammar, CPS program, cps(�)) Let K-Vars =fkg be a set of continuation variables such that Vars \K-Vars = ;.P ::= (K W ) (cps(�) = Answers)W ::= x j (�k:K) (cps(Values) = CPS-Values)K ::= k j (W K) j (�x:P ) (cps(EvCont) = Continuations)The special status reserved for the variable k ensures that the continuationparameter occurs exactly once in the body of each abstraction �k:K. Aprogram in CPS form is a closed term of the form ((�k:P ) (�x:x)) wherek is the special continuation parameter. When working with the quotientof the language under �-equivalence, the special status of the name \k"disappears but the linearity constraint remains.The following theorem establishes that the two de�nitions of CPS termsde�ne the same language.Theorem 5 S = cps(�).Proof: For the left to right inclusion, it su�ces to show that theoutput of Ck is a subset of cps(�), and that the latter language isclosed under ��-reductions. We omit the proof of the �rst claim. Thesecond claim follows from the Subject Reduction Lemma (Lemma 6).For the opposite implication, i.e., cps(�) � S, it su�ces to show thatfor all P 2 cps(�), there exists M 2 � such that ��� ` Ck[[M ]]�!�!P .The proof of this auxiliary claim is in the Appendix (Page 51).To complete the proof of the theorem, we need to establish that ��-reductions on cps(�) preserve the syntactic categories of the terms.Lemma 6 (Subject Reduction) Let P1 2 cps(�), W1 2 cps(Values)and K1 2 cps(EvCont), then,1. ��� ` P1 �! P2 implies P2 2 cps(�).2. ��� `W1 �!W2 implies W2 2 cps(Values).3. ��� ` K1 �! K2 implies K2 2 cps(EvCont).Proof: See Appendix (Page 52).The above lemma implies that ��-reductions on CPS terms can be natu-rally characterized as reductions that apply to continuations and reductionsthat apply to values.



20 SABRY AND FELLEISENCorollary 7 The reductions � and � on cps(�) can be decomposed intoreductions that apply to values (�w and �w) and reductions that apply tocontinuations (�k and �k):((�x:P ) W ) �! P [x :=W ] (�w)((�k:K1) K2) �! K1[k := K2] (�k)(�k:Wk) �! W (�w)(�x:Kx) �! K x 62 FV (K) (�k)5. A CPS InverseIn order to map the CPS reductions �w, �k, �w, and �k to reductions on thesource language, we de�ne a mapping from cps(�) to �. After presentingthe new transformation in the �rst subsection, we study its connection tothe CPS transformation in the second subsection.5.1. The Transformation C�1Based on the inductive de�nition of the CPS language, the speci�cationof an \inverse" to the CPS transformation is almost straightforward: thesource term corresponding to (K W ) is E[V ] where E is the evaluationcontext that syntactically represents the continuation K, and V is the valuethat corresponds to W .De�nition 9 (C�1;��1;K�1) Let P 2 cps(�), W 2 cps(Values), andK;K1; K2 2 cps(EvCont):C�1 : cps(�) ! �C�1[[(K W )]] = K�1[[K]][��1[[W ]]]��1 : cps(Values) ! Values��1[[x]] = x��1[[(�k:k)]] = �x:x��1[[(�k:WK)]] = �x:C�1[[(W K) x]]��1[[(�k:�x:P )]] = �x:C�1[[P ]]



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 21K�1 : cps(EvCont) ! EvContK�1[[k]] = [ ]K�1[[(x K)]] = K�1[[K]][(x [ ])]K�1[[((�k:K1) K2)]] = K�1[[K1[k := K2]]]K�1[[(�x:P )]] = ((�x:C�1[[P ]]) [ ])The correctness of the function C�1 is subject of the following theorem.The �rst part of the theorem establishes that the composition of C�1 andCk respects ��-equality. The second part of the theorem establishes thestronger property that, when restricted to images of � terms, the compo-sition of C�1 and Ck yields the identity function.Theorem 8 Let P 2 cps(�), K 2 cps(EvCont). Then,1. ��� ` (Ck � C�1)[[P ]] = P and ��� ` (Kk � K�1)[[K]] = K;2. (Ck �C�1)[[P ]] � P and (Kk �K�1)[[K]] � K if there exists M 2 � andE 2 EvCont such that P = Ck[[M ]] and K = Kk[[E]].Proof: See Appendix (Page 54).5.2. Composing Ck and C�1The compacting CPS transformation Ck maps all the members of A-equivalence classes to the same CPS term (cf. Section 4.3). Our inverseCPS transformation maps this CPS term back to a particular element ofthe equivalence class, the element in �lift�
at -normal form. In order toestablish this result, we �rst de�ne a subset of � in �lift�
at -normal form.De�nition 10 (�a) The language �a is a subset of � that only includesterms in �lift�
at -normal form.M ::= E[V ] (�a)V ::= x j (�x:M) (Valuesa)E ::= [ ] j ((�x:M) [ ]) j E[(x [ ])] (EvConta)We omit the simple inductive proof that the elements of the language areactually in �lift�
at -normal form.The range of the function C�1 is included in �a, i.e., any output of C�1is in �lift�
at -normal form.



22 SABRY AND FELLEISENLemma 9 Let P 2 cps(�) and K 2 cps(EvCont), then C�1[[P ]] 2 �a andK�1[[K]] 2 EvConta.Proof: See Appendix (Page 55).With the help of this lemma, we can now specify the precise relationbetween the CPS transformation and its inverse. The e�ect of composingthe CPS transformation with its inverse is to reduce terms to �lift�
at -normal form. Naturally, if a term is already in �lift�
at -normal form, thenthe composition yields the identity function.Theorem 10 Let M 2 �, then:1. ��lift�
at `M �!�! (C�1 � Ck)[[M ]],2. (C�1�Ck)[[M ]] �M if there exists P 2 cps(�) such that M = C�1[[P ]].Proof: See Appendix (Page 56).Put di�erently, the theorem asserts that the reductions �lift�
at captureall possible equivalences introduced by administrative reductions. If theCPS transforms ofM and N are related by those administrative reductionsthat Ck eliminates, then it must be the case that M and N are related bythe axioms �lift�
at .Proposition 11 If Ck[[M ]] � Ck[[N ]], then ��lift�
at `M = N .Proof: Assume Ck[[M ]] � Ck[[N ]] � P . The function C�1 maps P ,the CPS transform of M or N , to a source term L. By Theorem 10,both M and N reduce to L by �lift�
at-reductions. It follows that��lift�
at `M = N .6. Equational Correspondence for the Pure LanguageUsing the partial inverse of the CPS transformation, we can systematicallyderive a set of additional axioms B for ��v such that X = A[B, i.e., suchthat ��vAB is complete for �� reasoning about CPS programs. Once wehave the new axiom set, we prove its soundness in the second subsection.In the last subsection, we brie
y discuss the correspondence of the calculi.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 236.1. CompletenessAs speci�ed in Corollary 7, the possible �- and �-reductions on CPSterms are �w, �k, �w, and �k. To illustrate our technique, we �rst outlinethe derivation of reductions corresponding to �k. Let (�x:Kx) �! K wherex 62 FV (K). Applying K�1 to both sides of the reduction, we get:((�x:C�1[[Kx]]) [ ]) and K�1[[K]]:To understand how the left hand side could reduce to the right hand side,we proceed by case analysis on K:� K = k: the reduction becomes ((�x:x) [ ]) �! [ ]: Since the emptycontext generally stands for an arbitrary term, the extended set ofaxioms should therefore contain the reduction:((�x:x) M) �! M (�id)� K = (y K1): the reduction becomes ((�x:K�1[[K1]][(y x)]) [ ]) �!K�1[[K1]][(y [ ])]: By a similar argument as in the �rst case, we mustadd the following reduction to the set B:((�x:E[(y x)]) M) �! E[(y M)] (�
)� K = ((�k:K1) K2) or K = �y:P : these cases do not introduce anynew reductions.The cases for the other reductions on CPS terms are similar. The result-ing set of source reductions X includes all the previously derived reductionsand �v: see Figure 2. The equational theory generated by the full set of((�x:M ) V ) �! M [x := V ] (�v)(�x:V x) �! V x 62 FV (V ) (�v)E[((�x:M ) N )] �! ((�x:E[M ]) N ) x 62 FV (E); E 6= [ ] (�lift)((z M ) L) �! ((�u:(u L)) (z M )) u 62 FV (L) (�
at)((�x:x) M ) �! M (�id )((�x:E[(y x)]) M ) �! E[(y M )] x 62 FV (E[y]) (�
)Figure 2: Source Reductions: X df= f�v; �lift ; �
at ; �id ; �
g.axioms ��vX corresponds to Moggi's untyped computational �-calculus asit appeared in his original Edinburgh LFCS Technical Report [36].



24 SABRY AND FELLEISENThe Completeness Lemma summarizes the connection between the no-tions of reductions on cps(�) and the new reductions.Lemma 12 (Completeness) Let P 2 cps(�).1. If ��k ` P �! Q then ��v�id�
 ` C�1[[P ]]�!�!C�1[[Q]].2. If ��k ` P �! Q then C�1[[P ]] � C�1[[Q]].3. If ��w ` P �! Q then ��v ` C�1[[P ]]�!�!C�1[[Q]].4. If ��w ` P �! Q then ��v�lift�id�
 ` C�1[[P ]]�!�!C�1[[Q]].Proof: The proof of each case is independent from the proofs ofother cases.1. �k-reduction: The proof is outlined at the beginning of the sec-tion.2. �k-reduction: By the de�nition of K�1, K�1[[((�k:K1) K2)]] �K�1[[K1[k := K2]]].3. �w-reduction: Applying ��1 to the left hand side, we get theterm ��1[[(�k:Wk)]] which is equivalent to (�x:C�1[[((Wk) x)]]).We show that the latter term reduces to ��1[[W ]] by cases:� W = z: then the reduction becomes the �v-reduction:(�x:zx) �! x:� W = �k:k: then both sides of the reduction are identical.� W = �k:W1K: then again both sides of the reduction areidentical.� W = �k:�z:P : �x:((�z:C�1[[P ]]) x) �! �z:C�1[[P ]] is an�v-reduction.4. �w-reduction: See Appendix (Page 57).The Completeness Theorem is a direct consequence of the above results.Theorem 13 (Completeness) Let P 2 cps(�). If ��� ` P �!�!Q then��vX ` C�1[[P ]]�!�!C�1[[Q]]:Proof: By pasting together the proofs of the Completeness Lemma.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 256.2. SoundnessThe set of source reductions in Figure 2 is sound with respect to theequational theory over CPS terms. In fact, we can prove the followingstronger results on the correspondence of reduction steps.Lemma 14 (Soundness) Let M 2 �.1. If ��v `M �! N then �� ` Ck[[M ]]�!�!Ck[[N ]].2. If ��v `M �! N then ��w�k ` Ck[[M ]]�!�!Ck [[N ]].3. If ��lift `M �! N then Ck[[M ]] � Ck[[N ]].4. If ��
at `M �! N then Ck[[M ]] � Ck[[N ]].5. If ��id `M �! N then ��k ` Ck [[M ]]�!�!Ck[[N ]].6. If ��
 `M �! N then ��k ` Ck[[M ]]�!�!Ck[[N ]].Proof: The proofs for �lift and �
at are in Lemma 4. The prooffor �v-reductions is in the Appendix (Page 60). The other proofs aresimilar.The Soundness Theorem summarizes the results of this subsection.Theorem 15 (Soundness) If ��vX `M �!�!N then ��� ` Ck[[M ]]�!�!Ck[[N ]]:Proof: By pasting the proofs of the Soundness Lemma.6.3. Equational CorrespondenceThe Completeness and Soundness Theorems in the previous sections areformulated in the most precise way. In particular, the theorems relatereduction steps in one calculus to reduction steps in the other calculus.Together with Theorems 8 and 10 about the composition of the CPS trans-formation and its inverse, they imply the results of Figure 3. In the �gure,the dotted lines correspond to the application of Ck or C�1. The solid linesrepresent sequences of reductions.The correspondence of reduction steps reveals the close relation betweensource terms in A-normal form and CPS terms. Unfortunately, this corre-spondence of reduction steps relies crucially on the properties of the func-tions Ck and C�1, and does not appear to hold for arbitrary CPS transfor-mation and their inverses.



26 SABRY AND FELLEISEN
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Figure 3: The Correspondence of Reduction Steps.In contrast, the correspondence of equalities in the source and CPS cal-culi holds for any transformations cps and uncps that satisfy the followingequations: ��� ` cps(M) = Ck[[M ]]��vX ` uncps(P ) = C�1[[P ]] (y)For such transformations, it is straightforward to deduce variants of The-orems 8, 10, 15, and 13 that relate equalities in one calculus to equalitiesin the other calculus. The combination of the four theorems implies anequational correspondence in the sense of De�nition 1.Theorem 16 (Equational Correspondence) The theory ��vX equa-tionally corresponds to the theory ��� for any cps and uncps functionssatisfying (y).The formulation of the calculus ��vX based on the six axioms in Fig-ure 2 is only necessary for the correspondence of reduction steps. For theequational correspondence, there is no reason to distinguish between thereductions �
at , �id , and �
 as we can summarize the three reductions with



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 27the following axiom:((�x:E[x])M) = E[M ] x 62 FV (E) (�0
)We will use the axiom (�0
) in the remainder of the paper.7. Non-Local Control OperatorsAfter establishing the Equational Correspondence Theorem for pure call-by-value languages, we turn our attention to languages with control opera-tors. Speci�cally, we investigate the addition of the control operators abort(A) and call-with-current-continuation (callcc). Informally, A permits theprogrammer to ignore the rest of a computation and return the value ofa subexpression as the result of the entire program, while callcc providesthe programmer with a procedural abstraction of the rest of the compu-tation. Because the two operators manipulate the global control state ofthe program, their CPS transforms are procedures that manipulate thecontinuation in non-standard ways. As a consequence, the CPS languageincludes new terms and the �rst Equational Correspondence Theorem nolonger applies. In the remainder of the section, we formalize these ideasand conclude with a version of the Equational Correspondence Theoremfor the extended language. The development of the section follows the de-velopment of Sections 4 to 6 with one exception. None of the intermediateresults is concerned with mapping the reductions of one calculus to thereductions of the other. Rather the intermediate results only relate theequalities of one calculus to the equalities of the other. At this point, it isan open question whether the results can be re-established for reductions(as opposed to equalities).97.1. The Extended Language and its SemanticsThe extension of the source language with the functional constants callccand A results in the language �+ callcc+A:M ::= V j E[(V V )]V ::= x j (�x:M) j callcc j AE ::= [ ] j (V E) j (E M)Instead of providing a formal semantics for callcc and A in terms of standardreductions, we follow the more traditional route and immediately specify9Gri�n [26] established that, in the presence of control operators similar to A andcallcc, standard reductions on source terms correspond to standard reductions on CPSterms. His result does not imply that an arbitrary sequence of reductions in eithercalculus correspond to another sequence of reductions in the other calculus.



28 SABRY AND FELLEISENthe translation of these values into CPS form and use this translation astheir formal semantics.10 The extensions to Ck (or F) consist of two addi-tional clauses to the function � (or Fv) [8]:�[[callcc]] = (�k:�u:((u k) �d:k))�[[A]] = (�k:�x:x)The CPS transform of callcc is a procedure that expects a continuation kand an argument u. The non-standard manipulation of the continuationis manifest in the second argument to u, which is a procedural abstrac-tion of the continuation. Similarly, the CPS transform of A is a procedurethat expects a continuation k and an argument x. The procedure ignoresits continuation argument (k) and immediately returns its value argument(x). The non-use of k is again a non-standard manipulation of the contin-uation. Given the CPS transformation, the formal semantics of the sourcelanguage is:evalv(M) = V if and only if evaln((�k:Ck[[M ]]) �x:x) = �[[V ]]:In order to simplify the following discussions (and proofs), we use a CPStransformation that is less compacting but more suited for the analysis thanthe one in De�nition 5.De�nition 11 (Ck with Control Operators) Let k; ui 2 Vars be vari-ables that do not occur in the argument to Ck.Ck[[V ]] = (k �[[V ]])Ck[[E[(V1 V2)]]] = ((�[[V1]] Kk[[E]]) �[[V2]])�[[x]] = x�[[�x:M ]] = �k:�x:Ck[[M ]]�[[callcc]] = �k:�u:((u k) �d:k)�[[A]] = �k:�x:xKk[[[ ]]] = kKk[[E[(V [ ])]]] = (�[[V ]] Kk[[E]])Kk[[E[([ ] M)]]] = �f:Ck[[E[(f M)]]]10Felleisen et al. [16, 18, 19] and Talcott [48] use alternative de�nitions that do notrely on the CPS transformation.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 29Besides the extensions to callcc and A, the transformation di�ers fromthe function in De�nition 5 in the following aspect. The new functiontranslates expressions of the form E[(V M)] uniformly for all values V . Bynot including a special clause for each kind of value, the CPS transformationmay produce terms with administrative redexes. However, the presence ofthese administrative redexes is irrelevant since it does not a�ect the set ofreachable CPS terms, and we are no longer concerned with mapping thereductions of one calculus to the reductions of the other calculus.7.2. The CPS Language and the Inverse TranslationThe closure of the output of Ck under ��-reductions yields an extensionof the CPS language of De�nition 8.De�nition 12 (CPS grammar cps(�+ callcc+ A)) The extended CPSterms are generated by the following grammar:P ::= W j (K W ) (cps(�+ callcc+A) = Answers)W ::= x j (�k:K) (Values)K ::= k j (�x:P ) j (W K) (Continuations)x 2 Varsk 2 K-Vars = fk1; k2; : : :g and K-Vars \Vars = ;A comparison with De�nition 8 explains how the addition of callcc andA a�ects the set of reachable CPS terms and thus, how it a�ects the se-mantics. Intuitively, callcc permits the programmer to \label" arbitrarypoints in the program. Thus more than one continuation can potentiallybe lexically visible at any point during the execution of the program. Theextended CPS language accommodates this fact by providing an in�nite setof continuation variables instead of a singleton. The addition of A permitsthe programmer to ignore the current continuation by returning a value asthe answer of the entire program. This extension is re
ected in the CPSlanguage by extending the syntactic category of answers to include valuesdirectly. An equivalent way to understand the e�ect of A is that A ignoresthe current continuation and uses the initial continuation (�x:x) instead.We therefore may extend the syntactic category of continuations with an\initial continuation" (�x:x). Because, our CPS language is closed under��-reductions, the addition of the initial continuation results in programs ofthe shape P = ((�x:x) W ) �!W and thus extends the syntactic categoryof answers with values.The inverse CPS transformation mapping the extended CPS language to�+ callcc+A is the following.



30 SABRY AND FELLEISENDe�nition 13 Let P 2 cps(� + callcc+ A). Let W and K be values andcontinuations in the same language:C�1[[W ]] = (A ��1[[W ]])C�1[[(K W )]] = K�1[[K]][��1[[W ]]]��1[[x]] = x��1[[�k:K]] = �z:callcc �k:K�1[[K]][z]K�1[[k]] = (k [ ])K�1[[(W K)]] = K�1[[K]][(��1[[W ]] [ ])]K�1[[�x:P ]] = ((�x:C�1[[P ]]) [ ])The transformation di�ers from the function in De�nition 9 in several as-pects. First, the inverse of an answer W is a term that aborts with thevalue ��1[[W ]]. Second, a binding of a continuation k in the CPS languagecorresponds to a capture of the continuation k in the source language. Fi-nally, every continuation is explicitly invoked. The last two changes exploitan idea due to Danvy and Lawall [14].11The discovery of the call-by-value axioms that correspond to ��-reduc-tions on CPS terms proceeds in the same manner as for the pure language.The resulting axioms consist of the axioms X for the pure language andthe control speci�c axioms in Figure 4. The new axioms have the followingintuitive explanation. The �rst axiom shows that the current continua-tion is always implicitly applied. The axiom Celim is a garbage-collectionrule: continuations captured but not used can be collected. The axiomClift characterizes the capture of continuations via callcc while the axiomCabort shows that continuations abort their context upon invocation. Thelast callcc axiom implies that the continuation of an application is indistin-guishable from the continuation of the body.12 The operator A eliminatesevaluation contexts.The set of axioms Ccurrent ; Celim ; Clift; Cabort and Abort constitute thecontrol-speci�c axioms of the �v-C-calculus [18, 19]. The full theory ��vXC11Danvy and Lawall [14] perform a counting analysis to determine whether a contin-uation is used in a non-standard way and include a callcc only when necessary. Thisanalysis is unnecessary for our purposes. The outputs of our inverse transformation areprovably equal to their outputs (in our axiom system), thus achieving the same e�ectwithout the counting analysis.12: : : and a good implementation would use the same continuation: we can also interpretthis law as imposing tail-call optimization on faithful implementations.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 31(callcc �k:kM) = (callcc �k:M) (Ccurrent)(callcc �d:M) = M d 62 FV (M) (Celim)E[(callcc M)] = callcc �k:E[(M (�f:(k E[f ])))] (Clift)k; f 62 FV (E;M)callcc �k:C[E[(k M)]] = callcc �k:C[(k M)] k 2 FV (C[k]) (Cabort)(callcc �k:((�x:M) N)) = ((�x:(callcc �k:M)) N) k 62 FV (N) (Ctail)E[(A M)] = (A M) (Abort)Figure 4: The Axioms C: fCcurrent ; Celim ; Clift; Cabort ; Ctail ;Abortg.corresponds to the restriction of the theory IOCC [48] to the language�+ callcc+A.The relationship of Ck to the function C�1 is subject of two lemmas. The�rst lemma establishes that a CPS term P is ��-equal to (Ck � C�1)[[P ]]if it contains no free continuation variables, e.g., P � x. The lemmaproves a more general result that accounts for terms with free variables.The generalization is necessary for CPS terms like P � (k1 x) or P �(k1 (�d:k2)).Lemma 17 Let P 2 cps(�+ callcc+A) and K be a continuation, and Wbe a value in the same language. Also, let k1; : : : ; kn be the free continuationvariables in these terms, and k 62 fk1; : : : ; kng. Then,1. ��� ` (Ck � C�1)[[P ]][k1 := (�d:k1); : : : ; kn := (�d:kn)] = P:2. ��� ` (Kk � K�1)[[K]][k1 := (�d:k1); : : : ; kn := (�d:kn)] = K:3. ��� ` (� � ��1)[[W ]][k1 := (�d:k1); : : : ; kn := (�d:kn)] = W:Proof: See Appendix (Page 61).The second lemma relates the terms M and (C�1 � Ck)[[M ]] via the ax-ioms X for the pure language and the control-speci�c axioms C in Figure 4.Lemma 18 Let M 2 � + callcc + A, E be an evaluation context in thesame language, and k a variable that is not free in either. Then,� ��vXC ` (C�1 � Ck)[[M ]] = (k M)� ��vXC ` (K�1 � Kk)[[E]] = (k E)Proof: See Appendix (Page 62).



32 SABRY AND FELLEISEN7.3. Equational CorrespondenceWe establish that the calculus ��vXC proves all the equations that ��can prove on CPS terms. The key lemma is the following CompletenessLemma.Lemma 19 Let P 2 cps(�+ callcc+A), and let k1 : : :kn be the free con-tinuation variables in P . Then, ��� ` P = Q implies that:��vXC ` callcc �k1: : : :callcc �kn:C�1[[P ]] =callcc �k1: : : :callcc �kn:C�1[[Q]]:Proof: We consider each notion of reduction separately.1. The reduction is: ((�x:P )W ) �! P [x :=W ]. The proof of thiscase is in the Appendix (Page 64).2. The reduction is: (�k:Wk) �!W where k is not free inW . Wecan apply ��1 or C�1 to both sides of the equation since W canbe an answer or a value.� W is an answer. Then,C�1[[(�k:Wk)]] = (A �z:callcc �k:K�1[[k]][(��1[[W ]] z)])= (A �z:��1[[W ]] z)= (A ��1[[W ]])� W is a value. Then��1[[�k:Wk]]� �z:callcc �k:K�1[[k]][(��1[[W ]] z)]and a similar argument as in the preceding subcase applies.3. The reduction is: (�x:Kx) �! K where x is not free in K.Then K�1[[�x:Kx]] � ((�x:K�1[[K]][x]) [ ]) is equal to K�1[[K]]by �0
.4. The reduction is: ((�k:K1) K2) �! K1[k := K2]. The proof isin the Appendix (Page 65).The soundness of the new axioms is the subject of the following lemma.Lemma 20 Let M;N 2 � + callcc + A, then ��vXC ` M = N impliesthat ��� ` Ck [[M ]] = Ck[[N ]].The above lemmas imply that the calculi ��vXC and ��� satisfy anEquational Correspondence Theorem.Theorem 21 (Equational Correspondence) The theory ��vXC equa-tionally corresponds to the theory ��� for any cps and uncps functionssatisfying (y).



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 338. A Realistic LanguageTo be useful, a Correspondence Theorem should hold in the presence ofprogramming languages constructs such as conditionals, constants, and mu-table data objects. To address this issue, we consider a small, but typicalsubset of Scheme, Core Scheme, that we de�ne in the �rst subsection. Thesecond subsection introduces the CPS language for Core Scheme. Unlikein previous sections, the CPS language cannot be a subset of �, and as aresult, the CPS equational theory includes more axioms than just � and �.Finally, in the last subsection we discuss how the di�erent constructs a�ectthe Correspondence Theorems. The development in the section includesenough details so that it can be adapted to the reader's favorite language.8.1. Core Scheme: CSCore Scheme's basic constants include numerals and booleans; functionalconstants include operations to manipulate the basic constants, e.g., addi-tion, as well as operations to create, access, and update data-structures,e.g., lists, reference cells. The formal de�nition extends the grammar inSection 7.1:M ::= : : : j E[(if V M M)] j E[(O V )] j E[(O V V )]V ::= : : : j cE ::= : : : j (if E M M) j (O E) j (O E M) j (O V E)c ::= true j false j dneO ::= integer? j add1 j = j ref j deref j setref !n 2 NInformally, integer? recognizes integers, add1 denotes the increment func-tion, = is the integer division operator, ref creates a reference cell, derefreturns the contents of a reference cell, and setref! updates the contents ofits �rst argument (a reference cell) with the value of its second argument.The set of axioms F in Figure 5 speci�es the semantics of the new con-structs. For convenience, we write �f(x1; V1); : : : ; (xn; Vn)g:M as an abbre-viation for:(: : :((�x1: � � ��xn:(begin (setref ! x1 V1) : : : (setref! xn Vn) M))(ref 0)): : :(ref 0))



34 SABRY AND FELLEISENwhere (begin M1 : : : Mn) is itself an abbreviation for:(: : : ((�x1: � � ��xn:xn) M1) : : : Mn)(if true M N ) = M (If t)(if false M N ) = N (If f )(add1 dne) = dn+ 1e (Add )(= dne dme) = dn=me m 6= 0 (Div )(= dne d0e) = (A d5e) (Div e)(integer? dne) = true (Int t)(integer? V ) = false V 6= dne (Intf )(ref V ) = �f(x; V )g:x x 62 FV (V ) (ref )�� [ f(x; V )g:E[(deref x)] = �� [ f(x; V )g:E[V ] (deref )�� [ f(x; V1)g:E[(setref! x V2)] = �� [ f(x; V2)g:E[V2] (setref )��1:��2:M = ��1 [ �2:M (ref [)Figure 5: Additional Axioms F for CS .The �rst three sets of axioms are straightforward; the last set speci�esthe semantics of reference cells [9, 33].The combination of the equational theory ��vXC with the new axiomsF results in an inconsistent equational system due to �v. For example,using �v, we can show that for any two terms M and N :M = (if true M N) (If t)= (if (integer? d0e) M N) (Intt)= (if (integer? (�x:(d0e x))) M N) (�v)= (if false M N) (Intf )= N (If f )To avoid the consistency problem, we restrict the equational theory for thesource language by eliminating �v.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 358.2. The CPS Language: CSkGiven our extensions to the source language, the CPS language cannotbe a subset of � unless the CPS transformation encodes all new constructsin the source language using procedures. Since such an encoding is nota proper CPS transformation, the CPS language must include constructsthat correspond to the extensions of the source language.The set of CPS terms extends the language in De�nition 12 with thefollowing additional clauses:P ::= : : : j (if W P P ) j (Ok K W ) j (Ok K W W )W ::= : : : j cK ::= : : :c ::= true j false j dneOk ::= integer?k j add1k j =k j refk j derefk j setref!kThe semantics of the new constructs in the CPS language matches thesemantics of the corresponding constructs in the source language. The setof axioms Fk in Figure 6 speci�es this semantics precisely. For convenience,we also use �f(x1;W1); : : : ; (xn;Wn)g:P as an abbreviation for:(refk (�x1: � � � (refk (�xn:(setref!k (�d: � � � (setref!k (�d:P )xn Wn))x1 W1))0))0)where d is not free in any of the xi;Wi or P .The CPS language includes a constant Ok for every functional constantO in the source language. The main di�erence between Ok and O is thatthe former takes an additional continuation argument that receives the re-sult of the primitive application (if any). Thus, (Ok K W ) is essentiallyequivalent to (K (O W )). We do not use the latter term because, contraryto the spirit of CPS translation (cf. Theorem 1), its evaluation is sensi-tive to the parameter-passing technique. For example, the evaluation of((�d:d8e) (= d1e d0e)) yields an error (d5e) under call-by-value and yieldsd8e under call-by-name. Similarly, assuming that x is a reference cell whosecontents is d1e, the evaluation of the term:�f(x; d1e)g:((�d:(deref x)) (setref! x d2e))yields d2e under call-by-value and yields d1e under call-by-name.



36 SABRY AND FELLEISEN(if true P Q) = P (Ifk t)(if false P Q) = Q (Ifkf )(add1k K dne) = (K dn+ 1e) (Addk )(=k K dne dme) = (K dn=me) m 6= 0 (Divk )(=k K dne d0e) = d5e (Divk e)(integer?k K dne) = (K true) (Intk t)(integer?k K W ) = (K false) W 6= dne (Intf t)(refk K W ) = �f(x;W )g:(K x) (refk)x 62 FV (W )�� [ f(x;W )g:(derefk K x) = �� [ f(x;W )g:(K W ) (derefk)�� [ f(x;W1)g:(setref!k K x W2) = �� [ f(x;W2)g:(K W2) (setrefk)��1:��2:P = ��1 [ �2:P (refk[)Figure 6: Additional Axioms Fk for CSk.8.3. Equational CorrespondenceAfter setting the basic framework, we can de�ne two translations, a CPStransformation and an inverse, between the languages CS and CSk.The CPS transformation of the new constructs in CS is the following:Ck[[E[(if V M N)]]] = (if �[[V ]] Ck[[E[M ]]] Ck [[E[N ]]])Ck [[E[(O V )]]] = (Ok Kk[[E]] �[[V ]])Ck [[E[(O V1 V2)]]] = (Ok Kk[[E]] �[[V1]] �[[V2]])�[[c]] = cKk[[E[(if [ ] M N)]]] = (�u:Ck[[E[(if u M N)]]])Kk[[E[(O [ ])]]] = (�u:Ck[[E[(O u)]]])Kk[[E[(O [ ] M)]]] = (�u:Ck[[E[(O u M)]]])Kk[[E[(O V [ ])]]] = (�u:Ck[[E[(O V u)]]])The clause for conditionals duplicates the evaluation context E in bothbranches of the conditional expression. This duplication is due to two



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 37factors:131. First, the Fischer CPS transformation for conditionals duplicates thecontinuation variable k:F [[(if M N L)]] = �k:F [[M ]] (�u:(if u F [[N ]]k F [[L]]k)):2. Second, the transformation Ck eliminates all the administrative re-dexes from the output of the Fischer CPS transformation.The extensions to the CPS language result in simple extensions to theinverse CPS transformation:C�1[[(if W P1 P2)]] = (if ��1[[W ]] C�1[[P1]] C�1[[P2]])C�1[[(Ok K W )]] = K�1[[K]][(O ��1[[W ]])]C�1[[(Ok K W1 W2)]] = K�1[[K]][(O ��1[[W1]] ��1[[W2]])]��1[[c]] = cIn order to establish the correspondence between the source and CPS cal-culi, we need to prove results similar to Lemma 17, Lemma 18, Lemma 19,and Lemma 20. The previous results cannot be extended immediatelysince we must eliminate �v from the call-by-value equational theory. Fur-thermore, both the source and CPS equational theories include additionalaxioms for constants and conditionals (F and Fk respectively).By revisiting the proofs of the four lemmas, we establish the following:� The proof of Lemma 17 does not rely on �w.� The proof of Lemma 18 only uses a restricted version of �v on con-tinuations, A, and callcc:(callcc (�k:C[(�x:kx)])) = (callcc (�k:C[k])) (�v1)k 62 trap(C)(�x:callcc �k:xk) = callcc (�v2)(�x:Ax) = A (�v3)13Alternative translations that do not cause this exponential increase in the size of thecode are:Ck[[E[(if V M N)]]] = ((�k:(if �[[V ]] Ck[[M ]] Ck[[N ]])) Kk[[E]])or ((if �[[V ]] (�k:Ck[[M ]]) (�k:Ck[[N ]])) Kk[[E]]):The �rst translation is used by compilers [46] but also duplicates the entire evaluationcontext once we close the language under ��-reductions. The second translation relieson Allison's [1] CPS translation that keeps the local transfer of control independent ofthe continuation.



38 SABRY AND FELLEISENThe proof also requires the introduction of the following axiom forconditionals:E[(if M N L)] = (if M E[N ] E[L]) (If lift)The axiom is introduced by the compacting phase of the CPS trans-formation and is thus an administrative call-by-value reduction (cf.De�nition 7).� The proof of Lemma 19 shows that �v-reductions occur in the sourcelanguage only as a result of �w-reductions on CPS terms.� The proof of Lemma 20 shows that �w-reductions on CPS terms occuronly as a result of �v-reductions on source terms.As a consequence, the complete equational theory for Core Scheme �CSwith respect to its CPS language consists of all the previously derivedaxioms except �v; the corresponding CPS equational theory consists of theaxioms ��F excluding �w.9. Summary of the ResultsThe full equational theories for CS and CSk are in Figures 7 and 8. Thecorrespondences between the di�erent axiom systems for the sublanguagesin the previous sections are summarized in the following table.Language Call-by-Value Theory CPS Theory �v/�w Typed� X� ��k p p�+ callcc+A X�C0 ��k p pCS X�C0F+ ��kFkCST X�C0F+ ��kFk p



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 39The Axioms X�: ((�x:M ) V ) = M [x := V ] (�v)((�x:E[x]) M ) = E[M ] (�0
)E[((�x:M ) N )] = ((�x:E[M ]) N ) (�lift)The Axioms C 0: E[(callcc M )] = callcc �k:E[(M (�f:(k E[f ])))] (Clift)(callcc �k:((�x:M ) N )) = ((�x:(callcc �k:M )) N ) (Ctail)(callcc �k:kM ) = (callcc �k:M ) (Ccurrent)(callcc �d:M ) = M (Celim)callcc �k:C[E[(k M )]] = callcc �k:C[(k M )] (Cabort)E[(A M )] = (A M ) (Abort)(callcc (�k:C[(�x:kx)])) = (callcc (�k:C[k])) (�v1)(�x:callcc �k:xk) = callcc (�v2)(�x:Ax) = A (�v3)The Axioms F+: (if true M N ) = M (If t)(if false M N ) = N (If f )E[(if M N L)] = (if M E[N ] E[L]) (If lift)(add1 dne) = dn+ 1e (Add)(= dne dme) = dn=me m 6= 0 (Div)(= dne d0e) = d5e (Dive)(integer? dne) = true (Int t)(integer? V ) = false V 6= dne (Intf )(ref V ) = �f(x; V )g:x x 62 FV (V ) (ref )�� [ f(x; V )g:E[(deref x)] = �� [ f(x; V )g:E[V ] (deref )�� [ f(x; V1)g:E[(setref! x V2)] = �� [ f(x; V2)g:E[V2] (setref )��1:��2:M = ��1 [ �2:M (ref [)Figure 7: The Theory �CS .The left column gives the name of the source language. The languageCST is a simply typed variant of CS . The next two columns list the call-by-value axioms and the corresponding CPS axioms. The names of the axiomsrefer to the de�nitions in Figures 7 and 8. The column �v=�w includes acheck mark if it is possible to extend the theories with �v and �w, respec-tively. The rightmost column includes a check mark if the correspondenceholds for the simply typed variant of the language.For the simply typed languages, our calculi are also \semantically com-plete" with respect to denotational CPS models [35]. The result is a con-sequence of the completeness of the �-calculus with respect to the full typestructure [42].



40 SABRY AND FELLEISENThe Axioms ��k: ((�x:P ) W ) = P [x :=W ] (�w)((�k:K1) K2) = K1[k := K2] (�k)(�x:Kx) = K (�k)The Axioms Fk: (if true P Q) = P (Ifk t)(if false P Q) = Q (Ifk f )(add1k K dne) = (K dn+ 1e) n 2 N (Addk)(=k K dne dme) = (K dn=me)m 6= 0 (Divk)(=k K dne d0e) = d5e (Divk e)(integer?k K dne) = (K true) (Intk t)(integer?k K W ) = (K false) W 6= dne (Intk f )(refk K W ) = �f(x;W )g:(K x) (refk)x 62 FV (W )�� [ f(x;W )g:(derefk K x) = �� [ f(x;W )g:(K W ) (derefk)�� [ f(x;W1)g:(setref!k K x W2)] = �� [ f(x;W2)g:(K W2) (setrefk)��1:��2:P = ��1 [ �2:P (refk[)Figure 8: The Theory �CSk.10. Example: Coroutines from ContinuationsThe equational theory of Core Scheme �CS provides a basis for the se-mantic manipulation of programs by programmers and programming toolsalike. For example, programmers may use the theory to evaluate programsin a symbolic manner, to prove the equivalence of two programs, or to sim-plify a program by a series of meaning-preserving transformations. The�rst subsection includes an intuitive explanation of a program that imple-ments coroutines using �rst-class continuations and the second subsectionincludes a simpli�cation phase based on the CS axioms.10.1. The Original ProgramFor convenience, we use a superset of Core Scheme that includes assign-ments to variables via set!, and various other syntactic extensions [40]:error df= A(let ([x M ]) N) df= ((�x:N)M)(begin M N) df= ((�d:N)M) where d 62 FV (N)



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 41(�x:MN) df= (�x:(begin M N))(letrec ([x (�y:M)]) N) df= (let ([x 'any])(begin (set! x (�y:M)) N))The original de�nition of coroutines using �rst-class continuations is thefollowing [27]:(de�ne make-coroutine(lambda (f )(callcc (lambda (maker)(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(f resume (resume maker (lambda (v) (LCS v))))(error "fell o� end")))))))Intuitively, the procedure make-coroutine accepts an argument that con-tains the programmer's coroutine code. For example, the pseudocode inFigure 9 implements one player in a hypothetical game.(de�ne Player-1-Code(let ([Board (make-board)])(lambda (resume his-�rst-shot)(letrec ([loop (lambda (his-shot)(if (his-shot-is-fatal? )(I-lost-the-game)(loop (resume Player-2 (compute-my-shot)))))])(loop his-�rst-shot)))))(de�ne Player-1 (make-coroutine Player-1-Code))Figure 9: Pseudo Coroutine Code.The procedure resume handles the transfer of control from one coroutineto the other. As the de�nition of make-coroutine shows, resume takes twoarguments: a destination that denotes the coroutine to be resumed and avalue to be passed to the resumed coroutine. Before actually resuming thedestination, resume saves the current continuation in the local control stateLCS of the active coroutine, which makes it possible to resume the currentcoroutine later in the execution.



42 SABRY AND FELLEISEN10.2. Simplifying the ProgramThe transformation of the program proceeds by applying one of the ax-ioms of the �CS-calculus at each step. For clarity, the redex is surroundedby a box. During the transformation, set! is treated as a free variable.Alternatively, we could use the axioms of the �v-S-calculus [17], but forthis example, they are super
uous.(de�ne make-coroutine(lambda (f )(callcc (lambda (maker)(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(f resume (resume maker(lambda (v) (LCS v))))(error "fell o� end"))))) ))by two uses of (Ctail)= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc(lambda (maker)(f resume (resume maker(lambda (v) (LCS v))))(error "fell o� end")))) )))by three uses of (�v)



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 43= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc(lambda (maker)(f resume(callcc (lambda (k)(set! LCS k)(maker (lambda (v) (LCS v))))))(error "fell o� end") ))))))by (Clift)= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc(lambda (maker)(callcc(lambda (kk)(f resume ((lambda (k)(set! LCS k)(maker (lambda (v) (LCS v))))(lambda (x)(kk (begin (f resume x)(error "fell o� end"))) )))(error "fell o� end")))))))))by (�lift) applied to the expansion of begin



44 SABRY AND FELLEISEN= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc(lambda (maker)(callcc(lambda (kk)(f resume ((lambda (k)(set! LCS k)(maker (lambda (v) (LCS v))))(lambda (x)(begin (f resume x)(kk (error "fell o� end")) ))))(error "fell o� end"))))))))) by (Abort)= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc(lambda (maker)(callcc(lambda (kk)(f resume((lambda (k)(set! LCS k)(maker (lambda (v) (LCS v))))(lambda (x)(begin (f resume x)(error "fell o� end")))))(error "fell o� end"))) ))))))by (Celim)



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 45= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc (lambda (maker)(f resume((lambda (k)(set! LCS k)(maker (lambda (v) (LCS v))))(lambda (x)(begin (f resume x)(error "fell o� end")))) )))))))by (�v)= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc(lambda (maker)(f resume(begin(set! LCS(lambda (x)(begin (f resume x)(error "fell o� end"))))(maker (lambda (v) (LCS v)))) ))))))) by (�lift)



46 SABRY AND FELLEISEN= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc(lambda (maker)(f resume(maker(begin(set! LCS(lambda (x)(begin (f resume x)(error "fell o� end"))))(lambda (v) (LCS v))))) ))))))by (Cabort)= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(callcc(lambda (maker)(maker(begin (set! LCS(lambda (x)(begin (f resume x)(error "fell o� end"))))(lambda (v) (LCS v)))))) ))))by (Ccurrent ) and (Celim)



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 47= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(let ([resume (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))])(begin (set! LCS (lambda (x)(begin (f resume x)(error "fell o� end"))))(lambda (v) (LCS v)))) )))by (�v)= (de�ne make-coroutine(lambda (f )(let ([LCS 'any])(begin (set! LCS (lambda (x)(begin (f (lambda (dest val)(callcc(lambda (k)(set! LCS k)(dest val))))x)(error "fell o� end"))))(lambda (v) (LCS v))))))by the letrec macro de�nition= (de�ne make-coroutine(lambda (f )(letrec ([LCS (lambda (x)(begin (f (lambda (dest val)(callcc (lambda (k)(set! LCS k)(dest val))))x)(error "fell o� end")))])(lambda (v) (LCS v)))))



48 SABRY AND FELLEISEN11. Conclusion and Future ResearchThe Equational Correspondence Theorems establish that equational rea-soning about call-by-value programs can be as powerful as reasoning abouttheir CPS counterparts.Consequently, any CPS-based programming tool that performs sequencesof ��-reductions can be substituted by an equivalent tool that does notrequire an explicit conversion to CPS. The applications to compilers, partialevaluators, and other transformation systems are numerous. For example,direct compilers like Chez Scheme [28] or Zinc [32] can bene�t by includingthe reductions CS in their basic repertoire of optimizations. Similarly,partial evaluators that use transformations like �lift and �0
 produce residualprograms of better quality [7]. Finally, the set of axioms CS could be thebase of an expression simpli�er (for compilers and other tools) extendingthat of Galbiati and Talcott [25].Our result questions the practice of transforming programs to CPS inorder to simplify and improve code generators, partial evaluators, data
ow analyzers, and other tools. In fact, we have established that the codegenerators of typical CPS compilers perform an implicit inverse CPS trans-formation, and that the true intermediate representation of a typical CPScompiler is the subset of source terms in �lift�
at -normal form [22]. Fur-thermore, although the literature contains claims that the CPS frameworkimproves the accuracy of data 
ow analyzers [38], we conjecture that theobserved improvements are orthogonal to the \passing of continuations"but are rather side-e�ects of the axioms CS . We are currently investigatingthe relationship between the CPS transformation and the precision of data
ow analysis.AcknowledgmentsWe thank Carolyn Talcott for her outstanding e�orts on behalf of thispaper, which go far beyond the ordinary duties of an editor. The Schemecode was typeset using Dorai Sitaram's SLaTEX. The referees's commentsimproved the presentation of the results.A. ProofsProof of the auxiliary claims in Proposition 3 (Page 17). Let M 2 �:� ��� ` (F [[M ]] k) = Ck[[M ]].� Ck [[M ]] is in ��-normal form.



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 49Proof: The proof is by induction on the size of the argument toCk. Since the transformation of a term by Ck refers to evaluation con-texts, we extend the Fischer CPS transformation to accept evaluationcontexts and strengthen the inductive hypothesis to take evaluationcontexts into account.The extension of the Fischer CPS transformation is the following:F : EvCont ! �F [[[ ]]] = �k:kF [[(V E)]] = �k:(F [[V ]] �m:(F [[E]] �n:((m k) n)))F [[(E M )]] = �k:(F [[E]] �m:(F [[M ]] �n:((m k) n)))The extended function satis�es the following property which we statewithout proof:� �� ` (F [[E[M ]]] K) = (F [[M ]] (F [[E]] K))� �� ` (F [[E[E0]]] K) = (F [[E0]] (F [[E]] K)).We can now prove the following statements by induction on the sizeof G, where G is the argument to Ck or Kk:� ��� ` (F [[M ]] k) = Ck[[M ]] and ��� ` (F [[E]] k) = Kk[[E]];� Ck[[M ]] and Kk[[E]] are in ��-normal form.The proof proceeds by case analysis on the possible inputs to thefunctions Ck or Kk:1. G = V : then, ��� ` (F [[G]] k) = ((�k:kFv[[V ]]) k) = (k Fv[[V ]]).By cases:(a) V = x: then (k Fv[[V ]]) � (k x) � Ck[[x]]. Moreover, Ck[[x]]is in ��-normal form.(b) V = �x:M : then (k Fv[[V ]]) � (k �c:�x:F [[M ]]c). By theinductive hypothesis ��� ` (F [[M ]] c) = Cc[[M ]], and Cc[[M ]]is in ��-normal form. The result follows since Ck[[V ]] �(k �c:�x:Ck[[M ]]).2. G = E[(x V )]: then,��� ` (F [[G]] k) = (F [[(x V )]] (F [[E]] k)) = ((x F [[E]]k) Fv[[V ]]):There are two cases:(a) V 62 Vars: then jEj < jGj. By the inductive hypothesis,��� ` F [[E]]k = Kk[[E]], and Kk[[E]] is in ��-normal form.By an argument similar to case 1, ��� ` Fv[[V ]] = �[[V ]],and �[[V ]] is in ��-normal form. The result follows sinceCk[[G]]� ((x Kk[[E]]) �[[V ]]).



50 SABRY AND FELLEISEN(b) V 2 Vars: then jEj = jGj and the inductive hypothesisdoes not apply. By inlining the arguments in cases 4 to 7,��� ` (F [[E]] k) = Kk[[E]], andKk[[E]] is in ��-normal form.The result follows as in subcase (a).3. G = E[((�x:M ) V )]: then,��� ` F [[G]]k = (F [[((�x:M ) V )]] (F [[E]]k))= ((�x:F [[E[M ]]]k) Fv[[V ]]):The result follows by the inductive hypothesis and an argumentsimilar to case 1.4. G = [ ]: then ��� ` (F [[G]] k) = ((�k:k) k) = k = Kk[[G]].Moreover Kk[[G]] is in ��-normal form.5. G = E[(x [ ])]: then,��� ` (F [[G]] k) = (F [[(x [ ])]] (F [[E]]k)) = (x F [[E]]k):The result follows by the inductive hypothesis.6. G = E[((�x:M ) [ ])]: then ��� ` (F [[G]] k) = (�x:F [[E[M ]]]k),and the result follows by the inductive hypothesis.7. G = E[([ ] M )]: then,��� ` (F [[G]] k) = (F [[([ ] M )]] (F [[E]]k))= (�u:F [[M ]] (u (F [[E]]k)))= (�u:(F [[E[(u M )]]] k)):The size of E[(u M )] is smaller than the size of E[([ ] M )] by 1.The inductive hypothesis implies ��� ` (F [[E[(u M )]]] k) =Ck[[E[(u M )]]], and Ck[[E[(u M )]]] is in ��-normal form. There-fore, ��� ` (F [[G]] k) = Kk[[G]]. By a simple case analysis,Ck[[E[(u M )]]] is never of the form (K u) for some term K.Therefore, no new �-redex is created in �u:Ck[[E[(u M )]]] andthe term is in ��-normal form.Proof of the second claim in Lemma 4 (Page 17). Let M;L 2 �, E 2EvCont, and z 2 Vars:Ck[[((z M) L)]] � Ck[[((�u:uL) (z M))]] where u 62 FV (L)Kk[[((z E) L)]] � Kk[[((�u:uL) (z E))]] where u 62 FV (L)Proof: The proof is by induction on the size of M and E andproceeds by cases:



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 511. M = V , then Ck[[((z V ) L)]] is identical to:((z Kk[[([ ] L)]]) �[[V ]]) � ((z �u:Ck[[(u L)]]) �[[V ]]):The right hand side Ck[[((�u:uL) (z V ))]] is:((z Kk[[((�u:uL) [ ])]]) �[[V ]]) � ((z (�u:Ck[[(uL)]])) �[[V ]]):The two sides of the equation di�er by the overline above theabstraction �u. The terms are identical because the abstraction�u cannot be part of an administrative � redex in the �rst term.2. M = E[(y V )], then Ck[[((z E[(y V )]) L)]]� ((y Kk[[((z E) L)]]) �[[V ]])� ((y Kk[[((�u:uL) (z E))]]) �[[V ]]) (induction)3. M = E[((�x:N ) V )], then Ck[[((z E[((�x:N ) V )]) L)]]� ((�x:Ck[[((z E[N ]) L)]]) �[[V ]])� ((�x:Ck[[((�u:uL) (z E[N ]))]]) �[[V ]]) (induction)4. E = [ ], then Kk[[((z [ ]) L)]] � (z Kk[[([ ] L)]]) � (z �u:Ck[[(uL)]]).The right hand side is (z �u:Ck[[(uL)]]). The result follows be-cause the overline does not create an administrative redex.5. E = E1[(x [ ])], then Kk[[((z E1[(x [ ])]) L)]]� (x Kk[[((z E1) L)]])� (x Kk[[((�u:uL) (z E1))]]) (induction)6. E = E1[((�x:N ) [ ])], then Kk[[((z E1[((�x:N ) [ ])]) L)]]� (�x:Ck[[((z E1[N ]) L)]])� (�x:Ck[[((�u:uL) (z E1[N ]))]]) (induction)7. E = E1[([ ] N )], then Kk[[((z E1[([ ] N )]) L)]]� �f:Ck[[((z E1[(f N )]) L)]]� �f:Ck[[((�u:uL) (z E1[(f N )]))]] (induction)Proof of the auxiliary claim in Theorem 5 (Page 19).� For all P 2 cps(�), there existsM 2 � such that ��� ` Ck[[M ]]�!�!P .� For all K 2 cps(EvCont), there exists E 2 EvCont such that ��� `Kk[[E]]�!�!K.



52 SABRY AND FELLEISENProof: The proof is by lexicographic induction on h ~G; jGji whereG is an element P of cps(�) or an element K of cps(EvCont), ~G isthe number of abstractions of the form �k:K in G, and jGj is the sizeof G. The proof proceeds by case analysis on the possible elements ofcps(�) and cps(EvCont ):1. G = (k W ): there are four cases:(a) W = x: take M = x.(b) W = �k:k: take M = �x:x.(c) W = �k:W1K: let P1 = ((W1K) x), then ~P1 < ~G be-cause P1 has one less abstraction of the form �k:K than G.Therefore, by the inductive hypothesis, there exists an M1such that ��� ` Ck[[M1]]�!�!P1. Take M = �x:M1.(d) W = �k:�x:P1: by the inductive hypothesis, P1 is reachablefrom a term M1. Take M = �x:M1.2. G = ((x K) W ): by the inductive hypothesis, K is reachablefrom an evaluation context E. By an argument similar to the�rst case, W is reachable from a value V . Take M = E[(x V )].3. G = (((�k:K1) K2) W ): by the inductive hypothesis, K2 isreachable from an evaluation context E2. By repeating the ar-gument for the �rst case, the values �k:K1 and W are reach-able from V1 and V respectively. Let M be the following term((�x:((�y:E2[(y x)]) V1)) V ). Then Ck[[M ]]� ((�x:((�y:((y Kk[[E2]]) x)) �[[V1]])) �[[V ]])�!�! ((�x:((�y:((y K2) x)) �k:K1)) W ) (induction)�! ((�x:(((�k:K1) K2) x)) W ) (�)�! (((�k:K1) K2) W ) (�)4. G = ((�x:P1) W ): by the inductive hypothesis, there existsan M1 that reaches P1. By repeating the argument for the�rst case, there also exists a value V that reaches W . TakeM = ((�x:M1) V ).5. G = k: take E = [ ].6. G = (x K1): by the inductive hypothesis, there exists an E1that reaches K1. Take E = E1[(x [ ])].7. G = ((�k:K1) K2): similarly to case 3, take E to be the evalu-ation context ((�x:((�y:E2[(y x)]) V1)) [ ]).8. G = (�x:P1): take E = ((�x:M1) [ ]) where M1 reaches P1 byinduction.Proof of Lemma 6 (Page 19). Let P1 2 cps(�), W1 2 cps(Values) andK1 2 cps(EvCont), then,



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 531. ��� ` P1 �! P2 implies P2 2 cps(�).2. ��� `W1 �!W2 implies W2 2 cps(Values).3. ��� ` K1 �! K2 implies K2 2 cps(EvCont).Proof: The proof is by induction on the structure of the terms P1,W1 and K1.1. Let P1 2 cps(�) and assume ��� ` P1 �! P2. By de�nition,P1 must be of the form (K1 W1) with K1 2 cps(EvCont) andW1 2 cps(Values). Three kinds of reductions are possible:� ��� ` (K1 W1) �! (K2 W1) because K1 �! K2. Bythe inductive hypothesis, K2 2 cps(EvCont) and thereforeP2 2 cps(�).� ��� ` (K1 W1) �! (K1 W2) because W1 �! W2. Theresult follows by the inductive hypothesis.� ��� ` ((�x:P ) W1) �! P [x := W1] because K1 = (�x:P ).By a simple inductive argument, the substitution preservesthe syntactic category.2. Let W1 2 cps(Values) and assume ��� ` W1 �! W2. Theterm W1 cannot be a variable, thus W1 = �k:K1 where K1 2cps(EvCont). Either:� ��� ` �k:K1 �! �k:K2 because K1 �! K2. The resultfollows by the inductive hypothesis.� ��� ` �k:W3k �! W3 because K1 = (W3 k) and W3 2cps(Values) by de�nition.3. Let K1 2 cps(EvCont ) and assume ��� ` K1 �! K2. Theterm K1 cannot be a variable, thus there are two cases:� K1 = �x:P1 and there are two subcases:{ ��� ` (�x:P1) �! (�x:P2) because P1 �! P2. Theresult follows by the inductive hypothesis.{ ��� ` (�x:Kx) �! K because P1 = Kx and K 2cps(EvCont ) by de�nition.� K1 = (W K) and there are three cases:{ ��� ` (W K) �! (W1 K) because W �!W1 and theresult follows by the inductive hypothesis.{ ��� ` (W K) �! (W K3) because K �! K3 and theresult follows also by induction.{ ��� ` ((�k:K3) K) �! K3[k := K] because W =�k:K3. By an inductive argument, the substitutionpreserves the syntactic category.



54 SABRY AND FELLEISENProof of Theorem 8 (Page 21). Let P 2 cps(�), K 2 cps(EvCont).Then,1. ��� ` (Ck � C�1)[[P ]] = P and ��� ` (Kk � K�1)[[K]] = K;2. (Ck �C�1)[[P ]] � P and (Kk �K�1)[[K]] � K if there exists M 2 � andE 2 EvCont such that P = Ck[[M ]] and K = Kk[[E]].Proof: The proof of the �rst claim is by lexicographic induction onthe number of abstractions of the form �k:K and the size of the Gwhere G is an element of cps(�) or cps(Evcont ):1. G = (k W ), then there are four cases:(a) W = x: Then (Ck � C�1)[[G]] � (k x) � G.(b) W = �k:k: Then (Ck �C�1)[[G]] � (k �k:�x:kx) = (k �k:k).(c) W = �k:W1K: Then,(Ck � C�1)[[G]] � (k �k:�x:(Ck � C�1)[[((W1 K) x)]])= (k �k:�x:((W1 K) x))(induction)= (k �k:(W1 K)):(d) W = �k:�x:P1: Then,(Ck � C�1)[[G]]� (k �k:�x:(Ck � C�1)[[P1]]);and the result follows by the inductive hypothesis.2. G = ((x K) W ): Then,(Ck � C�1)[[G]] � ((x (Kk � K�1)[[K]]) (� ���1)[[W ]]):By the inductive hypothesis ��� ` (Kk �K�1)[[K]] = K, and byan argument similar to case 1, ��� ` (� ���1)[[W ]] =W .3. G = (((�k:K1) K2) W ): Then,(Ck � C�1)[[G]] � ((Kk � K�1)[[K1[k := K2]]] (� ���1)[[W ]])= (K1[k := K2] (� ���1)[[W ]])(induction)= (K1[k := K2] W ) (similar to case 1)= (((�k:K1) K2) W ) (�)4. G = ((�x:P1) W ): Then,(Ck � C�1)[[G]] � ((�x:(Ck � C�1)[[P1]]) (� ���1)[[W ]])= ((�x:P1) (� ���1)[[W ]]) (induction)= ((�x:P1) W ) (similar to case 1)



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 555. G = k: Then (Kk � K�1)[[G]]� G.6. G = (x K1): Then (Kk � K�1)[[G]] � (x (Kk � K�1)[[K1]]) andthe result follows by the inductive hypothesis.7. G = ((�k:K1) K2): Then,(Kk � K�1)[[G]] � (Kk � K�1)[[K1[k := K2]]];and this case is similar to case 3.8. G = (�x:P1): Then (Kk � K�1)[[G]] � (�x:(Ck � C�1)[[P1]]) andthe result follows by induction.The proof of the second part is identical to the above but it excludesthe cases that do not correspond to images of source terms. In par-ticular, it excludes cases 1b and 1c because, in the image of a sourceterm, the body of a �k:K abstraction must be of the form �x:P . More-over, it excludes cases 3 and 7 because they contain the administrativeredex ((�k:K1) K2) and hence are not the image of any source term.Proof of Lemma 9 (Page 22). Let P 2 cps(�) and K 2 cps(EvCont),then, C�1[[P ]] 2 �a and K�1[[K]] 2 EvConta.Proof: The proof is by lexicographic induction on the number ofabstractions of the form �k:K and the size of the terms. It proceedsby case analysis on the possible inputs to C�1 and K�1:1. P = (K W ), then C�1[[P ]] � K�1[[K]][��1[[W ]]]. By induction,K�1[[K]] 2 EvConta. It remains to establish that ��1[[W ]] 2Valuesa.(a) W = x, then ��1[[W ]] � x 2 Valuesa.(b) W = �k:k, then ��1[[W ]]� �x:x 2 Valuesa.(c) W = �k:WK, then ��1[[W ]] � �x:C�1[[((WK) x)]]. Be-cause the term ((WK) x) has one less abstraction of theform �k:K than W , the inductive hypothesis applies to it.Therefore C�1[[((WK) x)]] 2 �a which shows that the term��1[[W ]] 2 Valuesa.(d) W = �k:�x:P , then ��1[[W ]] � �x:C�1[[P ]], and the resultfollows by induction.2. K = k, then K�1[[K]] � [ ] 2 EvConta.3. K = (x K1), then K�1[[K]] � K�1[[K1]][(x [ ])]. The result isimmediate because K�1[[K1]] 2 EvConta by induction.4. K = ((�k:K1) K2), then K�1[[K]] � K�1[[K1[k := K2]]]. Be-cause k occurs exactly once in K1, then term K1[k := K2] hasone less abstraction of the �k:K than ((�k:K1) K2). Therefore,K�1[[K]] 2 EvConta by the inductive hypothesis.



56 SABRY AND FELLEISEN5. K = �x:P , then K�1[[K]] � ((�x:C�1[[P ]]) [ ]) and the resultfollows by induction.Proof of Theorem 10 (Page 22). Let M 2 �, then:1. ��lift�
at `M �!�! (C�1 � Ck)[[M ]],2. (C�1�Ck)[[M ]] �M if there exists P 2 cps(�) such thatM = C�1[[P ]].Proof: In order to prove the �rst claim, we strengthen the statementas follows.��lift�
at ` M �!�! (C�1 � Ck)[[M ]] and��lift�
at ` E[(x L)]�!�! (K�1 � Kk)[[E]][(x L)]The proof is by induction on the size of M or E and proceeds bycases:1. M = V : then there are two subcases:(a) V = x: then (C�1 � Ck)[[x]]� x.(b) V = �x:N : then,�x:N �!�! �x:(C�1 � Ck)[[N ]] (induction)� (C�1 � Ck)[[�x:N ]]2. M = E[(x V )]: then,(C�1 � Ck)[[M ]] � (K�1 � Kk)[[E]][(x (��1 ��)[[V ]])]:There are two cases:(a) V 62 V ars, then jEj < jE[(x V )]j and the inductive hypoth-esis applies, i.e., E[(x V )] �!�! (K�1 � Kk)[[E]][(x V )]. Theresult follows because V �!�! (��1 ��)[[V ]] as in case 1.(b) V = y 2 V ars, then there are four cases depending on thestructure of E:i. M = (x y), then (C�1 � Ck)[[M ]]�M .ii. M = E1[(z (x y))], then the result follows by induction.iii. M = E1[((�z:L) (x y))], then,M �! ((�z:E1[L]) (x y)) (�lift)�!�! ((�z:(C�1 � Ck)[[E1[L]]]) (x y))� (C�1 � Ck)[[M ]]:



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 57iv. M = E1[((x y) L)], thenM �! E1[((�u:(u L)) (x y))] (�
at)�! ((�u:E1[(u L)]) (x y)) (�lift)�!�! ((�u:(C�1 � Ck)[[E1[(u L)]]]) (x y))� (C�1 � Ck)[[M ]]:3. M = E1[((�x:N ) V )]: then(C�1 � Ck)[[M ]]� ((�x:(C�1 � Ck)[[E1[N ]]]) (��1 ��)[[V ]]):The left hand side M :�! ((�x:E1[N ]) V ) (�lift)�!�! ((�x:(C�1 � Ck)[[E1[N ]]]) V )�!�! ((�x:(C�1 � Ck)[[E1[N ]]]) (��1 ��)[[V ]]):4. E = [ ]: then (K�1 � Kk)[[[ ]]][(x L)] � (x L).5. E = E1[(z [ ])]: then we want to show that E1[(z (x L))] �!�!(K�1 � Kk)[[E1[(z [ ])]]][(x L)] � (K�1 � Kk)[[E1]][(z (x L))]. Theresult is immediate since the inductive hypothesis applies to E1.6. E = E1[((�z:N ) [ ])]: then, E1[((�z:N ) (x L))]�!�! ((�z:E1[N ]) (x L)) (�lift )�!�! ((�z:(C�1 � Ck)[[E1[N ]]]) (x L)) (induction)�!�! (K�1 � Kk)[[E1[((�z:N ) [ ])]]][(x L)]:7. E = E1[([ ] N )]: then, E1[((x L) N )]�!�! E1[((�u:uN ) (x L))] (�
at)�!�! ((�u:E1[(u N )]) (x L)) (�lift)�!�! ((�u:(C�1 � Ck)[[E1[(u N )]]]) (x L)) (induction)�!�! (K�1 � Kk)[[E1[([ ] N )]]][(x L)]:The proof of the second claim proceeds as above but is restricted toterms of the form C�1[[P ]] for some P 2 cps(�). By the grammar inDe�nition 10, the context E1 in cases 2b(iii), 3, and 6 must be empty.Also cases 2b(iv) and 7 are impossible. Since these cases account forall the reductions, it follows that M is identical to (C�1 � Ck)[[M ]].Proof of case 4 in Lemma 12 (Page 24). Let P 2 cps(�), and W 2cps(Values), then:��v�lift�id�
 ` C�1[[((�x:P ) W )]]�!�!C�1[[P [x := W ]]]:



58 SABRY AND FELLEISENProof: ��v�lift�id�
 ` C�1[[((�x:P ) W )]]� ((�x:C�1[[P ]]) ��1[[W ]])�! C�1[[P ]][x := ��1[[W ]]]�!�! C�1[[P [x :=W ]]]The �rst three steps are straightforward; the last step requires anappropriate proof. We prove the following claims:1. ��v�lift�id�
 ` C�1[[P ]][x := ��1[[W ]]]�!�!C�1[[P [x := W ]]].2. ��v�lift�id�
 ` K�1[[K]][x := ��1[[W ]]]�!�!K�1[[K[x :=W ]]].The proof relies on an auxiliary claim that we state and prove afterthe main proof. The main proof is by lexicographic induction onh ~G; jGji, i.e., the number of abstractions of the form �k:K and thesize of the terms. The proof proceeds by cases on the arguments toC�1 and K�1:1. P = (K W1): then C�1[[P ]][x := ��1[[W ]]]� K�1[[K]][��1[[W1]]] [x := ��1[[W ]]]�!�! K�1[[K[x :=W ]]][��1[[W1]][x := ��1[[W ]]]]:It remains to establish that substitution commutes with ��1 aswell. There are �ve cases:(a) W1 = x: then ��1[[x]][x := ��1[[W ]]]� ��1[[x[x := W ]]].(b) W1 = z and z 6= x: the result is immediate.(c) W1 = �k:k: immediate since x is not free.(d) W1 = �k:W2k: then ��1[[W1]][x := ��1[[W ]]]� �z:C�1[[((W2K) z)]][x := ��1[[W ]]]�!�! �z:C�1[[(W2K)[x :=W ] z]]� ��1[[(�k:W2K)[x :=W ]]]:(e) W1 = �k:�z:P1 (z 6= x): then ��1[[W1]][x := ��1[[W ]]]� (�z:C�1[[P ]])[x := ��1[[W ]]]� (�z:C�1[[P ]][x := ��1[[W ]]])�!�! �z:C�1[[P [x :=W ]]] (induction)� ��1[[(�k:�z:P )[x := W ]]]2. K = k: then the claim is vacuously true because k 6= x.3. K = ((�k:K1) K2): then K�1[[((�k:K1) K2)]][x := ��1[[W ]]]� K�1[[K1[k := K2]]][x := ��1[[W ]]]�!�! K�1[[K1[k := K2][x :=W ]]]� K�1[[((�k:K1[x := W ]) K2[x :=W ])]]:



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 594. K = �z:P1 (z 6= x): then K�1[[�z:P1]][x := ��1[[W ]]]� ((�z:C�1[[P ]][x := ��1[[W ]]]) [ ])�!�! ((�z:C�1[[P [x :=W ]]]) [ ])� K�1[[�z:P [x :=W ]]]:5. K = �x:P1: immediate since x is not free.6. K = (z K1) and z 6= x: this is a special case of the next clause.7. K = (x K1): then K�1[[(x K1)]][x := ��1[[W ]]]� K�1[[K1]][(x [ ])][x := ��1[[W ]]]� K�1[[K1]][x := ��1[[W ]]][(��1[[W ]] [ ])]�!�! K�1[[K1[x :=W ]]] [(��1[[W ]] [ ])]:For readability, let K 0 = K1[x :=W ]. The goal is to prove that:K�1[[K 0]][(��1[[W ]] [ ])] reduces to K�1[[(W K 0)]]:We proceed by cases of W :(a) W = y: then K�1[[K 0]][(y [ ])] � K�1[[(y K 0)]].(b) W = �k:k: then,K�1[[K 0]][((�x:x) [ ])] �! K�1[[K 0]] (�id )� K�1[[((�k:k) K 0)]](c) W = �k:W3K: then, K�1[[K 0]][((�y:C�1[[((W3K) y)]]) [ ])]� K�1[[K 0]][K�1[[(�y:((W3K) y))]]]�!�! K�1[[K 0]][K�1[[(W3K)]]] (case 1 (Lem. 12))�!�! K�1[[(W3K)[k := K 0]]] (aux. claim)� K�1[[((�k:W3K) K 0)]]:(d) W = �k:�z:P2: then K�1[[K 0]][((�z:C�1[[P2]]) [ ])]�! ((�z:K�1[[K 0]][C�1[[P2]]]) [ ]) (�lift)�!�! ((�z:C�1[[P2[k := K 0]]]) [ ]) (aux. claim)� K�1[[�z:P2[k := K 0]]]� K�1[[((�k:�z:P2) K 0)]]:Auxiliary Claim:Let P 2 cps(�), and let K;K1;K2 2 cps(EvCont), then,1. ��lift ` K�1[[K]][C�1[[P ]]]�!�!C�1[[P [k := K]]]2. ��lift ` K�1[[K2]][K�1[[K1]]]�!�!K�1[[K1[k := K2]]]



60 SABRY AND FELLEISENThe proof of the auxiliary claim is by induction on the number ofabstractions of the �k:K and the size of P or K1. It proceeds by caseanalysis on the possible elements of cps(�) and cps(EvCont):1. P = (K3 W ), then K�1[[K]][C�1[[P ]]]� K�1[[K]][K�1[[K3]][��1[[W ]]]]�!�! K�1[[K3[k := K]]][��1[[W ]]]� K�1[[(K3 W )[k := K]]]:The last equivalence holds because k is never free in W .2. K1 = k: then both sides are identical to K�1[[K2]].3. K1 = (x K3), then K�1[[K2]][K�1[[K3]][(x [ ])]]�!�! K�1[[K3[k := K2]]][(x [ ])]� K�1[[(x K3[k := K2])]]:4. K1 = ((�k:K3) K4), then K�1[[K2]][K�1[[K3[k := K4]]]]�!�! K�1[[K3[k := K4][k := K2]]]� K�1[[K3[k := K4[k := K2]]]]� K�1[[((�k:K3) K4)[k := K2]]]:5. K1 = �x:P : then, K�1[[K2]][((�x:C�1[[P ]]) [ ])]�! ((�x:K�1[[K2]][C�1[[P ]]]) [ ])(�lift)�!�! ((�x:C�1[[P [k := K2]]]) [ ])� K�1[[(�x:P )[k := K2]]]:Proof of case 1 in Lemma 14 (Page 25). Let M 2 �, and V 2 Values:�� ` Ck[[((�x:M) V )]]�!�!Ck [[M [x := V ]]]:Proof: The main proof uses the following result that we state with-out proof. �� ` Ck[[M ]][k := Kk[[E]]] �!�! Ck[[E[M ]]]�� ` Kk[[E1]][k := Kk[[E]]] �!�! Kk[[E[E1]]]For the main proof, we have by de�nition of Ck,Ck[[((�x:M ) V )]] = ((�x:Ck[[M ]]) �[[V ]]):The latter term reduces to Ck[[M ]][x := �[[V ]]]. It remains to establishthat substitution commutes with Ck, i.e.,



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 611. �� ` Ck[[M ]][x := �[[V ]]]�!�!Ck[[M [x := V ]]].2. �� ` Kk[[E]][x := �[[V ]]]�!�!Kk[[E[x := V ]]].The proof is by induction on the size of the argument to Ck or Kk.Except for one case, the inductive hypothesis applies immediately.The interesting case occurs when M = E[(x U )]. The left hand sideCk[[E[(x U )]]][x := �[[V ]]]� ((x Kk[[E]]) �[[U ]])[x := �[[V ]]]�! ((�[[V ]] Kk[[E]][x := �[[V ]]]) �[[U ]][x := �[[V ]]])�!�! ((�[[V ]] Kk[[E[x := V ]]]) �[[U [x := V ]]]):The last line follows by cases on E if U is a variable. Otherwise, itfollows by the inductive hypothesis. For readability, let E0 = E[x :=V ] and U 0 = U [x := V ]. The goal is to prove that:((�[[V ]] Kk[[E0]]) �[[U 0]])�!�!Ck[[E0[(V U 0)]]]:We proceed by cases of V :1. V = z, then both sides are identical.2. V = �z:L. Then, (((�k:�z:Ck[[L]]) Kk[[E0]]) �[[U 0]])�! ((�z:Ck[[L]][k := Kk[[E0]]]) �[[U 0]]) (�)�!�! ((�z:Ck[[E0[L]]]) �[[U 0]]) (aux. claim)� Ck[[E0[((�z:L) U 0)]]]:Proof of Lemma 17 (Page 31). Let P 2 cps(�+ callcc+A) and K be acontinuation, and W be a value in the same language. Also, let k1; : : : ; knbe the free continuation variables in these terms, and k 62 fk1; : : : ; kng.Then,1. ��� ` (Ck � C�1)[[P ]][k1 := (�d:k1); : : : ; kn := (�d:kn)] = P:2. ��� ` (Kk � K�1)[[K]][k1 := (�d:k1); : : : ; kn := (�d:kn)] = K:3. ��� ` (� � ��1)[[W ]][k1 := (�d:k1); : : : ; kn := (�d:kn)] = W:Proof: The proof is by lexicographic induction on the number ofabstractions of the form �k:K and the size of the terms. We proceedby cases:1. P = x, then(Ck � C�1)[[P ]] � Ck[[(A x)]]� (((�k:�x:x) k) x)�!�! x (� twice)



62 SABRY AND FELLEISEN2. P = �k:K, then(Ck � C�1)[[P ]] � Ck[[(A ��1[[�k:K]])]]= (((�k:�x:x) k) (� ���1)[[�k:K]])�!�! (� ���1)[[�k:K]]The result follows by inlining the last case in the proof.3. P = (K W ), then (Ck � C�1)[[(K W )]] � Ck[[K�1[[K]][��1[[W ]]]]]and by cases on K:(a) K = k0, then Ck[[(k0 ��1[[W ]])]]� ((k0 k) (����1)[[W ]]). Bysubstituting every free continuation variable (in particularsubstituting k0 by (�d:k0)) and using the inductive hypoth-esis, we get (k0 W ).(b) K = �x:P 0, then (Ck � C�1)[[P ]]= Ck[[((�x:C�1[[P 0]]) ��1[[W ]])]]= ((�x:(Ck � C�1)[[P 0]]) (� ���1)[[W ]])The result follows by the inductive hypothesis.(c) K = W 0K0, then (Ck � C�1)[[P ]]� (Ck � C�1)[[((W 0K0) W )]]� (((� ���1)[[W 0]] (Kk � K�1)[[K 0]]) (� ���1)[[W ]])The result follows by the inductive hypothesis.4. K = k0; �x:P or WK. The cases are similar to the precedingthree cases.5. W = x, then (� ���1)[[x]] � x.6. W = �k:K, then (� ���1)[[�k:K]]= �[[�z:callcc �k:K�1[[K]][z]]]= �k0:�z:(((�k00:�u:(u k00) (�d:k00)) k0) �[[�k:K�1[[K]][z]]])= �k0:�z:((�u:(u k0) (�d:k0)) �[[�k:K�1[[K]][z]]])= �k0:�z:((�u:(u k0) (�d:k0)) (�k00:�k:Ck00[[C�1[[(K z)]]]]))= �k0:�z:Ck00[[C�1[[(K z)]]]][k00 := k0][k := �d:k0]= �k0:�z:Ck0[[C�1[[(K z)]]]][k := �d:k0]= �k:�z:Ck[[C�1[[(K z)]]]][k := �d:k]By substituting the remaining free continuation variables andusing the inductive hypothesis (the term (K z) has one less ab-straction than �k:K), we get �k:�z:Kz which is equal to �k:K.Proof of Lemma 18 (Page 31). Let M 2 � + callcc + A, and E be anevaluation context in the same language, and k a variable that is not freein either. Then,



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 63� ��vXC ` (C�1 � Ck)[[M ]] = (k M)� ��vXC ` (K�1 � Kk)[[E]] = (k E)Proof: By induction on the size of the terms. We proceed by cases:1. M = V , then (C�1�Ck)[[V ]] � C�1[[(k �[[V ]])]] � (k (��1��)[[V ]]).By cases, we show that (��1 ��)[[V ]] = V .(a) V = x, then (��1 ��)[[x]]� x.(b) V = �x:N , then(��1 ��)[[V ]] � ��1[[�k:�x:Ck[[N ]]]]� �z:callcc �k:((�x:(C�1 � Ck)[[N ]]) z)= �z:callcc �k:((�x:(k N )) z)(induction)= �z:callcc �k:k ((�x:N ) z) (�lift )= �z:((�x:N ) z)(Ccurrent and Celim)= �x:N (�v)(c) V = callcc, then (��1 ��)[[V ]]� ��1[[�k:�u:(u k) �d:k]]� �z:callcc �k:((�u:(k (u �f:callcc �d:(k f)))) z)= �z:callcc �k:((�u:(k (u �f:(k f)))) z) (Celim)= �z:callcc �k:((�u:(k (u k))) z) (�v)= �z:callcc �k:(k (z k)) (�v)= �z:callcc �k:(z k) (Ccurrent)= callcc (�v twice)(d) V = A, then(��1 ��)[[V ]] � ��1[[�k:�x:x]]= �z:callcc �k:((�x:A x) z)= �z:((�x:A x) z) (Celim)= (�z:A z) (�v)= A (�v)2. M = E[(V1 V2)], then (C�1 � Ck)[[M ]]= C�1[[((�[[V1]] Kk[[E]]) �[[V2]])]]= K�1[[(�[[V1]] Kk[[E]])]][(��1 ��)[[V2]]]= (K�1 � Kk)[[E]][((��1 ��)[[V1]] (��1 ��)[[V2]])]The result follows by the inductive hypothesis and a repetitionof the argument in case 1.3. E = [ ], then (K�1 � Kk)[[E]] � K�1[[k]] � (k [ ]).



64 SABRY AND FELLEISEN4. E = E1[(V [ ])], then (K�1 � Kk)[[E]]= (K�1 � Kk)[[E1[(V [ ])]]]= (K�1 � Kk)[[E1]][((��1 ��)[[V ]] [ ])]The result follows by the inductive hypothesis and a repetitionof the argument in case 1.5. E = E1[([ ] M )], then(K�1 � Kk)[[E]] � (K�1 � Kk)[[E1[([ ] M )]]]� ((�f:(C�1 � Ck)[[E1[(f M )]]]) [ ])= ((�f:(k E1[(f M )])) [ ]) (induction)= (k E1[([ ] M )]) (�0
)Proof of case 1 in Lemma 19 (Page 32). Let k1 : : : kn be the free contin-uation variables in P and W . Then,��vXC ` callcc �k1: : : :callcc �kn:C�1[[((�x:P ) W )]] =callcc �k1: : : :callcc �kn:C�1[[P [x :=W ]]]Proof: Applying C�1 to ((�x:P ) W ) yields:K�1[[(�x:P )]][��1[[W ]]]� ((�x:C�1[[P ]]) ��1[[W ]]):By �v, we get C�1[[P ]][x := ��1[[W ]]]. It remains to show that C�1commutes with the substitution. We prove the following statementsby induction on the structure of the terms:� C�1[[P ]][x := ��1[[W ]]] � C�1[[P [x :=W ]]].� ��1[[W 0]][x := ��1[[W ]]] � ��1[[W 0[x :=W ]]].� K�1[[K]][x := ��1[[W ]]] � K�1[[K[x := W ]]].1. P = y, then C�1[[y]][x := ��1[[W ]]] � (A y) � C�1[[y[x :=W ]]].2. P = x, thenC�1[[x]][x := ��1[[W ]]]� (A ��1[[W ]]) � C�1[[x[x :=W ]]]3. P = �k:K, then C�1[[�k:K]][x := ��1[[W ]]]� (A ��1[[�k:K]][x := ��1[[W ]]])� (A ��1[[�k:K[x :=W ]]]) (similar to case 7)� C�1[[�k:K[x :=W ]]]



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 654. P = (K 0 W 0), then C�1[[P ]][x := ��1[[W ]]]� K�1[[K 0]][x := ��1[[W ]]][��1[[W 0]][x := ��1[[W ]]]]� K�1[[K 0[x :=W ]]][��1[[W 0[x :=W ]]]] (induction)� C�1[[(K 0 W 0)[x :=W ]]]5. W 0 = x, then��1[[W 0]][x := ��1[[W ]]]� ��1[[W ]] � ��1[[x[x :=W ]]]6. W 0 = y, then ��1[[y]][x := ��1[[W ]]] � y � ��1[[y[x :=W ]]].7. W 0 = �k:K, then ��1[[W 0]][x := ��1[[W ]]]� �z:callcc �k:K�1[[K]][x := ��1[[W ]]][z]� �z:callcc �k:K�1[[K[x :=W ]]][z] (induction)� ��1[[�k:K[x :=W ]]]8. K = k, then K�1[[k]][x := ��1[[W ]]]� (k [ ]) � K�1[[k[x :=W ]]].9. K = �y:P , thenK�1[[�y:P ]][x := ��1[[W ]]]� ((�y:C�1[[P ]][x := ��1[[W ]]]) [ ])The result follows by induction.10. K = W 0K0, then the result follows also by a straightforwardapplication of the inductive hypothesis.Proof of case 4 in Lemma 19 (Page 32). Let k1 : : : kn be the free contin-uation variables in ((�k:K1) K2). Then,��vXC ` callcc �k1: : : :callcc �kn:K�1[[((�k:K1) K2)]] =callcc �k1: : : :callcc �kn:K�1[[K1[k := K2]]]Proof: Let D be a context callcc �k1: : : :callcc �kn:C[ ] where C isan arbitrary context, then it su�ces to prove:��vXC ` D[K�1[[((�k:K1) K2)]]] = D[K�1[[K1[k := K2]]]]The left hand side D[K�1[[((�k:K1) K2)]]]� D[K�1[[K2]][(��1[[�k:K1]] [ ])]]= D[K�1[[K2]][((�z:callcc �k:K�1[[K1]][z]) [ ])]]It remains to prove the following statements by induction on the struc-ture of P , W , and K1.��vXC ` D[C�1[[P [k := K2]]]] = D[K�1[[K2]][callcc �k:C�1[[P ]]]]��vXC ` D[��1[[W [k := K2]]]] = D[��1[[W ]][k := �f:K�1[[K2]][f ]]]��vXC ` D[K�1[[K1[k := K2]]]] =D[K�1[[K2]][((�z:callcc �k:K�1[[K1]][z]) [ ])]]



66 SABRY AND FELLEISENThe main proof relies on the following auxiliary claim that we statewithout proof.Let K be a continuation in cps(�+ callcc+A) with free continuationvariables k1; : : : ; kn, then either:��vXC ` K�1[[K]] = (A E)or ��vXC ` K�1[[K]] = (ki E) 1 � i � nThe auxiliary claim implies that for any evaluation context E:D[E[K�1[[K]][M ]]] = D[K�1[[K]][M ]]:The latter result implies that D[K�1[[K]][callcc �k:K�1[[K 0]][M ]]]= D[callcc �k0:K�1[[K]][((�k:K�1[[K 0]][M ]) �f:(k0 K�1[[K]][f ]))]]= D[callcc �k0:K�1[[K]][((�k:K�1[[K 0]][M ]) �f:K�1[[K]][f ])]]= D[K�1[[K]][((�k:K�1[[K 0]][M ]) �f:K�1[[K]][f ])]]= D[K�1[[K]][K�1[[K 0]][((�k:M ) �f:K�1[[K]][f ])]]]= D[K�1[[K 0]][((�k:M ) �f:K�1[[K]][f ])]]= D[((�k:K�1[[K 0]][M ]) �f:K�1[[K]][f ])]The main proof proceeds by case analysis:1. P = x, then:D[K�1[[K2]][callcc �k:A x]] = D[K�1[[K2]][A x]]= D[(A x)]= D[C�1[[x]]]2. P = �k0:K0. The left hand side:D[C�1[[�k0:K0[k := K2]]]]= D[(A ��1[[�k0:K0[k := K2]]])]= D[(A �z:callcc �k0:K�1[[K2]][callcc �k:K�1[[K 0]][z]])]= D[(A �z:callcc �k0:((�k:K�1[[K 0]][z]) �f:K�1[[K2]][f ]))](auxiliary claim)= D[(A �z:callcc �k0:K�1[[K 0]][z])[k := �f:K�1[[K2]][f ]]]= D[((�k:(A �z:callcc �k0:K�1[[K 0]][z])) (�f:K�1[[K2]][f ]))]= D[K�1[[K2]][callcc �k:(A �z:callcc �k0:K�1[[K 0]][z])]](auxiliary claim)= D[K�1[[K2]][callcc �k:C�1[[�k0:K0]]]]3. P = (K W ). The left hand side D[C�1[[(K W )[k := K2]]]]= D[K�1[[K[k := K2]]][��1[[W [k := K2]]]]]= D[K�1[[K2]][callcc �k:K�1[[K]][��1[[W ]][k := �f:K�1[[K2]][f ]]]]]= D[((�k:K�1[[K]][��1[[W ]][k := �f:K�1[[K2]][f ]]])(�f:K�1[[K2]][f ]))]= D[K�1[[K]][��1[[W ]]][k := �f:K�1[[K2]][f ]]]= D[K�1[[K2]][callcc �k:K�1[[K]][��1[[W ]]]]]



REASONING ABOUT PROGRAMS IN CONTINUATION-PASSING STYLE 674. W = x, then the result is immediate.5. W = �k0:K, then ��1[[�k0:K[k := K2]]]= D[�z:callcc �k0:K�1[[K[k := K2]]][z]]= D[�z:callcc �k0:K�1[[K2]][callcc �k:K�1[[K]][z]]]= D[�z:callcc �k0:K�1[[K]][z][k := �f:K�1[[K2]][f ]]]6. K1 = k0, then:D[K�1[[K2]][callcc �k:(k0 [ ])]] = D[K�1[[K2]][(k0 [ ])]]= D[(k0 [ ])]= D[K�1[[k0]]]7. K1 = k, then D[K�1[[K2]][callcc �k:(k [ ])]] = D[K�1[[K2]]].8. K1 = �x:P , then D[K�1[[�x:P [k := K2]]]]= D[((�x:C�1[[P [k := K2]]]) [ ])]= D[((�x:K�1[[K2]][callcc �k:C�1[[P ]]]) [ ])]= D[K�1[[K2]][callcc �k:((�x:C�1[[P ]]) [ ])]]9. K1 =W 0K0, then the left hand side:D[K�1[[W 0K0[k := K2]]]]= D[K�1[[K 0[k := K2]]][(��1[[W 0[k := K2]]] [ ])]]= D[K�1[[K2]][callcc �k:K�1[[K 0]][(��1[[W 0]][k := �f:K�1[[K2]][f ]][ ])]]]= D[K�1[[K 0]][(��1[[W 0]] [ ])][k := �f:K�1[[K2]][f ]]]= D[K�1[[K2]][callcc �k:K�1[[K 0]][(��1[[W 0]] [ ])]]]References1. Allison, L. A Practical Introduction to Denotational Semantics. Vol-ume 23 of Cambridge Computer Science Texts, Cambridge UniversityPress (1986).2. Appel, A. Compiling with Continuations. Cambridge University Press(1992).3. Appel, A. and Jim, T. Continuation-passing, closure-passing style. InConference Record of the 16th ACM Symposium on Principles of Pro-gramming Languages (1989) 293{302.
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