
ML 4 – A Lexer for OCaml’s Type System
CS 421 – Fall 2017

Revision 1.0

Assigned October 26, 2017
Due November 2, 2017
Extension November 4, 2017

1 Change Log
1.0 Initial Release.

2 Overview
To complete this MP, make sure you are familiar with the lectures on both regular expressions and lexing.

After completing this MP, you should understand how to implement a practical lexer using a lexer generator such
as Lex. Hopefully you will also gain a sense of appreciation for the availability of lexer generators, instead of having
to code a lexer completely from scratch.

The language we are making a parser for is called PicoML, which is basically a subset of OCaml. It includes
functions, lists, integers, strings, let expressions, etc.

3 Overview of Lexical Analysis (Lexing)
Recall from lecture that the process of transforming program code (i.e, as ASCII or Unicode text) into an abstract
syntax tree (AST) has two parts. First, the lexical analyzer (lexer) scans over the text of the program and converts the
text into a sequence of tokens, usually as values of a user-defined disjoint datatype. These tokens are then fed into the
parser, which builds the actual AST.

Note that it is not the job of the lexer to check for correct syntax - this is done by the parser. In fact, our lexer will
accept (and correctly tokenize) strings such as ”if if let let if if else”, which are not valid programs.

4 Lexer Generators
The tokens of a programming language are specified using regular expressions, and thus the lexing process involves a
great deal of regular-expression matching. It would be tedious to take the specification for the tokens of our language,
convert the regular expressions to a DFA, and then implement the DFA in code to actually scan the text.

Instead, most languages come with tools that automate much of the process of implementing a lexer in those lan-
guages. To implement a lexer with these tools, you simply need to define the lexing behavior in the tool’s specification
language. The tool will then compile your specification into source code for an actual lexer that you can use. In this
MP, we will use a tool called ocamllex to build our lexer.

4.1 ocamllex specification
The lexer specification for ocamllex is documented here:

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html

1

http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html


What follows below is only the short version. If it doesn’t make sense, or you need more details, consult the link
above. You will need to become especially familiar with ocamllex’s regular expression syntax.

ocamllex’s lexer specification is slightly reminiscent of an OCaml match statement:

rule myrule = parse
| regex1 { action1 }
| regex2 { action2 }

...

When this specification is compiled, it creates a recursive function called myrule that does the lexing. Whenever
myrule finds something that matches regex1, it consumes that part of the input and returns the result of evaluating
the expression action1. In our code, the lexing function should return the token it finds.

Here is a quick example:

rule mylexer = parse
| [’ ’ ’\t’ ’\n’] {mylexer lexbuf}
| [’x’ ’y’ ’z’]+ as thingy { ... thingy ... }

The first rule says that any whitespace character (either a space, tab, or newline) should be ignored. lexbuf is a
special object that represents ”the rest of the input” - the stuff after the whitespace that was just matched. By saying
mylexer lexbuf, we are recursively calling our lexing rule on the remainder of the input and returning its result.
Since we do nothing with the whitespace that was matched, it is effectively ignored.

The second rule shows a named regex. By naming the regex like this, whatever string matched the regex is bound
to the name thingy and available inside the action code for this rule (as is lexbuf as before). Note that you can
also name just parts of the regex. The return value from this action should somehow use the value of thingy.

You can also define multiple lexing functions - see the online documentation for more details (they are referred
to as ”entrypoints”). Then from the action of one rule, you can call a different lexing function. Think of the lexer
on the whole as being a big state machine, where you can change lexing behaviors based on the state you are in (and
transition to a different state after seeing a certain token). This is convenient for defining different behavior when
lexing inside comments, strings, etc.

5 Provided Code
common.cmo contains the definition of the type for our tokens, a type, and exceptions to support the completion of

Problem 2.

mp4.mll is the skeleton for the lexer specification. token is the name of the lexing rule that is already partially
defined. You may find it useful to add your own helper functions to the header section. The footer section
defines the get all tokens function that drives the lexer, and should not be changed. Modify mp4.mll, and
enter it in PrairieLearn as usual.

6 Problems
1. (6 pts) Define all the keywords and operator symbols of the OCaml type system. Each of these tokens is represented

by a constructor in our disjoint datatype.

2



Token Constructor
˜ NEG
+ PLUS
- MINUS

* TIMES
/ DIV
+. DPLUS
-. DMINUS

*. DTIMES
/. DDIV
ˆ CARAT
< LT
> GT
<= LEQ
>= GEQ
= EQUALS
<> NEQ
| PIPE
-> ARROW
; SEMI
;; DSEMI
:: DCOLON
@ AT
[] NIL
let LET
rec REC
and AND
end END
in IN
if IF
then THEN
else ELSE
fun FUN
mod MOD
raise RAISE
try TRY
with WITH
not NOT
&& LOGICALAND
|| LOGICALOR
[ LBRAC
] RBRAC
( LPAREN
) RPAREN
, COMMA

UNDERSCORE
true TRUE
false FALSE
() UNIT

Each token should have its own rule in the lexer specification. Be sure that, for instance, “<>” is lexed as the NEQ
token and not the two tokens LT and GT. (Remember that the regular expression rules are tried by the “longest

3



match” rule first, and then by the input from top to bottom).

# get_all_tokens "let = in + , ; ( - )";;
- : Common.token list =
[LET; EQUALS; IN; PLUS; COMMA; SEMI; LPAREN; MINUS; RPAREN]

2. (10 pts)

a. Implement (decimal) integers using regular expressions. There is a token constructor INT that takes an
integer as an argument. Do not worry about negative integers, but make sure that integers have at least one
digit. You may use int of string : string -> int to convert strings to integers.

# get_all_tokens "42 0 7";;
- : Common.token list = [INT 42; INT 0; INT 7]

b. Implement a representation of binary numbers using regular expressions. In particular, binary numbers are
represented with the prefix 0b, followed by at least one symbol, where each symbol can be one of two unique
symbols: 0 to 1. There is a token constructor INT that takes a (decimal) integer as an argument. You may
use int of string : string -> int to convert strings to integers.

# get_all_tokens "0b110100101";;
- : Common.token list = [INT 421]

c. Implement a representation of hexadecimal numbers using regular expressions. In particular, hexadecimal
numbers are represented with the prefix 0x, followed by at least one symbol, where each symbol can be one
of 16 unique symbols: 0 to 9 and a to f. There is a token constructor INT that takes a (decimal) integer as
an argument.You may use int of string : string -> int to convert strings to integers.

# get_all_tokens "0x8844ffaa11";;
- : Common.token list = [INT 585273158161]

d. Implement floats using regular expressions. There is a token FLOAT that takes a float as an argument. Floats
must have a decimal point and at least one digit before the decimal point (and optionally may have digits
after). You may use float of string : string -> float to convert strings to floats.

# get_all_tokens "3.14 100.5 1.414";;
- : Common.token list = [FLOAT 3.14; FLOAT 100.5; FLOAT 1.414]

e. Implement a representation of floats which support scientific notation. In particular, the float representation
described in Question 2d is augmented with an optional exponent part. The exponent part is defined as the
character e followed by one or more digits. You may use float of string : string -> float
to convert strings to floats.

# get_all_tokens "2.7e10";;
- : Common.token list = [FLOAT 27000000000.]

3. (3 pts) Implement booleans and the unit expression. The relevant constructors are UNIT and BOOL.

# get_all_tokens "true false () true";;
- : Mp8common.token list = [TRUE; FALSE; UNIT; TRUE]

4. (6 pts) Implement identifiers. An identifier is any sequence of letter and number characters, along with (under-
score) or ’ (single quote, or prime), that begins with a lowercase letter. Remember that if it is possible to match
a token by two different rules, the longest match will win over the shorter match, and then if the string lengths
are the same, the first rule will win. This applies to identifiers and certain alphabetic keywords. Use the IDENT
constructor, which takes a string argument (the name of the identifier).

4



Identifier Tokens Not Identifier Tokens
asdf1234 1234asdf
abcd 123
a’ then
xABC d ’abc
a’b c’d’’’e A Nice Name

# get_all_tokens "this is where if";;
- : Common.token list = [IDENT "this"; IDENT "is"; IDENT "where"; IF]

5. (8 pts) Implement comments. Line comments in PicoML are made up of two slashes, “//”. Block comments
in PicoML begin with “(*” and end with “*)”, and can be nested. An exception should be raised if the end of
file is reached while processing a block comment; this can be done by associating the following action with this
condition:

raise (Failure "unmatched open comment")

Any time you raise Failure for such an error, you must use the text "unmatched open comment" ver-
batim in order to get points. Furthermore, an unmatched close comment (“*)”) should also cause a Failure
"unmatched closed comment" exception to be raised.

The easiest way to handle block comments will be to create a new entry point, like we saw in lecture, since we will
need to keep track of the depth. For line comments, a new entry point is not needed – instead, you should just be
able to craft a regular expression that will consume the rest of the line. There is no token for comments, since we
just discard what is in them. A block comment may contain the character sequence “//” and a line comment may
contain either or both of “(*” and “*)”.

# get_all_tokens "this (* is a *) test";;
- : Mp8common.token list = [IDENT "this"; IDENT "test"]
# get_all_tokens "this // is a test";;
- : Mp8common.token list = [IDENT "this"]
# get_all_tokens "this // is a\n test";;
- : Mp8common.token list = [IDENT "this"; IDENT "test"]
# get_all_tokens "this (* is (* a test *)";;
Exception: Failure "unmatched open comment".

6. (25 pts) Implement strings. A string begins with a double quote ("), followed by a (possibly empty) sequence of
printable characters and escaped sequences, followed by a closing double quote (").

A printable character is one that would appear on an old fashioned qwerty keyboard on a mechanical typewriter,
including the space. Here, we must exclude " and \ because they are given special meaning, as described below.
The printable characters include the 52 uppercase and lowercase alphabetics, the ten digits, space, and 30 of the
32 special characters, excluding the " and \.

Note that a string cannot contain an unescaped quote (") because it is used to end the string. However, it can
contain the two character sequence representing an escaped quote (\"). More generally, we use \ to begin an
escaped sequence.

Specifically, you must recognize the following two-character sequences that represent escaped characters:

5



\\
\’
\"
\t
\n
\r
\b

\space
Each such two-character sequence must be converted into the corresponding single character. For example, the
two-character string " \ t" (where the first character is the ASCII code for \, 92) must become the single character
’ \ t ’ (ASCII character number 9).

Additionally, you must handle the following escaped sequence:

\ddd
The above escaped sequence is used to escape specific ASCII integer values. ddd represents an integer value
between 0 and 255. Your job is to map the integer to its single character value. For example, the escaped character
\100 is the character ’d’.

Lastly, to allow splitting long string literals across lines, the sequence \ followed by a newline, followed by any
number of spaces and tabs at the beginning of the next line, is ignored inside string literals.

The escape character \ cannot legally precede any other character in a string.

You will probably find it easiest to create a new entry point, possibly taking an argument, to handle the parsing of
strings.

You will also find the following function useful:

String.make : int -> char -> string

where String.make n c creates the string consisting of n copies of c. In particular, String.make 1 c
converts c from a character to a string.

You may also use char of int : int -> char and int of string : string -> int.

Note that if you test your solution in OCaml, you will have to include extra backslashes to represent strings and
escaped characters.

For example:

# get_all_tokens "\"some string\"";;
- : Common.token list = [STRING "some string"]
# get_all_tokens "\" she said, \\\"hello\\\"\"";;
- : Common.token list = [STRING " she said, \"hello\""]
# get_all_tokens "\" \\100 \\001 \"";;
- : Common.token list = [STRING " d \001 "]
# get_all_tokens
"\"a line \\n starts here; indent \\t starts here next string\" \"starts here\"";;

- : Common.token list =
[STRING "a line \n starts here; indent \t starts here next string";
STRING "starts here"]

6



7 Compiling, Testing & Handing In

7.1 Compiling & Testing
To compile your lexer specification to OCaml code, use the command

ocamllex mp4.mll

This creates a file called mp4.ml (note the slight difference in names). Then you can run tests on your lexer in
OCaml using the token function that is already included in mp4.mll. To see all the tokens producible from a string,
use get all tokens.

# #load "common.cmo";;
# #use "mp4.ml";;
...
# get_all_tokens "some string to test";;
- : Common.token list =
[IDENT "some"; IDENT "string"; IDENT "to"; IDENT "test"]

7


	Change Log
	Overview
	Overview of Lexical Analysis (Lexing)
	Lexer Generators
	ocamllex specification

	Provided Code
	Problems
	Compiling, Testing & Handing In
	Compiling & Testing


