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Abstract. Plotkin’s A,-calculus for call-by-value programs is weaker than the ASn-
calculus for the same programs in continuation-passing style (CPS). To identify the call-
by-value axioms that correspond to 87 on CPS terms, we define a new CPS transforma-
tion and an inverse mapping, both of which are interesting in their own right. Using the
new CPS transformation, we determine the precise language of CPS terms closed under
An-transformations, as well as the call-by-value axioms that correspond to the so-called
administrative @Fn-reductions on CPS terms. Using the inverse mapping, we map the
remaining # and 5 equalities on CPS terms to axioms on call-by-value terms. On the
pure (constant free) set of A-terms, the resulting set of axioms is equivalent to Moggi’s
computational A-calculus. If the call-by-value language includes the control operators
abort and call-with-current-continuation, the axioms are equivalent to an extension of
Felleisen et al.’s A,-C-calculus and to the equational subtheory of Talcott’s logic IOCC.
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1. Compiling with and without Continuations

Many compilers for higher-order applicative languages use the continuation-
passing style (CPS) transformation [21, 41] to generate an intermediate
representation [3, 30, 43, 46]. The CPS intermediate language has the
following desirable properties:

e The language consists only of basic primitive operations and proce-
dure applications whose semantics is independent of the parameter
evaluation technique [39, 41]; many optimizations are therefore se-
quences of - and n-reductions [2, 43, 46].

o [t exposes the control flow of the program; complicated control fa-
cilities in the source language, e.g., exception handlers and call-with-
current-continuation [40], are translated to simple procedures that

manipulate their continuation arguments in non-standard ways [41,
47].

e It constitutes an abstract assembly language whose standard reduc-
tion sequence mimics the behavior of typical target machines [2, 3,
24, 29, 49].

The CPS transformation is a global transformation that affects every
subexpression in a program. It restructures programs to the extent that
many of their original aspects are unrecognizable. The transformation
might even obscure the analysis of optimizations that rely on execution
paths having matching call/return pairs [Private Communication, Hans
Boehm, October 1992]. For these reasons and others, a fair number of
compilers (usually called direct compilers) do not rely on the CPS interme-
diate representation [5, 6, 28, 32].

The choice of compilation strategy would not be significant if both classes
of compilers performed the same optimizations. However for the important
class of optimizations that is expressible in the framework of the A-cal-
culus, CPS compilers have an advantage. While CPS compilers can use
the full A-calculus reductions to perform optimizations, direct compilers
can apparently only rely on weaker calculi like the A,-calculus [39] and the
Ay-C-calculus [18, 19]. Naturally we ask: what optimizations do CPS com-
pilers perform that are not also performed by direct compilers? Or in tech-
nical terms, what set of call-by-value axioms corresponds to fn-reductions
on CPS terms. With such a set, CPS compilers could report optimizations
in terms of the original program, and direct compilers could benefit by
performing all the optimizations that correspond to fn-reductions on CPS
programs.
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The main technical result of this paper is the identification of axioms
for call-by-value languages that correspond to fné-reductions on CPS pro-
grams.! In order to simplify the technical exposition, we first focus on
a pure, constant-free call-by-value language. Specifically, we strengthen
Plotkin’s Translation Theorem (cf. Theorem 1) by identifying an axiom

set X such that:
NG XEFM=N if and only if APyt eps(M) = cps(N).
Our strategy for the identification of the axioms X consists of three steps:

1. First, we develop a new CPS transformation that produces a canonical
form of CPS programs. The new transformation provides a simple
characterization of a CPS language that is closed under gn-reductions.
It also identifies a subset A of the call-by-value axioms X.

2. Second, we develop an “inverse” transformation that maps canon-
ical CPS programs back to the original language. As Danvy and
Lawall [11, 14] convincingly argue, this translation from CPS to di-
rect terms is useful in its own right.

3. Finally, by studying the connection between the CPS transformation
and the inverse mapping, we systematically derive the remaining ax-
ioms in the set X. The resulting calculus is a variant of Moggi’s
untyped computational A-calculus [36].

A complete treatment of the relationship between programs and their
CPS transforms must also analyze a language with control operators since
these are the language facilities for which continuations were conceived [34,
37, 41, 47]. To this end, we extend our language with two typical control
operators expressible in the CPS framework: abort and call-with-current-
continuation. These operators suffice to express a wide variety of control
abstractions such as error exits, jumps, intelligent backtracking, coroutines,
and exception handling [23, 27].2

'For call-by-name languages, the reductions @5 are valid in both the source langnage
and the CPS language and the CPS translation does not create any new opportunities
for equational reasoning [39, page 153].

The CPS framework can also express a control delimiting facility [44], e.g.,
prompt [15]. However, we do not include prompt in our language for two reasons. First,
current language implementations do not include such facilities. Second, the CPS trans-
lation of prompt generates expressions that are no longer independent of the timing of
parameter evaluation [12, 20]. As a consequence, we can associate two different seman-
tics with the CPS language: a call-by-value semantics which is the classic semantics for
control delimiters [13, 15], and a call-by-name semantics which yields a lazy prompt. The
first semantics is incompatible with the @n-reductions we use for the CPS language and,
at this point, there seems to be little practical motivation to pursue the analysis of the
lazy prompt.
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The addition of abort and call-with-current-continuation extends the set
of CPS programs and generates a new set of program equivalences that
are provable using - and n-reductions. In order to re-establish the cor-
respondence between the source and CPS calculi, we extend both the
CPS transformation and its inverse and proceed in the same way as for
the pure language. The resulting calculus includes the reductions of the
Ay-C-calculus [18, 19] and is equivalent to the equational subtheory of the
logic IOCC (Impredicative theory of Operations, Control abstractions, and
Classes) [48].

Finally, since Lisp and similar languages include more facilities than just
procedures and control operators, we consider the language Core Scheme,
which also includes constants, conditionals, and assignments. We develop
a theory for reasoning about Core Scheme that proves all the equations
that hold in the CPS framework. To illustrate the power of the theory,
we optimize a Scheme program that implements a coroutine facility using
first-class continuations. The left program in Figure 1, due to Haynes,

(define make-coroutine (define make-coroutine
(lambda (f) (lambda (f)
(ca(lllcc bda (maker) (letrec ([L(C{S bda (2)
(le(t1 (EL(?S "any]) f (la(ml;lda (dest val)
(lambda (dest val) (lambda (k)

(callce (set! LCS k)

(la(rnlzflaL(C{cg B ) (dest val))))

(dest val))))]) (error "fell off end"))])

(f resume (lambda (v) (LCS v)))))

(resume maker
(lambda (v) (LCS v))))
(error "fell off end")))))))

Figure 1: Coroutines from Continuations.

Friedman, and Wand [27], is the result of clear and well-understood design
steps but is far more complicated than necessary. The initialization part
of the coroutine is non-trivial: it involves capturing a continuation and an
artificial use of the procedure resume that assigns the proper value to the
local control state (LCS). The second program, a variant of the first ac-
cording to folklore, avoids the clumsy initialization phase and immediately
returns a closure. Using our new set of axioms, we can rewrite the left
program to the second. The derivation is subject of Section 10.
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The next section introduces the basic terminology and notation of the
A-calculus and its semantics. Sections 3 to 6 are dedicated to the pure
call-by-value language. Section 3 includes a short history of CPS transfor-
mations that motivates the ideas that lead to our new CPS transformation
in Section 4. The inverse mapping is the subject of Section 5. In Section 6,
we identify the complete set of axioms X and prove its completeness with
respect to - and n-reductions on CPS terms. Section 7 extends the result
to a language that includes the non-local control operators abort and call-
with-current-continuation. Section 8 deals with the addition of constants,
assignments, and conditionals. Finally, we conclude with a brief discussion
of the theoretical and practical implications of our work and future direc-
tions of research. The appendix includes the tedious but straightforward
portions of the proofs.

2. A: Calculi and Semantics

The language A is a pure (constant-free) functional language. The set
of terms is generated inductively over an infinite set of variables Vars;
it includes values and applications. Values consist of variables and A-
abstractions, applications are juxtapositions of terms:

M= V| (MM) (A)
Vo= oz | (e M) (Values)
v € Vars

We adopt Barendregt’s [4, chapters 2, 3] notation and terminology for
A’s syntax. Thus, in the abstraction (Az.M ), the variable z is bound in M.
Variables that are not bound by a A-abstraction are free; the set of free
variables in a term M is F'V(M). A term is closed if it has no free vari-
ables. We identify terms modulo bound variables, and we assume that
free and bound variables do not interfere in definitions or theorems. In
short, we follow common practice and work with the quotient of A under
a-equivalence. We write M = N for a-equivalent terms M and N.

The term M[xz := N]is the result of the capture-free substitution of all
free occurrences of z in M by N, e.g., (Az.z2)[z := (Ay.2)] = (Auw.u(Ay.x)).
A context C' is a term with a “hole”, [ ], in the place of one subterm. The
operation of filling the context C' with a term M yields the term C[M],
possibly capturing some free variables of M in the process, e.g., the result
of filling (Az.z[]) with (Ay.z) is (Az.2(Ay.x)). The variables that may be
captured when filling a context C' are called the trapped variables of ' and
are denoted by trap(C').
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Calculi

A X-calculus is an equational theory over A with a finite number of axiom
schemas and inference rules. The most familiar axiom schemas, also called
notions of reduction, are the following:

(AMe.M)N) — Mz := N] N :arbitrary (B)
(A M)V) — Mz :=V] V : Value (By)
.Mz — M r g FV(M) (n)
Ve — V r g FV(V) (1)

A reduction may also be applied to a context ('} yielding another context
(5. In that case, the holes in both contexts are treated as placeholders to
an arbitrary term. We only use such reductions when the sets of trapped
variables in both contexts are empty (cf. evaluation contexts below).

The set of inference rules is identical for all A-calculi. It extends some
notions of reduction to an equivalence relation compatible with syntactic
contexts:

M — N = C[M]= C[N] for all contexts C' (Compatibility)
M=M (Reflexivity)

M=LL=N= M=N ( Transitivity)
M=N = N=M (Symmetry)

The underlying set of axioms completely identifies a theory. For example,
3 generates the theory A3, 3, generates the theory AfS,, and the union of
3 and 7 generates the theory Afn. In general, we write AX to refer to
the theory generated by a set of axioms X. When a theory AX proves an
equation M = N, we write AX - M = N. If the proof does not use the
inference rule (Symmetry), we write AX - M — N.

A notion of reduction R is Church-Rosser (CR) if AR+ M = N implies
that there exists a term L such that both M and N reduce to L, i.e.,
ARFM —Land ARF N —= L. A term M is in R-normal form if there
are no R-reductions starting with M.

Many of the results in the paper relate the calculi for different languages.
To provide a uniform terminology for the relationships between such sys-
tems, we introduce the concept of “equational correspondence”.

Definition 1 (Equational Correspondence) Let S and 7 be two lan-
guages with calculi AXs and XX 71 respectively. Also let f: S — T be a
translation from S to T, and g : T — S be a translation from T to S. Fi-
nally let 8,381,895 € S and t,t1,19 € T. Then the calculus AX s equationally
corresponds to the calculus XX if the following four conditions hold:
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1. AXstFs={(go f)(s).

2. XXt Et=(fog)t).

3. AXs b sy = sy if and only if AX1 & f(s51) = f(s2).
4. AXT Fti =ty if and only if AXs F g(t1) = g(t2).

The above correspondence is similar to the correspondence between the
A-calculus and combinatory logic [4, 10]. In the third clause, the left-to-
right implication refers to the soundness of the calculus AXg, and the right-
to-left implication refers the completeness of the calculus AXs (relative to

AXTv f7 and g)

Semantics

The semantics of the language A is a (partial) function, eval, from pro-
grams to answers. A program is a term with no free variables and, in
practical languages, an answer is a member of the syntactic category of
values. Typically, eval is defined via an abstract machine that manipulates
abstract counterparts to hardware stacks, stores, registers, etc. Examples
are the SECD machine [31] and the CEK machine [16].

An equivalent method for specifying the semantics is based on the Curry-
Feys Standard Reduction Theorem [16, 39]. The Standard Reduction The-
orem defines a partial function, —, from programs to programs that cor-
responds to a single evaluation step of an abstract machine for A.

A standard step (i) decomposes the program into a special context £ and
a leftmost-outermost redex R (not inside an abstraction), and (ii) fills &
with the contractum of R. The special contexts are evaluation contexts and
have the following definition for the call-by-value and call-by-name variants
of A, respectively [16]:

Eyoa= ()] (VE) | (B M)

E, == []] (£, M)
Conceptually, the hole of an evaluation context ([ ]) points to the current
instruction, which must be a 3, or 3 redex. The decomposition of M into
E[(V N)] where (V N) is a redex means that the current instruction is
(V' N) and that the rest of the computation, the continuation, is £ [16].

For a call-by-value language, the syntax of the terms can therefore be re-
formulated as follows:

M =V | BV V)] (A)
Viou= 2 | (A M) (Values)
E, o=1] | (VE) | (£, M) (EvCont)
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A similar definition exists for the call-by-name language except that argu-
ments are not evaluated before a function call, ¢.e., evaluation contexts do
not include contexts of the shape (V' E,).

Using evaluation contexts, the definitions of the standard reduction func-
tions for call-by-value and call-by-name respectively are as follows:

EJJ(Ae. M) V)] —, E,JM[z:

Vil
N

A complete evaluation applies the single-step functions repeatedly and ei-
ther reaches an answer or diverges. The notation —* denotes the reflexive,
transitive closure of the relation ——. The semantics of A is defined as fol-
lows:

eval,(M) = V if and only if M —,V (call-by-value)
eval,(M) = V if and only if M —, V (call-by-name)

3. The Origins and Practice of CPS

The idea of transforming programs to “continuation-passing style” first
appeared in the mid-sixties.® For a few years, the transformation remained
part of the folklore of computer science until Fischer and Reynolds codified
it in 1972.

The first subsection briefly reviews the original encoding of the CPS
transformation. In the second subsection, we analyze the universe of CPS
terms and the so-called administrative CPS reductions.

3.1. The Original Encoding

Fischer [21] studied two implementation strategies for A: a heap-based
retention strategy in which all variable bindings are retained until no longer
needed, and a stack-based deletion strategy in which variable bindings are
destroyed when control leaves the procedure (or block) in which they were
created. He concluded that

no real power is lost in restricting oneself to a deletion strat-
egy implementation, for any program can be translated into an
equivalent one which will work correctly under such an imple-
mentation [21, page 104].

*The origin of the concept of “continuation” can be traced back to A. van Wijn-
gaarden [45] who defined a source to source transformation that eliminates jumps (goto
instructions) from a program in favor of procedures that never return.
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The translation he refers to is the Fischer CPS transformation.

Definition 2 (Fischer CPS) Let k, m, n € Vars be variables that do not
occur in the argument to F.

F:A — A
FIV] = Xk(k F[V])
FIMN] = Xe(FIM] (Am(F[N] An.((m k) n))))
F, i Values — A
Folz] = =
Fo[rae.M] = Xk e (F[M] k)

Reynolds [41] investigated definitional interpreters for higher-order lan-
guages. One of his goals was the desire to liberate the definition of a
language from the parameter-passing technique of the defining language.
He developed a method to transform an interpreter such that it becomes
indifferent to whether the underlying parameter passing technique is call-
by-value or call-by-name. His transformation is essentially the same trans-
formation as Fischer’s.* Plotkin [39] later proved Reynolds’s ideas correct.

Theorem 1 (Plotkin [39]) Let M € A.

Simulation: F,Jeval,(M)] = eval ,(F[M] (Az.z))

Indifference: eval,,(F[M] (Az.z)) = eval ,(F[M] (Az.z))

Translation: IfAfS,+ M = N then A+ F[M] = F[N]. The
implication is not reversible. Also, Ap, = F[M] = F[N]
if and only if A\ + F[M] = F[N].

The Simulation Theorem shows that the evaluation of the CPS program
produces correct outputs. The Indifference Theorem establishes that this
evaluation yields the same result under call-by-value and call-by-name. The
Translation Theorem establishes the soundness and incompleteness of Aj,
for reasoning about CPS programs.

3.2. The Universe of CPS Terms

Since we are interested in the analysis of Sn-equality on CPS terms, our
universe of discourse consists of all terms that contribute to the proofs of
equations like:

Apn = F[M] = F[N].

*In Reynolds’s transformation, the continuation is the second argument to a
procedure.



12 SABRY AND FELLEISEN

Because the notion of reduction 57 is CR [4], it suffices to consider equations
of the form:

A3n b F[M] — P.

Hence, the universe of discourse for CPS terms is the set:
{P|3IM e A. X\pnt+ F[M] — P}.

Unfortunately, this set includes a large of terms that have no counterpart
in the source language. For example, the source reduction:

(Az.2)y) —y
corresponds to the following derivation on CPS terms:

Fll(Az.z) y)] =  Ae((Ak(k Ak Az ((Ak.kz) k)))
(Am.((A.ky)

(An.((m k) n)))))
((Ak-ky) (An.((m k) n))))
/\x ((

k

— Ak

Mok k)

y)
(Al Az ((Akkz) k) k) n))
((An.((AkAz.((Ak.kz) k) k) n)) y)
— Ak((Me Az ((MNkka) k) k) )
— Ak.((Ax.((Ak.kz) k) y)
— Ak.((Ak.ky) k)
— Ak.(ky)
= Jlyl
The derivation mostly consists of reductions that do not correspond to
reductions of source terms.

— Ak

The “new” reductions on CPS terms are known as administrative reduc-
tions [39]. In order to give a precise definition of these new reductions,
we modify the Fischer CPS transformation by overlining all A-abstractions
that are introduced during the translation. The reduction of any of these
overlined A-abstractions constitutes an administrative reduction.

Definition 3 (F, 3, 7)) Let k,m,n € Vars be variables that do not occur
in the argument to F.
F:A — A
FIV] = Xe(k F,[V])
FIMN] = Me(F[M] Om.(FIN] An.((m k) n))))
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Fy 2 Values — A
Folz] = =
Fo[re. M] Ak Xz (F[M] k)

A (- or n-reduction is an administrative reduction if it involves overlined
abstractions:

(Az.M) N) — MJz:= N] (B)
Az.Mz) — M r ¢ FV(M) (7)

To simplify the derivation of the source reductions that correspond to 8n
on CPS terms, we split the problem in two parts: finding source reductions
that correspond to administrative CPS reductions (Section 4), and finding
source reductions that correspond to proper CPS reductions (Sections 5

and 6).

4. A Compacting CPS Transformation

To identify all the source reductions that correspond to the CPS admin-
istrative reductions at once, we define a compacting CPS transformation
that performs the administrative reductions in the output of F and pro-
duces terms in #7-normal form.

The first subsection formally defines the process of eliminating the ad-
ministrative reductions from the output of F and analyzes the connection
between the elimination process and the evaluation of CPS programs. The
second subsection includes a new compacting CPS transformation that il-
luminates the effect of administrative reductions. Subsection 3 includes the
source reductions that correspond to the elimination of the administrative
CPS reductions. Finally, the last subsection includes the definition of a
simplified universe of CPS terms based on the new CPS transformation.

4.1. The Two-Pass CPS Transformation

The relation 72 combines the Fischer CPS transformation with the elim-
ination of the administrative reductions.

Definition 4 (F2) Let M € A, then F2[M] = P if and only if A\37
F[M] = P and P is in 5-normal form.

Each source term is related by F2 to exactly one CPS term in $7-normal
form.

Proposition 2 The relation F2 is a total function from A to A.
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Proof: ° Tt is sufficient to show that F[M] has a unique S7-normal

form. The B-reductions starting with F[M] are a special kind of
reductions called developments [4, section 11.2]. Tt follows that F[M]

has a unique G-normal form [4, corollary 11.2.24]. Moreover, a A-
term has a f-normal form if and only it has a Sn-normal form [4,

corollary 15.1.5]. It follows that F[M] has a unique Fi-normal form. |

In other words, the function F2 specifies a CPS transformation that pro-
duces terms without any administrative redexes.%

The proposition also establishes that administrative reductions can be
performed in any order without affecting the result. A quick look at their
effect on standard reduction sequences is particularly illuminating.

According to Plotkin [39], the standard reduction sequence of a source
program relates to the standard reduction sequence of its CPS counterpart
as described in the following diagram:

M — N — L
. Y > o Y > o
FIM]K FIN]K FIL)K
. . .
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
Y Y Yy .-
. . .-
M: K N:K LK

®Improved by Robert Harper.

SThe function F2 eliminates more administrative than other CPS transforma-
tions [3, 13, 30, 43, 46]. For example, applying F2 to (((Az.Ay.x) a) b) yields
Ak.((Az.((Ay.kz) b)) a). For the same example, both Steele’s Rabbit transformation [46]
and the Danvy/Filinski transformation [13] yield the term:

Ak.(Axky.(k1 Aykz.k2z)) a (Am.mbk)).

Even though this term only contains source redexes, we could still optimize it without
eliminating source redexes:

ABn b Ak.((Axky. (ki dykz ko)) a (Am.mbk)) = Ak.((Am.mbk) (Aykz.k2a))
Ak.((Aykz.koa) b k)
Ak.ka
Ak.((Ay.ka) b)
= Mk.((Az.((Ay.kz) b)) a).
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The term M : K is the result of eliminating all the administrative reduc-
tions before the first (in a standard reduction sequence) proper reduction
in (F[M] K). The solid lines represent the reduction of source redexes;
the dashed lines correspond to the reduction of administrative redexes.

By Plotkin’s analysis, the role of the administrative reductions is to locate
the next source redex in a standard reduction sequence, and to restructure
the CPS program such that this redex occurs at the top level. For example,
in the term:

ML (Oyy) (Aew) 2)),

the first redex in a standard reduction sequence is ((Az.z) z). After CPS
conversion and the elimination of all administrative reductions, we get:

P L (F2AM] (Ma.a)) = (Ax((Ay((Aa.a) y)) 2)) =),

where the redex ((Az.---) z) occurs at the top level.
Although the action of “lifting” the redex ((Az.---) z) to the top level

happens naturally in the CPS framework, it does not require an explicit
CPS conversion, i.e., we can rewrite the original program as follows:

((Ayy) (Az.z) 2)) — ((Az.((Ay-y) @) 2).

This example suggests that administrative CPS reductions are naturally
expressible in the source language. We investigate the exact nature of
these source reductions in the next subsection.

4.2. The CPS Transformation Cj,

By specifying the function F2 in a new and original way that illuminates
the effect of administrative reductions on the reduction of source and CPS
terms, we can directly identify two notions of reduction on source terms
that perform the same task as administrative reductions.

The key insights that are necessary to derive the new CPS transformation
are the following;:

e The evaluation context is a syntactic representation of the continua-
tion (cf. Section 2).

e The first redex in a standard reduction sequence always occurs inside
the evaluation context (cf. Section 2).

o Administrative reductions “lift” the redex that occurs inside the eval-
uation context to the top level (cf. Section 4.1).
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Based on these insights, we develop the new compacting CPS transfor-
mation Cg. The transformation relies on the following definition of the set
of evaluation contexts, which is more suitable for the following definition:

Eoa= 1] TEV D] EL] M)

The definition generates the same set as the one in Section 2.

Definition 5 (Ci, ®,Ky) The CPS transformation uses three mutually re-
cursive functions: Cy to transform terms, ® to transform values, and Ky,
to transform evaluation contexts. Let k,u; € Vars be variables that do not
occur in the argument to Cy."

Cr:A — A

Ce[V] =

Ce[El(z V)]
CrlE[((Az. M) V)]] =

(z Ki[E]) [V])
(Az.Cp[EIM]]) @[V])

ll
N TN N

d : Values — A
Of2] =
®[Az.M] = M z.Cp[M]

]

K : PvCont — A
k

Kill1l

KilElz [DII =
KilE[((Az.M) [])]
KylEL[] M)]]

(z Kr[E])
(Az.CeE[M]D)
(A Cr[ E[(us M)]])

The transformation of a complete program M is Ak.Cx[M]. The function
Cy is parametrized over a variable k that represents the current continua-
tion. The CPS transform of values is straightforward. The translation of
E[(x V)] generates a term in which the unknown procedure z is applied
to the continuation Kx[E] and the result applied to the argument ®[V].
The CPS transform of E[((Az.M) V)] conceptually lifts the redex outside
the evaluation context producing ((Az.L[M]) V') and then converts the re-
sulting term to CPS. The first three cases in the translation of evaluation
contexts to continuations have the same intuitive explanation. In the last

"The CPS transformation Cy is, in spirit, similar to the CPS transformation by Fried-
man, Wand, and Haynes [24, chapter 8], but differs significantly in its formal part.
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case E[([] M)], the term in function position is the result of an intermedi-
ate computation. The CPS transformation gives the intermediate result a
fresh name u; and proceeds with the translation of a simpler term.

While Cy, ® and K, are not defined by structural induction, it is relatively
easy to check that the functions are well-defined using an appropriate notion
of “size”.

Definition 6 (Size) The size of a term M, | M|, is the number of variables
in M (including binding occurrences). The size of a context V, |F|, is the
number of variables in F (including binding occurrences) plus 2.

In particular, the size of E[(u; M)] is smaller than the size of E[([] M)]
because the empty context always replaces an application. Also, the size
of (Az.M) is greater than the size of M by 1.

The following proposition verifies that the outputs of Cp and F2 are
identical. As a consequence, the result also establishes that Cy is a total
function.

Proposition 3 Let M € A. Then, F2[M] = Ak.C,[M].

Proof: By the definition of F2, it suffices to establish the following
statements:

o ABF (F[M] k) = Cx[M].
e Cp[M]is in Gf-normal form.
e (F[M] k) has a unique B7-normal form.

The last claim follows from Proposition 2. The proofs of the first two
claims are in the Appendix (Page 48). 11

4.3. Administrative Source Reductions: The A-Reductions

The function Cj incorporates the reduction of all administrative redexes
from the output of the Fischer CPS. Hence, if F[M] and F[N] reduce to
a common term by administrative reductions only, Cx[M] is identical to
Ci[N]. The definition of the function Cj shows that, in two cases, different
inputs are indeed mapped to the same output. (Proposition 11 verifies that
there are indeed only two such cases.)

Lemma 4 (Bus, Baet) Let M, N, L € A, E € EvCont, and z € Vars:

Ci[E[((Az. M) N)]

Ci[((Az.E[M]) N)] where x & FV(FE)
Cil((= M) L)] z

Crl[((Auul) (2 M))] where w ¢ FV(L)
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Proof: The proof of the first claim is straightforward. The proof
of the second claim® is in the Appendix (Page 50). The identity in
the second statement holds modulo the decorating overlines above
administrative A-abstractions. Jj

To characterize these effects of the Cp-translation, we introduce two re-
ductions on A that capture the effect of the administrative reductions.

Definition 7 (A-reductions, (s, Ba.) The set of axioms A contains
two reductions:

El((Az.M) N)] — ((Az.E[M]) N) (Biife)
where B # [ ]| and x € FV(F)
((z M) L) — ((Au.(u L)) (z M)) (Bpat)

where u ¢ FV (L)

As Lemma 4 shows, the A-reductions define equivalence classes of source
terms that map to the same CPS term.

At this point, the decorating overlines above the special A-abstractions
become irrelevant. In the remainder of the paper, we ignore the distinction
between A and A.

4.4. The CPS Language

Using the equivalence of the functions F2 and Cj, we can specify the
universe of CPS terms as follows:

S P 3IM e A N3yt Cu[M] — P},

ignoring the outermost binding of the continuation.

The context-free grammar that generates the set S can be directly de-
rived from the right hand sides of the equations in Definition 5. According
to the definition, all terms in the CPS language are an application of a
continuation to a value. Values are either variables or abstractions that
transform continuations. Continuations are either variables, or the result
of the application of a value to a continuation, or an abstraction that trans-
forms a value to an answer.

®The earlier version of the paper [42] erroneously included an arbitrary term M in
place of the variable z.
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Definition 8 (CPS grammar, CPS program, cps(A)) Let K-Vars =
{k} be a set of continuation variables such that Vars 0N K-Vars = (.

P = (KW) (eps(A) = Answers)
W u= 2| (Mk.K) (eps( Values) = CPS-Values)
K == k| (W K)|(Az.P) (eps(LvCont) = Continuations)

The special status reserved for the variable k ensures that the continuation
parameter occurs exactly once in the body of each abstraction Ak.K. A
program in CPS form is a closed term of the form ((Ak.P) (Az.2)) where
k is the special continuation parameter. When working with the quotient
of the language under a-equivalence, the special status of the name “k”
disappears but the linearity constraint remains.

The following theorem establishes that the two definitions of CPS terms
define the same language.

Theorem 5 5 = cps(A).

Proof: For the left to right inclusion, it suffices to show that the
output of Cj is a subset of ¢ps(A), and that the latter language is
closed under gn-reductions. We omit the proof of the first claim. The
second claim follows from the Subject Reduction Lemma (Lemma 6).

For the opposite implication, i.e., cps(A) C S, it suffices to show that
for all P € ¢ps(A), there exists M € A such that Agn F C[M]—P.
The proof of this auxiliary claim is in the Appendix (Page 51). 11

To complete the proof of the theorem, we need to establish that [Fn-
reductions on cps(A) preserve the syntactic categories of the terms.

Lemma 6 (Subject Reduction) Let P; € cps(A), Wy € cps( Values)
and K1 € cps(FvCont), then,

1. Ayt Py — P, implies P> € cps(A).
2. AP Wy — Wy implies Wy € cps( Values).
3. Abnk Ky — Ky implies Ky € cps(FvCont).

Proof: See Appendix (Page 52). 11

The above lemma implies that gn-reductions on CPS terms can be natu-
rally characterized as reductions that apply to continuations and reductions
that apply to values.
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Corollary 7 The reductions 3 and n on cps(A) can be decomposed into
reductions that apply to values (B, and n,) and reductions that apply to
continuations (B and ny):

(Ae.P) W) — Pl :=W] (Bw)
(Me.Ky) Ky) — K[k = K] (B)
(A Wk) — W (1)
(Ae.Kz) — K v g FV(K) (k)

5. A CPS Inverse

In order to map the CPS reductions f3,,, 8, 7w, and 7 to reductions on the
source language, we define a mapping from cps(A) to A. After presenting
the new transformation in the first subsection, we study its connection to
the CPS transformation in the second subsection.

5.1. The Transformation ¢!

Based on the inductive definition of the CPS language, the specification
of an “inverse” to the CPS transformation is almost straightforward: the
source term corresponding to (K W) is E[V] where E is the evaluation
context that syntactically represents the continuation K, and V' is the value
that corresponds to W.

Definition 9 (C71, @71 K~1) Let P € cps(N), W € cps( Values), and
K, Ky, Ky € cps(FvCont):

~Lieps(A) —
ik w)] = 1[[1&]][ )

&~ : cps( Values) — Values
7 '2] = =2
U(NeE)] = Az
(N WK)] = Aa.CT(W K) 2]
7 [(Ae Az P)] = Ax.CT[P]
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K=t : eps(BvCont) — EvCont

KK = []
K™ (e K)] = K7'[K][(« [ D]
KAL) Ko)] = KK [k = K]
K= (Ae.P)] = ((AeLT'[P]) [ 1])

The correctness of the function C~! is subject of the following theorem.
The first part of the theorem establishes that the composition of C~1 and
Cy respects fn-equality. The second part of the theorem establishes the
stronger property that, when restricted to images of A terms, the compo-
sition of C~! and Cy, yields the identity function.

Theorem 8 Let P € cps(A), K € eps(EvCont). Then,
1. ABnE (CroCH[P] = P and X8y F (Ko K™H[K] = K;

2. (CroCH[P] = P and (Ko K™Y[K] = K if there exists M € A and
E € EvCont such that P = Cx[M] and K = Ki[F].

Proof: See Appendix (Page 54). 11

5.2. Composing C; and C~!

The compacting CPS transformation C; maps all the members of A-
equivalence classes to the same CPS term (cf. Section 4.3). Our inverse
CPS transformation maps this CPS term back to a particular element of
the equivalence class, the element in BjyB37.-normal form. In order to
establish this result, we first define a subset of A in B 374,-normal form.

Definition 10 (A,) The language A, is a subset of A that only includes
terms in BipBaac-normal form.

M == E[V] (Aa)
Vo= 2| (Ae.M) (Values,)
Foa= (11O [ Fle () (EoCont,)

We omit the simple inductive proof that the elements of the language are
actually in Byp8p4¢-normal form.

The range of the function C~! is included in A,, i.e., any output of C~!
is in B Baqa-normal form.
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Lemma 9 Let P € cps(A) and K € cps(EvCont), then C[P] € A, and
K~'[K] € EvCont,.

Proof: See Appendix (Page 55). 11

With the help of this lemma, we can now specify the precise relation
between the CPS transformation and its inverse. The effect of composing
the CPS transformation with its inverse is to reduce terms to By Ba.-
normal form. Naturally, if a term is already in Bjp874,-normal form, then
the composition yields the identity function.

Theorem 10 Let M € A, then:
1. XBiigtBpiat F M — (C™1 o Cp)[M],
2. (C7YoCy)[M] = M if there exists P € cps(A) such that M = C™[P].

Proof: See Appendix (Page 56). 11

Put differently, the theorem asserts that the reductions By 3n.: capture
all possible equivalences introduced by administrative reductions. If the
CPS transforms of M and N are related by those administrative reductions
that Cp eliminates, then it must be the case that M and N are related by
the axioms B Bfa:-

Proposition 11 IfCi[M] = Ci[N], then ABipfBaa - M = N.

Proof: Assume Cy[M] = Cx[N] = P. The function C~! maps P,
the CPS transform of M or N, to a source term L. By Theorem 10,
both M and N reduce to L by SBusBaar-reductions. It follows that

AbunBaa FM=N.1

6. Equational Correspondence for the Pure Language

Using the partial inverse of the CPS transformation, we can systematically
derive a set of additional axioms B for Ag, such that X = AU B, i.e., such
that A3, AB is complete for 7 reasoning about CPS programs. Once we
have the new axiom set, we prove its soundness in the second subsection.
In the last subsection, we briefly discuss the correspondence of the calculi.
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6.1. Completeness

As specified in Corollary 7, the possible - and 5-reductions on CPS
terms are 3, Bk, N, and ng. To illustrate our technique, we first outline
the derivation of reductions corresponding to ng. Let (Az.K2) — K where
v & FV(K). Applying K~ to both sides of the reduction, we get:

(Az.CTK=2])[]) and K~'K].

To understand how the left hand side could reduce to the right hand side,
we proceed by case analysis on K:

o K = k: the reduction becomes ((Az.z)[]) — [ ]. Since the empty
context generally stands for an arbitrary term, the extended set of
axioms should therefore contain the reduction:

(Azx) M) — M (Bia)

e K = (y Ky): the reduction becomes ((Az.K71[K1][(y )]) []) —
K=K1][(y [ ])]- By a similar argument as in the first case, we must
add the following reduction to the set B:

((Az.El(y 2)]) M) — E[(y M)] (Ba)

o K = ((Mk.K1) K2) or K = Ay.P: these cases do not introduce any
new reductions.

The cases for the other reductions on CPS terms are similar. The result-
ing set of source reductions X includes all the previously derived reductions
and n,: see Figure 2. The equational theory generated by the full set of

(Ae.M) V) — Mz :=V] (Bv)

A Ve) — V ¢ FV(V) ()
E[(Ax.M) N)] — ((Az.E[M]) N) v @ FV(E),E#[] (Bun)
((z M) L) — ((Au.(u L)) (= M))  ug@FV(L) (Bfiat)
(Awzx) M) — M (Bid)
(Az.El(y x)])) M) — E[(y M) v & FV(E[Y]) (Ba)

Figure 2: Source Reductions: X 4 {0, Biigts Baat, Bid» Pat-

axioms A3, X corresponds to Moggi’s untyped computational A-calculus as
it appeared in his original Edinburgh LFCS Technical Report [36].
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The Completeness Lemma summarizes the connection between the no-
tions of reductions on ¢ps(A) and the new reductions.

Lemma 12 (Completeness) Let P € cps(A).
L If Ay b P — Q then AB,Bufa b CH[P] — C7'[Q].

I A8k F P — Q then C1[P] = C1[Q].

If Mjw b P — Q then A, - C-1[P] — C1[Q].

If Ay b P — Q then AB,BipBiafa F CH[P] — C7HQ].

e e

Proof: The proof of each case i1s independent from the proofs of
other cases.

1. ng-reduction: The proof is outlined at the beginning of the sec-
tion.

2. B-reduction: By the definition of K=, K~[((Ak.K1) K»2)] =
K_l[[[(l[k’ = [{2]]]

3. ny-reduction: Applying ®~! to the left hand side, we get the
term ®~[(Ak.Wk)] which is equivalent to (Az.CT[((Wk) z)]).
We show that the latter term reduces to ®~*[W] by cases:

o W = 2z: then the reduction becomes the n,-reduction:
(Az.zz) — .
W = Ak.k: then both sides of the reduction are identical.

W = Xk.W1 K: then again both sides of the reduction are
identical.

o W = M Az.P: Az ((Az.C7'[P]) ) — Az.C™'[P] is an

ny-reduction.
4. By-reduction: See Appendix (Page 57).

The Completeness Theorem is a direct consequence of the above results.

Theorem 13 (Completeness) Let P € cps(A). If AGnF P — Q then
A3, X FCHP] — C7Q].

Proof: By pasting together the proofs of the Completeness Lemma. i
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6.2. Soundness

The set of source reductions in Figure 2 is sound with respect to the
equational theory over CPS terms. In fact, we can prove the following
stronger results on the correspondence of reduction steps.

Lemma 14 (Soundness) Let M € A.

1. If Ay F M — N then AG F C,[M] — Ci[N].
If Xn, B M — N then Anynip b Ci[M] — Cx[N].
If ABiipg b M — N then Ci[M] = Cx[N].
If ABfar = M — N then Ci[M] = Ci[N].
If ABig b M — N then Any, b Cx[M] — Ci[N].
If Ao b M — N then A, F Ci[M] — Cx[N].

S & e

Proof: The proofs for Gy and Baqs are in Lemma 4. The proof
for f,-reductions is in the Appendix (Page 60). The other proofs are
similar. Jj

The Soundness Theorem summarizes the results of this subsection.

Theorem 15 (Soundness) IfAG,X F M — N then Afnt Ci[M] —
Ci[N].

Proof: By pasting the proofs of the Soundness Lemma. |j

6.3. Equational Correspondence

The Completeness and Soundness Theorems in the previous sections are
formulated in the most precise way. In particular, the theorems relate
reduction steps in one calculus to reduction steps in the other calculus.
Together with Theorems 8 and 10 about the composition of the CPS trans-
formation and its inverse, they imply the results of Figure 3. In the figure,
the dotted lines correspond to the application of C; or C~!. The solid lines
represent sequences of reductions.

The correspondence of reduction steps reveals the close relation between
source terms in A-normal form and CPS terms. Unfortunately, this corre-
spondence of reduction steps relies crucially on the properties of the func-
tions Cy and C~!, and does not appear to hold for arbitrary CPS transfor-
mation and their inverses.
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M -V
By X
Buigt Pfiat Buft Baat
(C~YoCr)[M] X > (€1 o Cr)[V]
A 0
: B :
\i >
Co[M] Cr[N]

Figure 3: The Correspondence of Reduction Steps.

In contrast, the correspondence of equalities in the source and CPS cal-
culi holds for any transformations ¢ps and uncps that satisfy the following
equations:

ABn F oeps(M) = Cy[M] )
AG,X b uncps(P)=C7[P]

For such transformations, it is straightforward to deduce variants of The-
orems 8, 10, 15, and 13 that relate equalities in one calculus to equalities
in the other calculus. The combination of the four theorems implies an
equational correspondence in the sense of Definition 1.

Theorem 16 (Equational Correspondence) The theory A3, X equa-
tionally corresponds to the theory Apn for any cps and uncps functions

satisfying (1).

The formulation of the calculus A3, X based on the six axioms in Fig-
ure 2 is only necessary for the correspondence of reduction steps. For the
equational correspondence, there is no reason to distinguish between the
reductions Bpqq, Bi4, and Bq as we can summarize the three reductions with
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the following axiom:
((Az.E[e]) M) = E[M] z & FV(E) (5a)

We will use the axiom (3g) in the remainder of the paper.

7. Non-Local Control Operators

After establishing the Equational Correspondence Theorem for pure call-
by-value languages, we turn our attention to languages with control opera-
tors. Specifically, we investigate the addition of the control operators abort
(A) and call-with-current-continuation (callce). Informally, A permits the
programmer to ignore the rest of a computation and return the value of
a subexpression as the result of the entire program, while callcec provides
the programmer with a procedural abstraction of the rest of the compu-
tation. Because the two operators manipulate the global control state of
the program, their CPS transforms are procedures that manipulate the
continuation in non-standard ways. As a consequence, the CPS language
includes new terms and the first Equational Correspondence Theorem no
longer applies. In the remainder of the section, we formalize these ideas
and conclude with a version of the Equational Correspondence Theorem
for the extended language. The development of the section follows the de-
velopment of Sections 4 to 6 with one exception. None of the intermediate
results is concerned with mapping the reductions of one calculus to the
reductions of the other. Rather the intermediate results only relate the
equalities of one calculus to the equalities of the other. At this point, it is
an open question whether the results can be re-established for reductions
(as opposed to equalities).?

7.1. The Extended Language and its Semantics

The extension of the source language with the functional constants callee

and A results in the language A + callec + A:

M == V| E[(V V)]
Vo= 2| (Aae.M) | callee | A
E o= (1] (v E) | (B M)

Instead of providing a formal semantics for callcc and A in terms of standard
reductions, we follow the more traditional route and immediately specify

®Griffin [26] established that, in the presence of control operators similar to .4 and
callce, standard reductions on source terms correspond to standard reductions on CPS
terms. His result does not imply that an arbitrary sequence of reductions in either
calculus correspond to another sequence of reductions in the other calculus.
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the translation of these values into CPS form and use this translation as
their formal semantics.!® The extensions to Cx (or JF) consist of two addi-
tional clauses to the function @ (or F,) [8]:

Ocallec] = (AkAu.((u k) Ad.k))
O[A] = (Ak.Az.z)

The CPS transform of callce is a procedure that expects a continuation k
and an argument u. The non-standard manipulation of the continuation
is manifest in the second argument to w, which is a procedural abstrac-
tion of the continuation. Similarly, the CPS transform of A is a procedure
that expects a continuation k and an argument z. The procedure ignores
its continuation argument (k) and immediately returns its value argument
(z). The non-use of k is again a non-standard manipulation of the contin-
uation. Given the CPS transformation, the formal semantics of the source
language is:

eval ,(M) =V if and only if eval,((Ae.C,[M]) Az.z) = ®[V].

In order to simplify the following discussions (and proofs), we use a CPS
transformation that is less compacting but more suited for the analysis than
the one in Definition 5.

Definition 11 (C; with Control Operators) Let k,u; € Vars be vari-
ables that do not occur in the argument to Cy,.

Ce[V] = (k o[V])
CelE[(Vi VoIl = (([Va] Kk[ET) @[V2])

Pf2] = =
O[Ax. M] = Ak Aa.Cy[M]
Olcallec] = AeAu.((u k) Ad.k)
O[A] = Ak Az.z

Kellll = &
KelEIV [DII = (VI Ki[ED
KelENWL] M = ALCIENS M)]]

Felleisen et al. [16, 18, 19] and Talcott [48] use alternative definitions that do not
rely on the CPS transformation.
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Besides the extensions to callce and A, the transformation differs from
the function in Definition 5 in the following aspect. The new function
translates expressions of the form F[(V M )] uniformly for all values V. By
not including a special clause for each kind of value, the CPS transformation
may produce terms with administrative redexes. However, the presence of
these administrative redexes is irrelevant since it does not affect the set of
reachable CPS terms, and we are no longer concerned with mapping the
reductions of one calculus to the reductions of the other calculus.

7.2. The CPS Language and the Inverse Translation

The closure of the output of Cj, under gn-reductions yields an extension
of the CPS language of Definition 8.

Definition 12 (CPS grammar cps(A + callec+ A)) The extended CPS
terms are generated by the following grammar:

P o= W[ (K W) (eps(A + callece+ A) = Answers)
W u= 2z | (M.K) (Values)
K == k| (Ax.P)| (W K) (Continuations)
v € Vars
ke  K-Vars = {k1,ka,...} and K-Vars N Vars =

A comparison with Definition 8 explains how the addition of callce and
A affects the set of reachable CPS terms and thus, how it affects the se-
mantics. Intuitively, callecc permits the programmer to “label” arbitrary
points in the program. Thus more than one continuation can potentially
be lexically visible at any point during the execution of the program. The
extended CPS language accommodates this fact by providing an infinite set
of continuation variables instead of a singleton. The addition of A permits
the programmer to ignore the current continuation by returning a value as
the answer of the entire program. This extension is reflected in the CPS
language by extending the syntactic category of answers to include values
directly. An equivalent way to understand the effect of A is that A ignores
the current continuation and uses the initial continuation (Az.z) instead.
We therefore may extend the syntactic category of continuations with an
“initial continuation” (Az.z). Because, our CPS language is closed under
fAn-reductions, the addition of the initial continuation results in programs of
the shape P = ((Az.z) W) — W and thus extends the syntactic category
of answers with values.

The inverse CPS transformation mapping the extended CPS language to
A+ callee + A is the following.
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Definition 13 Let P € cps(A + callec+ A). Let W and K be values and
continuations in the same language:

Wl = (Ao [w])
CTHE W) = KTK][@ [W]]

7 z] = =
S AeK] = Az.callee \k. KT K][2]

K=K = (k[
KW K)] = KK W] [])]
K~'[2z.P] = (A=C7HPD[])

The transformation differs from the function in Definition 9 in several as-
pects. First, the inverse of an answer W is a term that aborts with the
value @ }[W]. Second, a binding of a continuation & in the CPS language
corresponds to a capture of the continuation k£ in the source language. Fi-
nally, every continuation is explicitly invoked. The last two changes exploit
an idea due to Danvy and Lawall [14].1!

The discovery of the call-by-value axioms that correspond to fgn-reduc-
tions on CPS terms proceeds in the same manner as for the pure language.
The resulting axioms consist of the axioms X for the pure language and
the control specific axioms in Figure 4. The new axioms have the following
intuitive explanation. The first axiom shows that the current continua-
tion is always implicitly applied. The axiom C.j,, is a garbage-collection
rule: continuations captured but not used can be collected. The axiom
C'liye characterizes the capture of continuations via callec while the axiom
Caport shows that continuations abort their context upon invocation. The
last callce axiom implies that the continuation of an application is indistin-
guishable from the continuation of the body.'? The operator A eliminates
evaluation contexts.

The set of axioms Ceyprents Cetims Clifts Cabore and Abort constitute the
control-specific axioms of the A,-C-calculus [18, 19]. The full theory A3, X C

"Danvy and Lawall [14] perform a counting analysis to determine whether a contin-
uation is used in a non-standard way and include a callcc only when necessary. This
analysis is unnecessary for our purposes. The outputs of our inverse transformation are
provably equal to their outputs (in our axiom system), thus achieving the same effect
without the counting analysis.

12 and a good implementation would use the same continuation: we can also interpret
this law as imposing tail-call optimization on faithful implementations.
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(callec \k.kM) = (callce \k.M) (Ceurrent)
(callce \dd.M) = M d g FV(M) (Cetim)
El(callce M)] = callce \k.E[(M (M f.(k E[f)))] (Cupe)

k,f & FV(E, M)
callec \k.C[E[(k M)]] = callecc \k.C[(k M)] k e FV(C[k]) (Cavort)
(callece Ak.(Az.M) N)) = ((Az.(callec Ak.M)) N) kg FV(N) (Ctail)
E[(AM)] = (AM) (Abort)

Figure 4: The Axioms C': {Ceyrrent, Cetim, Clitts Caborts Ctait, Abort}.

corresponds to the restriction of the theory IOCC [48] to the language
A+ callece + A.

The relationship of Cj, to the function C~! is subject of two lemmas. The
first lemma establishes that a CPS term P is Sn-equal to (Cx o C™1)[P]
if it contains no free continuation variables, e.g., P = z. The lemma
proves a more general result that accounts for terms with free variables.
The generalization is necessary for CPS terms like P = (ky z) or P =

(k1 (Md.ky)).

Lemma 17 Let P € cps(A + callec+ A) and K be a continuation, and W
be a value in the same language. Also, let ky,. .., k, be the free continuation
variables in these terms, and k & {ky,...,k,}. Then,

1. AByE (Cpo CY[P][ky := (Adky), ... ky = (Ad.ky)] = P.

2. Ak (Ko KUK ][ky := (Ad.ky), ... ky := (Ad.ky,)] = K.

3. ABn k(D0 & N)[W][ky = (Ad-ky), .. .. ky = (Ad.ky,)] = W,
Proof: See Appendix (Page 61). I

The second lemma relates the terms M and (C™' o Cx)[M] via the ax-
ioms X for the pure language and the control-specific axioms €' in Figure 4.

Lemma 18 Let M € A+ callec+ A, E be an evaluation context in the
same language, and k a variable that is not free in either. Then,

¢ M3, XCF (C o C)[M] = (k M)
o M3, XCF (K'oKp)[E] = (k E)

Proof: See Appendix (Page 62). 11
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7.3. Equational Correspondence

We establish that the calculus A3, X C proves all the equations that g7
can prove on CPS terms. The key lemma is the following Completeness
Lemma.

Lemma 19 Let P € cps(A + callecc+ A), and let ky ...k, be the free con-
tinuation variables in P. Then, ApnF P = () implies that:

A3, XC F callee Nky. .. .callecc Mk, CT1[P] =
callee Nky. . . .callee Mk, .C71[Q]-

Proof: We consider each notion of reduction separately.

1. The reduction is: ((Az.P) W) — P[x := W]. The proof of this
case is in the Appendix (Page 64).

2. The reduction is: (Ak.Wk) — W where £ is not free in W. We
can apply ® ' or C~! to both sides of the equation since W can
be an answer or a value.

e IV is an answer. Then,

CLH(AkWE)] (A Xz callee Xk XLE][(@7 W] 2)])
(A Xz 071 [W] 2)
(A @~ [W])

e IV 1s a value. Then
SNk Wk] = Az.callee M\ KTHE][(@ W] 2)]

and a similar argument as in the preceding subcase applies.
3. The reduction is: (Az.Kz) — K where # is not free in K.

Then K~ [Az.Kz] = (Az. K7 K][z]) [ ]) is equal to K~1[K]
by B

4. The reduction is: ((Ak.K1) K3) — K[k := K3]. The proof is
in the Appendix (Page 65).

The soundness of the new axioms is the subject of the following lemma.

Lemma 20 Let M, N € A + callecc + A, then AG,XC F M = N implies
that X\Bn F C[M] = Cx[N].

The above lemmas imply that the calculi A3, XC and Afn satisfy an
Equational Correspondence Theorem.

Theorem 21 (Equational Correspondence) The theory A3, X C equa-
tionally corresponds to the theory Apn for any cps and uncps functions

satisfying (1).
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8. A Realistic Language

To be useful, a Correspondence Theorem should hold in the presence of
programming languages constructs such as conditionals, constants, and mu-
table data objects. To address this issue, we consider a small, but typical
subset of Scheme, Core Scheme, that we define in the first subsection. The
second subsection introduces the CPS language for Core Scheme. Unlike
in previous sections, the CPS language cannot be a subset of A, and as a
result, the CPS equational theory includes more axioms than just g and 7.
Finally, in the last subsection we discuss how the different constructs affect
the Correspondence Theorems. The development in the section includes
enough details so that it can be adapted to the reader’s favorite language.

8.1. Core Scheme: CS

Core Scheme’s basic constants include numerals and booleans; functional
constants include operations to manipulate the basic constants, e.g., addi-
tion, as well as operations to create, access, and update data-structures,
e.g., lists, reference cells. The formal definition extends the grammar in
Section 7.1:

M == .| E[GEV M M| EOV)]|EOV V)]
Vo= e

E = . |GEEMM)|(OF)|(OFEM)|(OV E)
¢ = true | false | [n]

O == integer? | addl | / | ref | deref | setref!

n € N

Informally, integer? recognizes integers, addl denotes the increment func-
tion, / is the integer division operator, ref creates a reference cell, deref
returns the contents of a reference cell, and setref! updates the contents of
its first argument (a reference cell) with the value of its second argument.

The set of axioms F in Figure 5 specifies the semantics of the new con-
structs. For convenience, we write p{(z1,V1),..., (@, Vy,)}.M as an abbre-
viation for:

(.. ((Azq.---Azy,.(begin (setref! 24 Vi) ... (setref! 2, V) M))
(ref 0))

(ref 0))
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where (begin M7 ... M,) is itself an abbreviation for:

(co.((Azq. - Axpzy) My) ... M)

(if true M N) = M (Ify)

(if false M N) = N (If¢)

(add1 Tnl) = 41 (Add)

(/ Tnl Ty = Tn/ml m#0 (Div)

(/ Tl Tol) = (AT5)) (Div.)

(integer? Inl) = true (Inty)

(integer? V) = false V # In (Inty)

(ref V) = p{(x,V)}.2 ¢ FV(V) (ref)

p U{(2, V) }. E[(deref 2)] = pb U{(z,V)}.E[V] (deref)
p U{(2, V1) }. E[(setrefl & Va)] = pf U {(x, Va2)}.E[V2] (setref)
pl1.p0s. M = pB; U0y M (ref )

Figure 5: Additional Axioms F for CS.

The first three sets of axioms are straightforward; the last set specifies
the semantics of reference cells [9, 33].

The combination of the equational theory AB, X C' with the new axioms
F results in an inconsistent equational system due to 7,. For example,
using 7,, we can show that for any two terms M and NV:

M = (if true M N) (If,)
= (if (integer? l01) M N) (Inty)
= (if (integer? (Az.(f0! 2))) M N) (1)
= (if false M N) (Inty)
=N (If¢)

To avoid the consistency problem, we restrict the equational theory for the
source language by eliminating 7,.
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8.2. The CPS Language: (5}

Given our extensions to the source language, the CPS language cannot
be a subset of A unless the CPS transformation encodes all new constructs
in the source language using procedures. Since such an encoding is not
a proper CPS transformation, the CPS language must include constructs
that correspond to the extensions of the source language.

The set of CPS terms extends the language in Definition 12 with the
following additional clauses:

P = | WPP)| (O KW)| (O KW W)
W o= .. ]e¢
K =
¢ = true | false | [n
Op == integer?y | addly | /i | refy | derefy | setref!y

The semantics of the new constructs in the CPS language matches the
semantics of the corresponding constructs in the source language. The set
of axioms F} in Figure 6 specifies this semantics precisely. For convenience,
we also use p{(z1,Wh),...,(z,, W,)}.P as an abbreviation for:

(refr, (Azy.--- (refy (Az,.(setrefly (Ad.--- (setrefly (Ad.P)
T Wa))
z1 W1))

0))
0)

where d is not free in any of the z;, W, or P.

The CPS language includes a constant Oy for every functional constant
O in the source language. The main difference between Oy and O is that
the former takes an additional continuation argument that receives the re-
sult of the primitive application (if any). Thus, (Op K W) is essentially
equivalent to (K (O W)). We do not use the latter term because, contrary
to the spirit of CPS translation (cf. Theorem 1), its evaluation is sensi-
tive to the parameter-passing technique. For example, the evaluation of
(Ad.T81y (/ T11 Tol)) yields an error (151) under call-by-value and yields
[8] under call-by-name. Similarly, assuming that x is a reference cell whose
contents is [11, the evaluation of the term:

p{(z, TV .((Ad.(deref 2)) (setref! 2 [21))

yields 2] under call-by-value and yields 1] under call-by-name.
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(if true PQ) = P (Ifk,)
(if false P Q) = Q (Ifk )
(add1; K Tnl) = (K Tn411) (Addk)
(/x KTl Imly = (K Tn/mly  m#0 (Divk)
(/x K Tl Toly = T5 (Divk.)
(integer?; K Hﬂ) = (K true) (Intky)
(integer?;, K W) = (K false) W # [l (Intf,)
(refp K W) = p{(z, W)}.(K ) (refk)
r g FV(IW)
PO U{(x, W)}.(derefy, K ) = pf U {(z, W)}.(K W) (derefk)
p U {(z, W)} (setrefly, K o Wa) = p0 U {(x, Wa)}.(K Wa) (setrefk)
ply.p05. P = ply UBy. P (refky)

Figure 6: Additional Axioms Fj for CSy.

8.3. Equational Correspondence

After setting the basic framework, we can define two translations, a CPS
transformation and an inverse, between the languages €S and CSy.

The CPS transformation of the new constructs in €S is the following:
CelE[GEV M NI = (if @[V] Ci[E[M]] Cx[EIN]D)

] =
Ce[ELO W] = (Or Ke[E] @[V
Ce[EIO Vi Va)ll = (Ox Ki[E] @[V1] @[V2])

Pfc] = ¢
Kp[EIGf [] M N)]] = (AuCi[E[Gf u M N)]])
KilELO [DI] = (AuCi[EO w)]])
KilELO [T M)]] = (AwC[E[(O w M)]])

KilELO VD] = (AuC[E[O V w)]])

The clause for conditionals duplicates the evaluation context F in both
branches of the conditional expression. This duplication is due to two
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factors:13

1. First, the Fischer CPS transformation for conditionals duplicates the
continuation variable k:

FI(if M N L)] = Me.F[M] (M. w F[N]k FLL]k)).

2. Second, the transformation Cj eliminates all the administrative re-
dexes from the output of the Fischer CPS transformation.

The extensions to the CPS language result in simple extensions to the
inverse CPS transformation:

CTUGE W Py Ry)] = (if 7' [W]CT[A] CT'[R])
C(Ox K W)] = KT'[K][(O @' [W])]
C'(Op K Wy Wy)] = KTYK][(O &~ [W,] @ [W,])]

'] = ¢

In order to establish the correspondence between the source and CPS cal-
culi, we need to prove results similar to Lemma 17, Lemma 18, Lemma 19,
and Lemma 20. The previous results cannot be extended immediately
since we must eliminate 7, from the call-by-value equational theory. Fur-
thermore, both the source and CPS equational theories include additional
axioms for constants and conditionals (F and Fj respectively).

By revisiting the proofs of the four lemmas, we establish the following:
e The proof of Lemma 17 does not rely on n,,.

e The proof of Lemma 18 only uses a restricted version of 7, on con-
tinuations, A, and callce:

(callece (Ak.Cl(Azx.kz)])) = (callec (Ak.C[k])) (1)
k & trap(C)

(Az.callee Ak.ak) = callce (Mwg)

(Az.Az) = A (7v3)

13 Alternative translations that do not cause this exponential increase in the size of the
code are:

CR[E[GE V. M NI = ((Ak.(if ®[V] Cx[M] Cx[NT)) Kx[£])
or ((if ®[V] (A\k.CK[M]) (Ak.CL[NT)) Kx[E]).

The first translation is used by compilers [46] but also duplicates the entire evaluation
context once we close the language under fn-reductions. The second translation relies
on Allison’s [1] CPS translation that keeps the local transfer of control independent of
the continuation.
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The proof also requires the introduction of the following axiom for
conditionals:

E[Gf M N L)} = (if M E[N] E[L]) (f ige)

The axiom is introduced by the compacting phase of the CPS trans-
formation and is thus an administrative call-by-value reduction (cf.
Definition 7).

o The proof of Lemma 19 shows that n,-reductions occur in the source
language only as a result of n,-reductions on CPS terms.

¢ The proof of Lemma 20 shows that n,,-reductions on CPS terms occur
only as a result of n,-reductions on source terms.

As a consequence, the complete equational theory for Core Scheme ACS
with respect to its CPS language consists of all the previously derived
axioms except 1,; the corresponding CPS equational theory consists of the
axioms fgnF excluding n,,.

9. Summary of the Results

The full equational theories for C'S and €5} are in Figures 7 and 8. The
correspondences between the different axiom systems for the sublanguages
in the previous sections are summarized in the following table.

Language Call-by-Value Theory | CPS Theory || n,/n, | Typed

A X~ Bk v v
A+ callecc+ A X—C! B Vv Vv
cs X-C'F* BreF

csT X-C'Ft B Fy v
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The Axioms X~ :

(AeM)V) = Mlz:=V] (By)
((Az.E[z]) M) = E[M] (5a)
El((Ae.M) N) = ((Az.E[M]) N) (Buft)
The Axioms C:

El(callee M)] = callec Nk E[(M (Af.(k E[f])] (Cup)
(callee Xe.(Ae. M) N)) = ((Axw.(callec Nk.M)) N) (Ctai)
(calleec Xk.kM) = (callece Xk.M) (Ceurrent)
(callee \d. M) = M (Cetim)
callecc A\k.C[E[(k M)]] = callee Xk.C[(k M)] (Cabort)
E[(AM)] = (AM) (Abort)
(callee (Ak.Cl(Ax.kz)])) = (callece (Mk.C[k])) (Mv1)
(Az.callecc Mk.xk) = callee (M)
(Az.Ar) = A (M03)

The Axioms F't:
(if true M N) = M (If+)
(if false M N) = N (If ¢)
EGEM N L)) = (f M E[N] BL) (IF )
(addl Tnly = Tn4 11 (Add)
fnl Ty = In/ml m#0 (Div)
(/ [n‘l [0]) = |—5-| (Dive)
(integer? rn]) = true (Inty)
(integer? V) = false V £ Inl (Inty)
ref V) = p{(2,V)}.2 g FV(V) (ref)
p U{(z,V)}.E[(deref )] = pfU{(z,V)}.E[V] (deref)
p U{(2, V1) }. El(setrefl & V3)] = pf U{(, Vz)}.E[Vz] (setref)
p01.p02. M = pb UbBs. M (refy)

Figure 7: The Theory ACS.

The left column gives the name of the source language. The language
CST is a simply typed variant of CS. The next two columns list the call-by-
value axioms and the corresponding CPS axioms. The names of the axioms
refer to the definitions in Figures 7 and 8. The column 7,/n, includes a
check mark if it is possible to extend the theories with 7, and 75, respec-
tively. The rightmost column includes a check mark if the correspondence
holds for the simply typed variant of the language.

For the simply typed languages, our calculi are also “semantically com-
plete” with respect to denotational CPS models [35]. The result is a con-
sequence of the completeness of the A-calculus with respect to the full type
structure [42].
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The Axioms Bny:

(Ae.P)W) = Plz:=W] (Buw)
(M\e.Kz) = K (k)
The Axioms F}:

(iftrue PQR) = P (Ifk,)
(if false P Q) = Q (Ifk )
(addlk Klnly = (KTn4+11) neN (Addk)
(/r K Tnl rm]) = (K In/mlym #0 ( Divk)
(/r K Tnl f(ﬂ) = [5l (Divk,)
(integer?, K [nl) = (K true) (Intk:)
(integer?, K W) = (K false) W # [nl (Intk;)
iKWY =l (el

g Frv(w)
p U {(x, W)} .(derefy, K 2) = p9 U{(z, W)}.(K V) (derefk)
p U {(2, W)} .(setrefly K o Wa)] = pb U {(x, Wa)} (K Wa) (setrefk)
pb1.p62. P = pbUB,. P (refky)

Figure 8: The Theory ACS}.

10. Example: Coroutines from Continuations

The equational theory of Core Scheme ACS provides a basis for the se-
mantic manipulation of programs by programmers and programming tools
alike. For example, programmers may use the theory to evaluate programs
in a symbolic manner, to prove the equivalence of two programs, or to sim-
plify a program by a series of meaning-preserving transformations. The
first subsection includes an intuitive explanation of a program that imple-
ments coroutines using first-class continuations and the second subsection
includes a simplification phase based on the CS axioms.

10.1. The Original Program

For convenience, we use a superset of Core Scheme that includes assign-
ments to variables via set!, and various other syntactic extensions [40]:

A
(Ae.N) M)

(A d.N)M) where d ¢ FV(N)

df
(et ([z M]) N) £
(begin M N)

[15:
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(e MN) L (\z.(begin M N))
4

(letrec ([ (Ay.M)]) N) / (let ([x "any])
(begin (set! 2 (A\y.M)) N))

The original definition of coroutines using first-class continuations is the
following [27]:

(define make-coroutine
(lambda (f)
(callec (lambda (maker)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)

(set! LCS k)
(dest val))))])

(f resume (resume maker (lambda (v) (LCS v))))

(error "fell off end")))))))

Intuitively, the procedure make-coroutine accepts an argument that con-
tains the programmer’s coroutine code. For example, the pseudocode in
Figure 9 implements one player in a hypothetical game.

(define Player-1-Code
(let ([Board (make-board)])
(lambda (resume his-first-shot)
(letrec ([loop (lambda (his-shot)
(if (his-shot-is-fatal?)
(I-lost-the-game)
(loop (resume Player-2 (compute-my-shot)))))])
(loop his-first-shot)))))

(define Player-1 (make-coroutine Player-1-Code))

Figure 9: Pseudo Coroutine Code.

The procedure resume handles the transfer of control from one coroutine
to the other. As the definition of make-coroutine shows, resume takes two
arguments: a destination that denotes the coroutine to be resumed and a
value to be passed to the resumed coroutine. Before actually resuming the
destination, resume saves the current continuation in the local control state
LCS of the active coroutine, which makes it possible to resume the current
coroutine later in the execution.
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10.2. Simplifying the Program

The transformation of the program proceeds by applying one of the ax-
ioms of the ACS-calculus at each step. For clarity, the redex is surrounded
by a box. During the transformation, set! is treated as a free variable.
Alternatively, we could use the axioms of the A,-S-calculus [17], but for
this example, they are superfluous.

(define make-coroutine

(lambda (f)

(callec (lambda (maker)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
(dest val)))])

(f resume (resume maker
(lambda (v) (LCS v))))
(error "fell off end"))))) )

by two uses of (Cia)

= (define make-coroutine
(lambda (f)
(let ([LCS ’any])

(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)

(dest va)))))

(callee
(lambda (maker)
(f resume (resume maker
(lambda (v) (LCS v))))
(error "fell off end")))) )))

by three uses of (,)
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= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
(dest val)))])

(callee

(lambda (maker)

(f resume
(callec (lambda (k)
(set! LCS k)
(maker (lambda (v) (LCS v))))))
(error "fell off end") 0)))))

= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
(dest val)))])

(callee
(lambda (maker)
(callee
(lambda (kk)
(f resume ((lambda (k)
(set! LCS k)
(maker (lambda (v) (LCS v))))
(lambda (z)
(kk (begin (f resume z)
(error "fell off end"))) |)))
(error "fell off end™)))))))))

by (Bus) applied to the expansion of begin
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= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
(dest val)))])

(callee
(lambda (maker)
(callee
(lambda (kk)
(f resume ((lambda (k)
(set! LCS k)
(maker (lambda (v) (LCS v))))
(lambda (z)
(begin (f resume z)

(kk (error "fell off end")) ‘))))
(error "fell off end")))))))))

by (Abort)

= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
(dest val)))])

(callee

(lambda (maker)

(callee
(lambda (kk)
(f TESUINE
((lambda (k)
(set! LCS k)
(maker (lambda (v) (LCS v))))
(lambda (z)
(begin (f resume z)
(error "fell off end")))))
(error "fell off end"))) )
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= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
(dest val)))])
(callec (lambda (maker)

(f resume

((lambda (k)
(set! LCS k)
(maker (lambda (v) (LCS v))))
(lambda (z)
(begin (f resume z)
(error "fell off end")))) |)))))))

= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
(dest val)))])

(callee
(lambda (maker)

(f resume

(begin
(set! LCS
(lambda (z)
(begin (f resume z)
(error "fell off end"))))
(maker (lambda (v) (LCS 0)))) )




46 SABRY AND FELLEISEN

= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)

(dest val))))])
(callee
(lambda (maker)
(f TESUINE
(maker
(begin
(set! LCS
(lambda (z)
(begin (f resume JU)
(error "fell off end"))))
(lambda (v) (LCS v))))) )N))

by (Cabom‘)

= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)

(dest val))))))

(callee
(lambda (maker)
(maker
(begin (set! LCS
(lambda
(begin

z)
f resume z)

error "fell off end"))))
(LCS v)))))) )

N T TN T

(lambda (v

by (Ccurrent) and (Celim)
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= (define make-coroutine
(lambda (f)
(let ([LCS ’any])

(let ([resume (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
(dest val))))])
(begin (set! LCS (lambda (z)
(begin (f resume z)
(
)

error "fell off end"))))
(lambda (v) (LCS v)))) )

by (3.)

= (define make-coroutine
(lambda (f)
(let ([LCS ’any])
(begin (set! LCS (lambda (z)
(begin (f (lambda (dest val)
callce
( (lambda (k)

(set! LCS k)

) (dest val))))
(error "fell off end"))))

(lambda (v) (LCS v))))))

by the letrec macro definition

= (define make-coroutine
(lambda (f)
(letrec ([LCS (lambda (z)
(begin (f (lambda (dest val)
(callec (lambda (k)
(set! LCS k)
) (dest val))))
(error "fell off end")))])
(lambda (v) (LCS v)))))
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11. Conclusion and Future Research

The Equational Correspondence Theorems establish that equational rea-
soning about call-by-value programs can be as powerful as reasoning about
their CPS counterparts.

Consequently, any CPS-based programming tool that performs sequences
of fgn-reductions can be substituted by an equivalent tool that does not
require an explicit conversion to CPS. The applications to compilers, partial
evaluators, and other transformation systems are numerous. For example,
direct compilers like Chez Scheme [28] or Zinc [32] can benefit by including
the reductions €9 in their basic repertoire of optimizations. Similarly,
partial evaluators that use transformations like 8 and ¢, produce residual
programs of better quality [7]. Finally, the set of axioms CS could be the
base of an expression simplifier (for compilers and other tools) extending
that of Galbiati and Talcott [25].

Our result questions the practice of transforming programs to CPS in
order to simplify and improve code generators, partial evaluators, data
flow analyzers, and other tools. In fact, we have established that the code
generators of typical CPS compilers perform an implicit inverse CPS trans-
formation, and that the true intermediate representation of a typical CPS
compiler is the subset of source terms in By Ba4¢-normal form [22]. Fur-
thermore, although the literature contains claims that the CPS framework
improves the accuracy of data flow analyzers [38], we conjecture that the
observed improvements are orthogonal to the “passing of continuations”
but are rather side-effects of the axioms CS. We are currently investigating
the relationship between the CPS transformation and the precision of data
flow analysis.
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A. Proofs

Proof of the auxiliary claims in Proposition 3 (Page 17). Let M € A:
o AT E(FIM] k) = Ci[M].

e Ci[M]is in B7-normal form.
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Proof: The proof is by induction on the size of the argument to
Cr,. Since the transformation of a term by Cj refers to evaluation con-
texts, we extend the Fischer CPS transformation to accept evaluation
contexts and strengthen the inductive hypothesis to take evaluation
contexts into account.

The extension of the Fischer CPS transformation is the following:

F: EvCont — A

FI = Xk
FIV E)] = Xk(F[V] Am.(FLE] An.((m k) n)))
FI(E M)] = Xe(F[E] Am(F[M] An.((m k) n)))

The extended function satisfies the following property which we state
without proof:

o A F (FIEIM]] K) = (FIM] (F[E] K))
o A3+ (FIE[ET] K) = (FIE'] (FIE] K)).

We can now prove the following statements by induction on the size
of (G, where (G is the argument to Cp or Ky:

o AGF (FIM] k) = Cx[M] and AG7 = (FE] k) = Ki[E];
e C;[M] and K3[E] are in B7-normal form.

The proof proceeds by case analysis on the possible inputs to the
functions Cp or Ky:

1. G =V: then, ABk (F[G] k) = (M .k F,[V]) k) = (k F,[V]).

By cases:

(a) V = a: then (k F,[V]) = (k ) = C[z]. Moreover, Ci[x]
is in F7-normal form.

(b) V = Az.M: then (k F,[V]) = (k Ae.dx. F[M]ec). By the
inductive hypothesis A37 + (F[M] ¢) = C.[M], and C.[M]
is in Bp-normal form. The result follows since Ci[V] =
(k AeAx.Cr[M]).

2. G = E[(x V)]: then,

ABTH(FIGT k) = (Fl(=z VD (FLE] k) = (= FIETk) F[VD).

There are two cases:

(a) V ¢ Vars: then |F| < |G|. By the inductive hypothesis,
AB7 = F[E]k = Ki[E], and Kix[E] is in B7-normal form.
By an argument similar to case 1, Ag7 F F,[V] = ®[V],
and ®[V] is in B7-normal form. The result follows since

Cr[G] = (= Ki[E]) @[VD).
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(b) V € Vars: then |E| = |G| and the inductive hypothesis
does not apply. By inlining the arguments in cases 4 to 7,
ASTE (FIE] k) = Ki[E], and K[ E] is in f-normal form.

The result follows as in subcase (a).

3. G = E[((Ax.M) V)]: then,

AFTE FIGIk = (FI((Ax.M) V)] (FLE]K))
= (Qz.FIE[M]]k) 7, [V])-

The result follows by the inductive hypothesis and an argument
similar to case 1.

4. G = []: then Ag7 F (F[G] k) = ((Mk.k) k) = k = Ki[G].
Moreover K1[G] is in ff-normal form.

5. G = E[(x [])]: then,
AGTE(FIGT k) = (FI(x [ D] (FIELK)) = (x FIETk).

The result follows by the inductive hypothesis.

6. G = E[(Ax.M) [])]: then Agn  (F[G] k) = Az F[E[M]]k),
and the result follows by the inductive hypothesis.

7. G=FE[([] M)]: then,

ABTF (FIG] k)

(FI0) M) (FIETR))
Ru.FIM] (u (FIETE))
= (u(FIE[(w MY b)),

The size of E[(u M)] is smaller than the size of E[([] M)] by 1.
The inductive hypothesis implies A3 = (F[E[(u M)]] k) =
Cr[F[(w M)]], and Cx[E[(w M)]] is in fp-normal form. There-
fore, ABn F (F[G] k) = Ki[G]. By a simple case analysis,
Crl[E[(uw M)]] is never of the form (K u) for some term K.
Therefore, no new 7-redex is created in Au.Cr[E[(u M)]] and
the term is in B7-normal form.

Proof of the second claim in Lemma 4 (Page 17). Let M,L € A, E €
FPvCont, and z € Vars:

Cel((= M) L)]
Kil((= £) L)]

Cr[((Au.ul) (2 M))] where u ¢ FV(L)
Kil((Auw.ul) (2 )] where u ¢ FV(L)

Proof: The proof is by induction on the size of M and E and
proceeds by cases:
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1. M =V, then C;[((# V) L)] is identical to:

(= K11 D)D) @[V]) = (= AwCell(w L)]) [V]).
The right hand side Cy[((Au.uL) (z V)] is:

((z Ke[((Awul) [D]) @[V]) = ((z AuCe[(uL)])) @[V])-

The two sides of the equation differ by the overline above the
abstraction Au. The terms are identical because the abstraction
Au cannot be part of an administrative 77 redex in the first term.

2. M = E[(y V)], then Ci[((= E[(y V)]) L)]

((y Ke[((= £) L)]) [V]) S
((y Krl[((Auwul) (z E)N]) ®[V]) (induction)

3. M = E[(\e.N) V)], then Ci[((+ E[(Ae.N) V)]) L)]

((Az.Cx((= E[N]) L)]) @[V]) S
((Az.Cr[(Auwul) (z EINT)]D @[V]) (induction)

4. B =[], then Kx[((= []) L)] = (« Ke[([] D)D) = (= Au.Cr[(ul)]).
The right hand side is (z Au.Ci[(uL)]). The result follows be-

cause the overline does not create an administrative redex.

5. E = Ey(z [])], then Ki[((= Er[(z []D]) L)]

(2 Ki[((= Ev) L)) S
(z Ke[((Au.wL) (z F1))]) (induction)

6. B = E[((Az.N) [, then Ki[((z E1[((Ax.N) []]) )]

(w.Cl((= B[V D)) o
Az Ce[((Auw.wl) (z E1[N]))]) (induction)

7. E= Ey[([] N)], then Ky [((= Ex[([] N)]) L)]

A Cl(= EA[(f N)]) L)]
ALCe[(Auwul) (2 E1[(f N)]))]  (induction)

Proof of the auxiliary claim in Theorem 5 (Page 19).

e Lorall P € eps(A), there exists M € A such that Agn - Cy[M]—P.

o lor all K € eps(FvCont), there exists £ € EvCont such that Agn -
Kiy[F] — K.
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Proof: The proof is by lexicographic induction on (G, |G|} where

G is an element P of cps(A) or an element K of cps(FvCont), G is
the number of abstractions of the form Ak.K in G, and |G| is the size
of G. The proof proceeds by case analysis on the possible elements of
eps(A) and eps(FvCont):

1. G = (k W): there are four cases:

(a) W = x: take M = x.
(b) W = Ak.k: take M = Az.z.
(c) W = MWL K: let P, = (WL K) ), then Py < G be-

cause P, has one less abstraction of the form Ak.K than G.
Therefore, by the inductive hypothesis, there exists an M
such that A8y Cy[M ] — Py. Take M = Ax. M.

(d) W = Ak.Az.Py: by the inductive hypothesis, P is reachable
from a term M;. Take M = Ax. M.

2. G = ((x K) W): by the inductive hypothesis, K is reachable
from an evaluation context E. By an argument similar to the

first case, W is reachable from a value V. Take M = E[(x V)].
3. G = ((MAk.K1) K2) W): by the inductive hypothesis, K» is

reachable from an evaluation context E5. By repeating the ar-
gument for the first case, the values Ak.Ky and W are reach-
able from V7 and V respectively. Let M be the following term
((Az.((Ay.Ea[(y #)]) V1)) V). Then Ci[M]

~—

= ((Qz((Qu((y Ki[E:]) =) @[VA])) @[V])
— ((Az.((Ay.((y K2) 2)) Ak K1) W) (induction)
— ((Az.(((Ak.Ky) Ka) 2)) W) (8

— ((Ak.Ky) K2) W) (8

4. G = ((Az.Py) W): by the inductive hypothesis, there exists
an M; that reaches P;. By repeating the argument for the
first case, there also exists a value V' that reaches W. Take
M = ((Ax.My) V).

5. G =k: take E =1].

6. G = (¢ K1): by the inductive hypothesis, there exists an F
that reaches K. Take E = Ey[(= [])].

7. G = ((M.Ky) Ks): similarly to case 3, take E to be the evalu-
ation context ((Az.((Ay.E2[(y «)]) V1)) [ ])-

8. G = (Az.P1): take B = ((Ax.My) []) where M; reaches P by

induction.

Proof of Lemma 6 (Page 19). Let Py € cps(A), Wi € eps( Values) and
K4 € cps(FEvCont), then,
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1. ABnF Py — P, implies P; € cps(A).
2. Ak Wy — W implies Wy € eps( Values).
3. ApnF Ky — Ky implies Ky € eps( EvCont).

Proof: The proof is by induction on the structure of the terms P,

W1 and [\71

1. Let P, € cps(A) and assume AfBn - P — Ps. By definition,
P; must be of the form (K; Wy) with Ky € eps(FvCont) and
Wy € cps(Values). Three kinds of reductions are possible:

o \Gn F (Ky Wy) — (K3 Wy) because K3 — Ky. By
the inductive hypothesis, Ky € ¢ps(FvCont) and therefore
P; € eps(A).

e A\Gn k(K1 Wy) — (K1 Ws) because Wy — Ws. The
result follows by the inductive hypothesis.

o A\Gnt ((Az.P) Wy) — Plx := Wi] because K1 = (Az.P).
By a simple inductive argument, the substitution preserves
the syntactic category.

2. Let Wy € cps(Values) and assume AGn = Wy — Wi, The
term W cannot be a variable, thus W7 = Ak.K; where K| €
cps(FvCont). Either:

e A\fn F Ak.Ky — Ak.Ks because K1 — K». The result
follows by the inductive hypothesis.

o A\Bn F Ak Wsk — W3 because Ky = (W3 k) and W5 €
cps( Values) by definition.

3. Let Ky € cps(EFvCont) and assume Afn F Ky — K. The
term Ky cannot be a variable, thus there are two cases:

e K1 = Az.P; and there are two subcases:
— AfBn b (Az.Py) — (Az.Ps) because Py — P;. The
result follows by the inductive hypothesis.
— AfBn F (Ae.Kz) — K because Py = Kz and K €
cps(EvCont) by definition.
e K = (W K) and there are three cases:
- ABnp (W K) — (W1 K) because W — W; and the
result follows by the inductive hypothesis.
— ABnp (W K) — (W Kj3) because K — K3 and the
result follows also by induction.
— ABn F ((Me.K3) K) — Ks[k := K] because W =
Ak.K3. By an inductive argument, the substitution
preserves the syntactic category.
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Proof of Theorem 8 (Page 21). Let P € e¢ps(A), K € cps(EvCont).
Then,

L ABnF (CroC™H[P] = P and A8y = (Ko K~YH[K] = K;

2. (CroC ™ H[P] = P and (Ko K~Y[K] = K if there exists M € A and
E € EvCont such that P = Cx[M] and K = Ki[F].

Proof: The proof of the first claim is by lexicographic induction on
the number of abstractions of the form Ak.K and the size of the G
where G is an element of ¢ps(A) or eps(Fvcont):

1. G = (k W), then there are four cases:
(a) W =z: Then (Cx o C™H[G] = (k 2) = G.
(b) W = Ak.k: Then (Cy o C™1)[G] = (k Mk Az kx) = (k Ak k).
(¢) W =X W, K: Then,

(Cr o CHICT

(k MeAz.(Cp o CTH[(Wh K) 2)])
(k /\/E:/\dx.((tW1 )K) r))

(k k(W K)).

(d) W = Ak dz.Py: Then,
(Cr 0 CTH[G] = (k Mk Az.(Cr o CH[PL]),
and the result follows by the inductive hypothesis.
2. G = ((x K) W): Then,
(Cr o CTHIGT = ((x (K o KTHIKD) (@0 @H[W]).

By the inductive hypothesis Agn F (Ko K~1)[K] = K, and by
an argument similar to case 1, ABn (® o @~ H[W] =

3. G =(((Ak.K1) K3) W): Then,

(Cr o C™H[G] (K o K=H[ K1k := K3]] (® 0 @~ H)[W])

(
(K1[k := Ko] (@ 0 @~ H)[W])
(
(

(induction)
K, [k = K] W) (similar to case 1)

4. G = ((Az.Py) W): Then,
(oG] = ((a(CoC-HIRAD (@00

((Az.Py) (Po <I>_1)[[W]]) (induction)

(Aw.P) W) (similar to case 1)
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5. G = k: Then (K o K~ H[G] = G.

6. G = (x Ky): Then (Ky o K™H[G] = (z (K o K~H[K,]) and
the result follows by the inductive hypothesis.

7. G = ((Ak.Ky) K2): Then,

(Kr o K™ H[G] = (Ki o K™H[K [k := K],

and this case 1s similar to case 3.

8. G = (Az.Py): Then (Ky o K~H[G] = (Az.(Ck o CH)[P1]) and

the result follows by induction.

The proof of the second part is 1dentical to the above but it excludes
the cases that do not correspond to images of source terms. In par-
ticular, 1t excludes cases 1b and lc because, in the image of a source
term, the body of a Ak. K abstraction must be of the form Axz.P. More-
over, 1t excludes cases 3 and 7 because they contain the administrative
redex ((Ak.K1) K3) and hence are not the image of any source term. i

Proof of Lemma 9 (Page 22). Let P € cps(A) and K € eps(EvCont),
then, C1[P] € A, and K~![K] € EvCont,.

Proof: The proof is by lexicographic induction on the number of
abstractions of the form Ak.K and the size of the terms. It proceeds
by case analysis on the possible inputs to =% and K ~':

1. P = (K W), then C~[P] = K~[K][®~}[W]]. By induction,
K=[K] € EvCont,. It remains to establish that ®~*[W] €
Values, .

(a) W =z, then @~ [W] =z € Values,.

(b) W = Ak.k, then @~1[W] = Ax.z € Values,.

(¢) W = MWK, then ®@~1[W] = Az.C T [(WK) z)]. Be-
cause the term ((WK) x) has one less abstraction of the
form Ak.K than W, the inductive hypothesis applies to it.
Therefore C™[((WK) z)] € Aq which shows that the term
OH[W] € Values,.

(d) W = Mk Az P, then @~1[W] = Az.C~1[P], and the result
follows by induction.

2. K =k, then K~1[K] =[] € EvCont,.

3. K = (z Ky), then K=1[K] = K~ [K1][(z [ ])]. The result is
immediate because K~1[K1] € EvCont, by induction.

4. K = ((Ak.Ky) K3), then K=YK] = K~ Ki[k := Ks]]. Be-
cause k occurs exactly once in Ky, then term K[k := K5] has
one less abstraction of the Ak.K than ((Ak.K71) K2). Therefore,
K~[K] € EvCont, by the inductive hypothesis.
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5. K = Az.P, then K~[K] = ((Az.C7*[P]) [ ]) and the result

follows by induction.

Proof of Theorem 10 (Page 22). Let M € A, then:
L. ABupfBar F M — (C™ o Cp)[M],
2. (C7YoCp)[M] = M if there exists P € eps(A) such that M = C~1[P].

Proof: In order to prove the first claim, we strengthen the statement
as follows.

ABiitBaar = M — (C™' 0 Cp)[M] and

ABiipBpae © El(x L)] — (K™ o K)[E][(x L)]
The proof is by induction on the size of M or E and proceeds by
cases:

1. M =V: then there are two subcases:
(a) V = x: then (C71 o Cp)[z] = =.

(b) V = Az.N: then,

Ax.N — Az.(C71 o Cy)[N] (induction)
=  (CloC)[re.N]

2. M = E[(x V)]: then,
(€ oCy)IM] = (K" o Ki)[E][(x (271 0 @)[V])]-

There are two cases:

(a) V & Vars, then |E| < |E[(x V)]| and the inductive hypoth-
esis applies, i.e., E[(z V)] — (K71 o Kp)[E][(z V)]. The
1 .

result follows because V.—= (&' o ®)[V] as in case 1.

(b) V =y € Vars, then there are four cases depending on the
structure of E:

i. M = (zy), then (C~1oCy)[M] = M.
ii. M = B1[(z (# y))], then the result follows by induction.
iii. M = E1[((Az.L) (x y))], then,

M — ((Az.E7[L]) (z y)) (Brige)
— ((Az.(C7T o )LL) (= v))
= (Clocy)[M].
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iv. M = FEi[((xzy) L)], then

M — E[((Au(u L)) (z y))] (Bftat)
— ((Au.F1[(u L)) (z y)) (Brigt)
— ((Au(C7 o C)[E[(u L)) (x v))
= (CTrocCy)[M].

3. M = B [((Ax.N) V)]: then
(C_1 oCp)[M] = ((/\ar:.(C_1 o C)[EAINTD (<I>_1 o ®)[V]).
The left hand side M:

— (Qz.Er[N]) V) (Burt)
— ((Ae.(C7T o G [NT]) V)
— ((A.(C7T o C)[EA[NT]) (277 0 @)[V]).

4. E=1]: then (K=t o Kp)[[1]l(z L)] = (z L).
5. B = F1[(z [])]: then we want to show that Fy[(z (z L))] —=
(K" o K [E(= (DD 1)) = (K=" o Ko)[B (> (& L))]. The

result is immediate since the inductive hypothesis applies to F.

6. B = Ey[(\z.N) [])]: then, Ey[(Az.N) (x L))]

e (A= BN)) (o 1) (Bun)
—  ((Az.(C™t o CK)[EA[NT]) (= L)) (induction)

—  Ei[((AuwulN) (z L))] (BAat)
— (OBl M) (2 1) (Gue)
— ((/\ul.(C_1 o Cr) ) (x L)) (induction)
— (K=o Kp)[EL(L] M= L))

The proof of the second claim proceeds as above but is restricted to
terms of the form C~![P] for some P € cps(A). By the grammar in
Definition 10, the context E; in cases 2b(iii), 3, and 6 must be empty.
Also cases 2b(iv) and 7 are impossible. Since these cases account for
all the reductions, it follows that M is identical to (C™% o C¢)[M]. I

Proof of case 4 in Lemma 12 (Page 24). Let P € cps(A), and W €
cps( Values), then:

ABuBipBiaBa b CTH ((Aw.P) W)] — C'[Pla := W]].
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Proof:

ABy BrisefiaBa b CH ((Ae.P) W]
(Az.CTI[P]) @1 [W])
'[P = o [W]]
[Pl = W]

—
—

c-
c-
The first three steps are straightforward; the last step requires an
appropriate proof. We prove the following claims:

1. Aﬁvﬁh‘ftﬁl‘dﬁﬂ = C_l[[P]][l‘ = <I>_1[[W]]] — C_l[[P[l‘ = W]]]

2. Aﬁvﬁh‘ftﬁl‘dﬁﬂ = ]C_l[[[{]][l‘ = <I>_1[[W]]] — ]C_l[[]([l‘ = W]]]

The proof relies on an auxiliary claim that we state and prove after
the main proof. The main proof is by lexicographic induction on

(é, |G|}, i.e., the number of abstractions of the form Ak.K and the
size of the terms. The proof proceeds by cases on the arguments to

C ' and K%
1. P=(K Wy): then CT1[P][z := @~ [W]]
= KUK W] [ = @ W]
— KKz := W)@ [Wi][z := &~ [W]]].

It remains to establish that substitution commutes with &~ ! as
well. There are five cases:

(a) W1 = 2: then &~ z][z := @7L[W]] = &~ x|z := W]].
) W1 =z and z # x: the result is immediate.

(¢) W1 = Ak.k: immediate since z is not free.
)

W1 = Ak.Wak: then @~ 1[W1][z := @~ [W]]
= AN CTH((WeK) 2)][x = @ [W]]
— Az.CTH (W K) [ := W] 2]
= OT(AEWoK)[x = W]

() Wi =Xk Az.Py (2 # 2): then @~1[W4][z := @~ [W]]

(Az.CTH[PD[z := @~ [WT]]
(Az.C7P][z := @~ [W]])

— Az.C7P[x:=W]] (induction)
O-L[(Ak.Az.P)[z := W]]

2. K = k: then the claim is vacuously true because k # z.

3. K = ((Mke.K1) K3): then K~U[(Mke. K1) Ko)][x := @~ [W]]
= KKk := K]z := @ [W]]
— KK [k = Ko][x := W]]
= KM((Mk.Ki[x = W]) Koz := W])].
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4. K = X2.Py (z # 2): then K~1[Az. P ][z := &~ [W]]

(2. [Pz := @~ [W]]) [1)
(A= [Pl = WD) [1)
K=z Pz .= W]].

Il l Il

5. K = Ax.P;: immediate since x 1s not free.
6. K = (z K1) and z # x: this is a special case of the next clause.

7. K = (z K1): then K=1[(z K1)][z := @~ 1[W]]
KA [ D) = @7 [W]]

KT = o~ W@~ [W] [ 1)]
— KT K[z =W (@7 [W] [])]-

For readability, let K/ = K[z := W]. The goal is to prove that:
K=K (@ [W] [])] reduces to K~[(W K")].

We proceed by cases of W:
(a) W = y: then IC_l[[K’]][(y (D= ]C—l[[(y KN].
(b) W = Ak.k: then,

KHET((Ae2) [1)] — K7K'] (Bia)
= K '[((Ck.k) EN)]

(¢) W = M. W3K: then, K~ [K'J[(Ay.CT [(WsK) »)]) [1)]

= KKKy (WsK) y)]]

— KKK (W K] (case 1 (Lem. 12))
— K7(WsK)[k := K']] (aux. claim)

= K= (A W5K) K')].

(d) W = Ak.Az.Po: then K= [E'][((Az.C7[P2]) [ )]

— (A KETC PN 1) (Bu)
— (A2.C7Plk:=K'[]) (aux. claim)
K= z. Pk := K']]

K=H((Ak.Az.P2) KN].

Auxiliary Claim:

Let P € cps(A), and let K, Ky, K2 € cps(EvCont), then,
L. XBup b KTK][CP]] — C Pk := K]]
2. ABuige B KKK [EG]) — KM K[k = K]
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The proof of the auxiliary claim is by induction on the number of
abstractions of the Ak.K and the size of P or K. It proceeds by case
analysis on the possible elements of ¢ps(A) and eps(EvCont):

1. P = (K3 W), then K~'[K][C~'[P]]

KKC K] (@ [W]]]
e KU[Ks[k = K[ V]
K_l[[([(g W)[k‘ = [{]]]

The last equivalence holds because k is never free in W.
2. K; = k: then both sides are identical to K~1[K>].
3. Ky = (x K3), then K=K ][KKs][(= [ D]

— K7 YKslk = K]][(z [ )]
= K (2 Ks[k := KJ))].

4. Ky = ((Ak.K3) Ka), then K~ [Ko][K~'[Kslk := K4]]]
— KU K3[k := Ky]lk := K5]]

K_l[[[(g[k = [{4[16' = [{2]]]]
K= (M. K3) Ko)[k := Ks]].

5. K1 = Az.P: then, K= K][(Az.C7[P]) [ ])]

—  ((Ae X ES)CIPI]) [ D(Bure)
— ((Ae.CT'[Plk = K] [])
= K (Ox.P)k = K.

Proof of case 1 in Lemma 14 (Page 25). Let M € A, and V € Values:
ABECrl[((Az. M) V)] —= Cx[M[z := V]].

Proof: The main proof uses the following result that we state with-
out proof.

ABE Ce[M][k := Ki[E]] — Ce[E[M]]
AL E Ki[E1]lk .= Ke[E]] — Ke[E[E1]]

For the main proof, we have by definition of Cy,
Crll((Az. M) V)] = ((Ax.Ci[M]) [V]).

The latter term reduces to Ci[M][x := ®[V]]. Tt remains to establish
that substitution commutes with Cy, z.e.,
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1. A8 F Ci[M][x := ®[V]] — Ci[M [z := V]].
2. AGFKe[E][x := @[V]] — Ki[E[zx := V]].
The proof is by induction on the size of the argument to C; or Kg.
Except for one case, the inductive hypothesis applies immediately.
The interesting case occurs when M = E[(x U)]. The left hand side
Ce[E[(z U)]][2 := @[V]]
= ((e Ki[E]) @[UT)[2 := @[V]]
—  ((®[V] Kr[E][z := @[V]]) @[U][x := [V]])
— ((@[V] K[Ele := V]]) @[U[2 := V]]).
The last line follows by cases on E if U is a variable. Otherwise, it

follows by the inductive hypothesis. For readability, let B/ = E[z :=
V] and U’ = Ulx := V]. The goal is to prove that:

([V] Kx[ET) @[U'T) — Ce[Z'I(V U)]]-
We proceed by cases of V:

1. V = z, then both sides are identical.
2. V.= Az.L. Then, (M. Az.Ci[L]) Ki[E]) ®[UT)
—  ((Az.C[L][k := Kx[E£]]) @[U]) (8)

—  ((Az.CGe[E'[L]]) ®[U'T) (aux. claim)
= Cul[E'[(A=.L) U]

1
Proof of Lemma 17 (Page 31). Let P € ¢ps(A 4 callcc+ A) and K be a
continuation, and W be a value in the same language. Also, let ky,....k,
be the free continuation variables in these terms, and k & {ky,...,k,}.

Then,

1 ARG F (Coo CO[P][ky := (Ad.ky).. .. ky := (Ad.ky)] = P.

2. Ak (K o KUK ][ky := (Ad.ky), ... ky := (Ad.ky,)] = K.

3. ABn b (D0 & H)[W][ky 1= (Ad.ky), . ... ky = (Ad.ky,)] = W,
Proof: The proof is by lexicographic induction on the number of

abstractions of the form Ak.K and the size of the terms. We proceed
by cases:

1. P =z, then

(CroCH[P] Cr[(A )]
((AkAz.x) k) x)

— (5 twice)
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2. P = Xk.K, then
(Cr o C™H[P] Ce[(A @[ Ak K]

(AkAz.2) k) (@ o @~1)[Ak.K])

— (@ o H[Ak.K]

The result follows by inlining the last case in the proof.

3. P = (K W), then (Cx o C"H[(K W)] = C[KK][@ W]

and by cases on K':

(a) K = k', then C,[(k' @~ [W]D] = (K" k) (®o®~1)[W]). By
substituting every free continuation variable (in particular
substituting &’ by (Ad.k’)) and using the inductive hypoth-
esis, we get (k' W).

(b) K = Az.P’ then (Cr o C™H)[P]

= G(Ae.C'[PT) @ W]
= (Me.(Cro CTHIPT) (@ 0 @ H[W])

The result follows by the inductive hypothesis.
(¢) K =W'K’, then (Cx o C~1)[P]

(Ce o CTHI(W'K") W)]
(@0 @~ H[WT (K 0 K=HIKT) (@0 @~H[W])

The result follows by the inductive hypothesis.

4. K = k', xz.P or WK. The cases are similar to the preceding
three cases.

5. W =z, then (® o @~ H[2] = «.

6. W = Ak.K, then (® o ®~1)[Ak. K]

®[Az.callee Mk K~ K][2]]

M Az (MK Au(u k) (AE")) k') @[AEKTHK][2]])
M’ Az ((Au.(u k') (Md.E)) @[ KTK][Z]])

M/ Az (Au(u k') (AdE")) (A" Ak.Con[CTHI(K 2)]]))
M/ Xz Con [CTH(K )]N[E" := k' [k := Ad.K']

M/ Az Cr [CTH(K 2)]][k := Ad.E"]

Me Az Ce[CTH(K 2)]1[k := Ad.k]

By substituting the remaining free continuation variables and
using the inductive hypothesis (the term (K z) has one less ab-
straction than Ak.K), we get Ak.Az. Kz which is equal to Ak. K.

Proof of Lemma 18 (Page 31). Let M € A + callecc + A, and F be an
evaluation context in the same language, and k a variable that is not free
in either. Then,
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¢ A XCF (CtoCy)[M] =
¢ A3, XCF (K™Yo Kp)[E] =

(k M)
(k &)

Proof: By induction on the size of the terms. We proceed by cases:

1. M =V, then (C71oC;)[V]

=CH(ko[VD] = (k (@~ Lo®)[V]).
[vi=v.

By cases, we show that (®~!o®

(a) V = z, then (¢!
(b) V = Az.N, then

(@7t o@)[V]

o ®)[z] = «.

O~ Ak Az.Cr[N]]
Az.callee Me.(Az.(C™1 o Cp)[N]) 2)
Az.callee Xke.((Ax.(k N)) 2)
(induction)
Az.callee Akek (Ax.N) z)
Az.((Az.N) z)
(Ccurrent and Celim)

(Blift)

= Az.N (Bv)
(¢) V = callee, then (&1 0 ®)[V]
= &Mk Au(u k) AdK]
= Az.callee Mke.((Au.(k (u Af.callee Md.(k [)))) z)
= Az.callee M. ((Au.(k (u /\f( ))) z) (Cetim)
= Az.callee Me.((Au.(k (u k))) 2) (M
= Az.callee Me.(k (2 k) (Bv)
= Az.callee Mk.(z k) (Ceurrent
= callce (1o twice)
(d) V = A, then
(@10 ®)[V] O DY Y|

2. M= E[(V1 Vz)], then (C_l

Az.callee Me.((Ae.A ) z)

Az.((Ax.A z) z) elim)
A (1)

o Cy)[M]

cH((@DA] K [E]) @[Va])]
K=H(@DA] Kk [EDI(@ o @)[V2]]
(K=t o Kp)[ETI((@~"

o ®)[Vi] (27" o @)[V2])]

The result follows by the inductive hypothesis and a repetition
of the argument in case 1.

3. E =], then (K~}

o Ki)[E]

=K~k = (k[ ])-

63
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4. E = B[V [])], then (K=" o K)[E]

(K~ o Ke)[EL[(V [T
(K™ o Ke)[EA][(@7F 0 )[VT [])]

The result follows by the inductive hypothesis and a repetition
of the argument in case 1.

5. E = E,[([] M)], then

(K7toKIE] = (K™ o Kn)[E[([] M)]
= (AT eCn)[E (MDD [])
= (AR EQUFM) LD (induction)
= (kB[(TM)  (50)

Proof of case 1 in Lemma 19 (Page 32). Let ky ...k, be the free contin-
uation variables in P and W. Then,

AB,XC F callee Mky. . .. callee Nk, C™H((Az.P) W)] =
callee Mky. ... callee Nk, C7[ Pz := W]

Proof: Applying C™! to ((Az.P) W) yields:
K O P W] = (v € [P]) @ [W]).

By By, we get CT[P][z := ®~1[W]]. It remains to show that C~!
commutes with the substitution. We prove the following statements
by induction on the structure of the terms:

o CHP][z:= @~ [W]] = C Pz := W]].

o O W [z := @7 [W]] = &~ [W [z := W]].

o K~HK][z:= o~ [W]] = KKz := W]].

1. P =y, then CT1[y][z := @~ [W]] = (A y) = C[y[x := W]].
2. P =1x, then

¢ [elfe =27 W] = (A @7 [W]) = ¢ ale = W]
3. P=Xk.K, then CT[Me. K][z := @~ [W]]
(A @ [Ak.K] [z := @~ [WT]])

(A O~k K[z := W]]) (similar to case 7)
C Ak K[z := W]]
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4. P =

~—~

K' W"), then CT1[P][z := @~ [W]]

KK e = o W@~ [W][x := o~ [W]]]
KUK [z .= W]J[@~ [W'[x := W]]] (induction)
CH(K' W[z := W]]

5. W/ =z, then

W [z =@ W] = @ ' [W] = @ e[z := W]]
6. W =y, then @~ [y][z := @~ [W]] =y = & y[z := W]].
7. W = Ak.K, then ®@~1[W'][x := &~ [W]]

Az.callee Xk K[ K]z := @~ [W]][#]
Az.callee Xe K[ K[z := W]][#] (induction)
O~ Nk. K[z := W]

8. K =k, then K=1[k][x := @~ [W]] = (k []) = K~ [k[z := W]].
9. K = Ay.P, then

K~ Pl = @ [T = (Aw.C [PDa = @~ [WI) [ )

The result follows by induction.

10. K = W'K’, then the result follows also by a straightforward
application of the inductive hypothesis.

Proof of case 4 in Lemma 19 (Page 32). Let kq ...k, be the free contin-
uation variables in ((Ak.K7) K3). Then,

AB,XC & callee Nky. . .. callece Mo, KTH((Mk.Ky) K3)] =
callee Nky. . .. callee Mo, K™K [k = K]

Proof: Let D be a context callece My ... callece My, .C[] where C'is
an arbitrary context, then it suffices to prove:

A3, XC F DIKT((Mk.Ky) K2)]] = DK™ K[k = KJ]]]
The left hand side D[K™I[((Ak. K1) K2)]]

DK~ [Ko][(@~ [M. K] [])]]
DK~ [Ko][(Az.callee Xe.K K 1][2]) [ D]

It remains to prove the following statements by induction on the struc-
ture of P, W, and K;.

A3, XC t D[C™'[P[k := K-]]] = DIK~'[K-][callee \k.C~'[P]]]

A8 XC + D[~ Wk := K»]]] = D@ [W][k := Af.K ™ [K-][f]]]

A3, XC F DK UK. [k := K.]]]
DK~ [Ko][(Az.callee Me. XK ][]) [1)]
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The main proof relies on the following auxiliary claim that we state
without proof.

Let K be a continuation in ¢ps(A + callcc+ .A) with free continuation
variables k1, ..., ky, then either:

AB,XC FK7HK]
or AB, XC F K™K]
The auxiliary claim implies that for any evaluation context £:
DIEIKT'K][M]]] = DIK ™' K]IM]).
The latter result implies that DK~ [K][callcc Mk K~ [K'][M]]]

Dicallee \'.K = [KT[(Ak A [E[M)) ALK K= [KT[/))]
Dfeallce M/ K [K][(M K [K[M]) ML TETD]]
DIKE[((Ak A~ [RTM) AFA KT

s KA Ak M) ALK K]
Df

(A E)
(ki E) 1<i<n

THEN((Ae M) AfEHE]SD)]
(M K=K M) AfRTHE]AD)]

The main proof proceeds by case analysis:
1. P =z, then:
DIK ™[ K] [callee Mk A #]]

DIK™[K:][A «]]
D[(A @)
Dle [a])

2. P = Ak'.K'. The left hand side:
AR K[k = Ks]]]
(A @A . K'[k := K2])]
(A Az.callee Xk K[ K2][callee Xk K= K'][2])]
(.,4( Az. clallcc /\lk (()/\k.IC‘l[[K’]][ ) AL KK
auxiliary claim
(A Az.callee MNe' K=K I[2]) [k == Af KR
(Ak.(A Az.callee A" K~Y[E][2])) (AFK~HES][)]
(W[I%]][callfc./\k).(.,él Az.callee Xk K=[K'][2))]]
auxiliary claim

~U[K][callee ke.C™ MK K'T]]
3. P = (K W). The left hand side D[C™[(K W)[k := K2]]]

DIK=YK[k := K2]J[®~ W[k := K2]]]]
DIK Y[ K] [callce M.
K-K][@ W]k := A f L K]
D[((M KTHKT[® [W][k == Af KL K] [/T]])
(ALK
DK K] [@ W[k := ML~ K] [£]]]
DK=Y K] [callce Xk K K][@H[W]]]]

01
bbb bbb

D

Dlc
[
[
[
[
[
(X
(X
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4. W = z, then the result is immediate.

5. W = Ak’ K, then @ [AK. K[k := K,]]

D[Az.callee Xk K= K[k := K2]][#]]
D[Az.callee \k' K[ K2][callee Xk K= K][2]]
D[Az.callee Xk! K= K][2][k := AL LK)

6. K1 = k', then:

DK™ [Ko][eallee Mk.(K" [ D] = DK™ [K][(*" [ D]]
DI(k" [])]

= DIK™'[KT)

7. Ky =k, then D[K™Y[K:][callce Me.(k [])]] = DK K]
8. Ky = Az.P, then DK~ [ z.P[k := K]]]
[(Ax.C™H [Pk == K] [])]

D
Dl((Ae K~ [Ko][callee Mk.C=[P]]) [ 1]
DIK V[ K] [ealice Me.(he.c= [P]) [ )]

9. Ki = W/K', then the left hand side:

DIK=HW'K'[k := K]]]
DK™ KTk := K][(@7 W[k := KL]] [ )]
DIK Y Ks][eallce Mk.
IC_l[[K’]][(q)_lg[W’]][k = AL KK

[ D]
DI E(@ W' [ DIk := Af KL [Ko][f]]]
DIK 'K 5] [eallee kK=" [K/J[(@~[W’] [ D]
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