Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages
Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state holds before execution.
Axiomatic Semantics

- Goal: Derive statements of form
 \[\{P\} C \{Q\} \]
 - \(P, Q\) logical statements about state,
 \(P\) precondition, \(Q\) postcondition,
 \(C\) program

- Example: \(\{x = 1\} x := x + 1 \{x = 2\}\)
Axiomatic Semantics

Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form

\[\{ P \} \ C \ { Q \} \]

where \(C \) is a statement of that type

- Compose axioms and inference rules to build proofs for complex programs
Axiomatic Semantics

- An expression \(\{P\} C \{Q\} \) is a *partial correctness* statement.

- For *total correctness* must also prove that \(C \) terminates (i.e. doesn’t run forever).
 - Written: \([P] C [Q]\)

- Will only consider partial correctness here.
Language

- We will give rules for simple imperative language

<command>
 ::= <variable> := <term>
 | <command>; ... ;<command>
 | if <statement> then <command> else <command> fi
 | while <statement> do <command> od

- Could add more features, like for-loops
Substitution

- Notation: $P[e/v]$ (sometimes $P[v <- e]$)
- Meaning: Replace every v in P by e
- Example:
 $$(x + 2) [y-1/x] = ((y − 1) + 2)$$
The Assignment Rule

\[
\frac{\{P \ [e/x]\} \ x := \ e \ \{P\}}{}
\]

Example:

\[
\frac{\{ \ ? \ \} \ x := \ y \ \{x = 2\}}{}
\]
The Assignment Rule

\[
\{P [e/x]\} \ x := \ e \ \{P\}
\]

Example:

\[
\{_ = 2\} \ x := \ y \ \{x = 2\}
\]
The Assignment Rule

\[
\{ P \ [e/x] \} \ x := e \ \{ P \}
\]

Example:

\[
\{ y = 2 \} \ x := y \ \{ x = 2 \}
\]
The Assignment Rule

\[\{ P \ [e/x] \} \ x := e \ \{ P \} \]

Examples:

\[\{ y = 2 \} \ x := y \ \{ x = 2 \} \]

\[\{ y = 2 \} \ x := 2 \ \{ y = x \} \]

\[\{ x + 1 = n + 1 \} \ x := x + 1 \ \{ x = n + 1 \} \]

\[\{ 2 = 2 \} \ x := 2 \ \{ x = 2 \} \]
The Assignment Rule – Your Turn

What is the weakest precondition of
\[x := x + y \ \{x + y = w - x\}? \]

\[\{ \ ? \ \} \]

\[x := x + y \]

\[\{x + y = w - x\} \]
The Assignment Rule – Your Turn

- What is the weakest precondition of
 \[x := x + y \{ x + y = w - x \}? \]
 \[
 \{(x + y) + y = w - (x + y)\}
 \]
 \[x := x + y \]
 \[\{ x + y = w - x \} \]
Precondition Strengthening

\[
P \Rightarrow P' \quad \{P'\} \subseteq \{Q\} \\
\{P\} \supseteq \{Q\}
\]

- Meaning: If we can show that \(P \) implies \(P' \) (\(P \Rightarrow P' \)) and we can show that \(\{P'\} \subseteq \{Q\} \), then we know that \(\{P\} \supseteq \{Q\} \).
- \(P \) is *stronger* than \(P' \) means \(P \Rightarrow P' \).
Precondition Strengthening

Examples:

\[x = 3 \implies x < 7 \{x < 7\} x := x + 3 \{x < 10\} \]
\[\{x = 3\} x := x + 3 \{x < 10\}\]

\[\text{True} \implies 2 = 2 \{2 = 2\} x:= 2 \{x = 2\}\]
\[\{\text{True}\} x:= 2 \{x = 2\}\]

\[x=n \implies x+1=n+1 \{x+1=n+1\} x:=x+1 \{x=n+1\}\]
\[\{x=n\} x:=x+1 \{x=n+1\}\]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \& x < 5\} & \quad x := x \times x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x \times x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x \times x \quad \{x < 25\} \\
\{x > 0 \& x < 5\} & \quad x := x \times x \quad \{x < 25\} \\
\{x > 0 \& x < 5\} & \quad x := x \times x \quad \{x < 25\} \\
\{x \times x < 25\} & \quad x := x \times x \quad \{x < 25\} \\
\{x > 0 \& x < 5\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad x := x \cdot x \quad \{x < 25\} & \checkmark \\
\{x = 3\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x \cdot x < 25\} & \quad x := x \cdot x \quad \{x < 25\} & \checkmark \\
\{x > 0 \land x < 5\} & \quad x := x \cdot x \quad \{x < 25\} \\
\end{align*}
\]
Example:

\[\{z = z \land z = z\} \ x := z \ \{x = z \land z = z\} \]
\[\{x = z \land z = z\} \ y := z \ \{x = z \land y = z\} \]
\[\{z = z \land z = z\} \ x := z ; \ y := z \ \{x = z \land y = z\} \]
Sequencing

Example:

\[
\begin{align*}
\{z = z \land z = z\} \quad & x := z \quad \{x = z \land z = z\} \\
\{x = z \land z = z\} \quad & y := z \quad \{x = z \land y = z\} \\
\{z = z \land z = z\} \quad & x := z; \ y := z \quad \{x = z \land y = z\}
\end{align*}
\]
Postcondition Weakening

\[
\{P\} \text{ C } \{Q'\} \quad Q' \rightarrow Q \\
\{P\} \text{ C } \{Q\}
\]

Example:

\[
\{z = z \& z = z\} \ x := z; \ y := z \ {\{x = z \& y = z\}}
\]

\[
(x = z \& y = z) \rightarrow (x = y)
\]

\[
\{z = z \& z = z\} \ x := z; \ y := z \ {\{x = y\}}
\]
Rule of Consequence

\[P \implies P' \quad \{P'\} \implies C \quad \{Q'\} \quad Q' \implies Q \]

\{P\} \implies C \quad \{Q\}

- Logically equivalent to the combination of Precondition Strengthening and Postcondition Weakening
- Uses \(P \implies P' \) and \(Q' \implies Q \)
If Then Else

\[
\{P \text{ and } B\} C_1 \{Q\} \quad \{P \text{ and } (\neg B)\} C_2 \{Q\}
\]

\[
\{P\} \text{ if } B \text{ then } C_1 \text{ else } C_2 \text{ fi } \{Q\}
\]

Example: Want

\[
\{y=a\}
\]

if \(x < 0\) then \(y := y - x\) else \(y := y + x\) fi

\[
\{y=a+|x|\}
\]

Suffices to show:

(1) \(\{y=a \& x<0\} \ y := y - x \ \{y=a+|x|\}\) and

(4) \(\{y=a \& \neg(x<0)\} \ y := y + x \ \{y=a+|x|\}\)
\{y=a\&x<0\} \quad y:=y-x \quad \{y=a+|x|\}

(3) \quad (y=a\&x<0) \Rightarrow y-x=a+|x|

(2) \quad \{y-x=a+|x|\} \quad y:=y-x \quad \{y=a+|x|\}

(1) \quad \{y=a\&x<0\} \quad y:=y-x \quad \{y=a+|x|\}

(1) Reduces to (2) and (3) by Precondition Strengthening

(2) Follows from assignment axiom

(3) Because $x<0 \Rightarrow |x| = -x$
\{y = a \& \neg (x < 0)\} \ y := y + x \ \{y = a + |x|\}

(6) \ (y = a \& \neg (x < 0)) \Rightarrow (y + x = a + |x|)

(5) \ {y + x = a + |x|} \ y := y + x \ \{y = a + |x|\}

(4) \ {y = a \& \neg (x < 0)} \ y := y + x \ \{y = a + |x|\}

(4) Reduces to (5) and (6) by Precondition Strengthening

(5) Follows from assignment axiom

(6) Because \(\neg (x < 0) \Rightarrow |x| = x \)
If then else

(1) \(\{ y = a \& x < 0 \} y := y - x \{ y = a + |x| \} \)
(4) \(\{ y = a \& \text{not}(x < 0) \} y := y + x \{ y = a + |x| \} \)

\[\begin{align*}
\{ y = a \} \\
\text{if } x < 0 \text{ then } y := y - x \text{ else } y := y + x \\
\{ y = a + |x| \}
\end{align*} \]

By the if_then_else rule
We need a rule to be able to make assertions about **while** loops.

- Inference rule because we can only draw conclusions if we know something about the body
- Let’s start with:

```
{     ?     }     C    {      ?     }
{      ?      }
while B do C od {     P     }
```
The loop may never be executed, so if we want P to hold after, it had better hold before, so let’s try:

$$
\begin{array}{llll}
\{ & ? & \} & C & \{ & ? & \} \\
\hline
\{ P \} & \textbf{while} & B & \textbf{do} & C & \textbf{od} & \{ P \}
\end{array}
$$
While

- If all we know is P when we enter the **while** loop, then we all we know when we enter the body is $(P \text{ and } B)$

- If we need to know P when we finish the **while** loop, we had better know it when we finish the loop body:

$$\{ P \text{ and } B \} \text{ C } \{ P \}$$

$$\{ P \} \text{ while B do C od } \{ P \}$$
- We can strengthen the previous rule because we also know that when the loop is finished, \(\text{not } B \) also holds.

- Final **while** rule:

\[
\{ P \text{ and } B \} \ C \ { P \}
\]

\[
\{ P \} \text{ while } B \text{ do } C \text{ od } \{ P \text{ and not } B \}
\]
While

\[
\{ P \text{ and } B \} \ C \ \{ P \} \\
\{ P \} \textbf{while } B \ \textbf{do } C \ \textbf{od} \ \{ P \text{ and not } B \}
\]

- \(P \) satisfying this rule is called a loop \textit{invariant} because it must hold before and after each iteration of the loop.
While

- **While** rule generally needs to be used together with precondition strengthening and postcondition weakening

- There is **NO** algorithm for computing the correct P; it requires intuition and an understanding of why the program works
Example

Let us prove

\{x \geq 0 \text{ and } x = a\}

fact := 1;
while x > 0 do (fact := fact * x; x := x – 1) od

\{\text{fact} = a!\}
Example

We need to find a condition P that is true both before and after the loop is executed, and such that

$$(P \text{ and not } x > 0) \implies (\text{fact} = a!)$$
Example

- First attempt:
 \[a! = \text{fact} \times (x!) \]

- Motivation:
- What we want to compute: \(a! \)
- What we have computed: \(\text{fact} \)
 which is the sequential product of \(a \) down through \(x + 1 \)
- What we still need to compute: \(x! \)
Example

By post-condition weakening suffices to show
1. \{x >= 0 and x = a\}
 fact := 1;
 while x > 0 do (fact := fact * x; x := x – 1) od
 \{a! = fact * (x!) and not (x > 0)\}
and
2. \{a! = fact * (x!) and not (x > 0) \} \Rightarrow \{\text{fact} = a!\}
Problem

2. \{a! = \text{fact} \times (x!) \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}
 - Don’t know this if \(x < 0 \)
 - Need to know that \(x = 0 \) when loop terminates
 - Need a new loop invariant
 - Try adding \(x \geq 0 \)
 - Then will have \(x = 0 \) when loop is done
Example

Second try, combine the two:

\[P = \{ a! = \text{fact} \ast (x!) \text{ and } x \geq 0 \} \]

Again, suffices to show

1. \(\{ x \geq 0 \text{ and } x = a \} \)

 \[
 \text{fact} := 1; \\
 \quad \text{while } x > 0 \text{ do (fact := fact \ast x; x := x –1) od} \\
 \{ P \text{ and not } x > 0 \}
 \]

and

2. \(\{ P \text{ and not } x > 0 \} \rightarrow \{ \text{fact} = a! \} \)
Example

For 2, we need

\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}

But \{x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{x = 0\} \text{ so}

\text{fact} \times (x!) = \text{fact} \times (0!) = \text{fact}

Therefore

\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}
Example

- For 1, by the sequencing rule it suffices to show

3. \(\{x \geq 0 \text{ and } x = a\} \)

 \[
 \text{fact} := 1 \\
 \{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}
 \]

And

4. \(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}\)

 while \(x > 0 \) do

 \[
 (\text{fact} := \text{fact} \times x; \ x := x - 1) \text{ od}
 \]

\[
\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\}\]
Example

- Suffices to show that
 \[\{a! = \text{fact} \ast (x!) \text{ and } x \geq 0\}\]
 holds before the while loop is entered and that if
 \[\{(a! = \text{fact} \ast (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}\]
 holds before we execute the body of the loop, then
 \[\{(a! = \text{fact} \ast (x!)) \text{ and } x \geq 0\}\]
 holds after we execute the body
Example

By the assignment rule, we have
\{a! = 1 * (x!) and x \geq 0\}
fact := 1
\{a! = fact * (x!) and x \geq 0\}
Therefore, to show (3), by precondition strengthening, it suffices to show
\((x \geq 0 \text{ and } x = a) \rightarrow (a! = 1 * (x!) \text{ and } x \geq 0)\)
Example

\[(x \geq 0 \text{ and } x = a) \Rightarrow (a! = 1 \times (x!) \text{ and } x \geq 0)\]

holds because \(x = a \Rightarrow x! = a!\)

Have that \(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}\)
holds at the start of the while loop
Example

To show (4):

\[\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\} \]
while \(x > 0 \) do
\[\begin{align*}
(\text{fact} & := \text{fact} \times x; \ x := x - 1) \\
\text{od}
\end{align*} \]
\[\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \]

we need to show that

\[\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\} \]

is a loop invariant
Example

We need to show:
\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}
\text{(fact = fact \times x; x := x - 1)}
\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\}

We will use assignment rule, sequencing rule and precondition strengthening
Example

By the assignment rule, we have

\[(a! = fact \times ((x-1)!)) \text{ and } x - 1 \geq 0\]
\[x := x - 1\]

\[(a! = fact \times (x!)) \text{ and } x \geq 0\]

By the sequencing rule, it suffices to show

\[(a! = fact \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\]

\[fact = fact \times x\]

\[(a! = fact \times ((x-1)!)) \text{ and } x - 1 \geq 0\]
By the assignment rule, we have that

\{(a! = (\text{fact} \times x) \times ((x-1)!)) \text{ and } x - 1 \geq 0\}

\text{fact} = \text{fact} \times x

\{(a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0\}

By Precondition strengthening, it suffices to show that

\{(a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0\}

By Precondition strengthening, it suffices to show that

\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\} \rightarrow

\{(a! = (\text{fact} \times x) \times ((x-1)!)) \text{ and } x - 1 \geq 0\}
Example

However

$$\text{fact} \times x \times (x - 1)! = \text{fact} \times x$$

and

$$(x > 0) \implies x - 1 \geq 0$$

since x is an integer, so

$$\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\} \implies$$

$$\{(a! = (\text{fact} \times x) \times ((x-1)!)) \text{ and } x - 1 \geq 0\}$$
Example

Therefore, by precondition strengthening

\{(a! = fact \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}

\text{fact} = \text{fact} \times x

\{(a! = fact \times ((x-1)!)) \text{ and } x - 1 \geq 0\}

This finishes the proof