Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state holds before execution

Axiomatic Semantics

- Goal: Derive statements of form \{P\} C \{Q\}
 - P, Q logical statements about state, P precondition, Q postcondition, C program
 - Example: \{x = 1\} x := x + 1 \{x = 2\}

Axiomatic Semantics

- Approach: For each type of language statement, give an axiom or inference rule stating how to derive assertions of form \{P\} C \{Q\}
 - where C is a statement of that type
 - Compose axioms and inference rules to build proofs for complex programs

Axiomatic Semantics

- An expression \{P\} C \{Q\} is a partial correctness statement
- For total correctness must also prove that C terminates (i.e. doesn’t run forever)
 - Written: \{P\} C \{Q\}
- Will only consider partial correctness here
Language

- We will give rules for simple imperative language

\[\langle \text{command} \rangle ::= \langle \text{variable} \rangle := \langle \text{term} \rangle \]
| \langle \text{command} \rangle ; \ldots ; \langle \text{command} \rangle
| \text{if} \langle \text{statement} \rangle \text{ then } \langle \text{command} \rangle \text{ else } \langle \text{command} \rangle \text{ fi}
| \text{while} \langle \text{statement} \rangle \text{ do } \langle \text{command} \rangle \text{ od}

- Could add more features, like for-loops

Substitution

- Notation: \[P[e/v] \] (sometimes \[P[v <- e] \])
- Meaning: Replace every \(v \) in \(P \) by \(e \)
- Example:

\[(x + 2) [y-1/x] = ((y – 1) + 2) \]

The Assignment Rule

\[\{ P[e/x] \} x := e \{ P \} \]

Example:

\[\{ ? \} x := y \{ x = 2 \} \]

Examples:

\[\{ y = 2 \} x := y \{ x = 2 \} \]
\[\{ y = 2 \} x := 2 \{ y = x \} \]
\[\{ x + 1 = n + 1 \} x := x + 1 \{ x = n + 1 \} \]
\[\{ 2 = 2 \} x := 2 \{ x = 2 \} \]
The Assignment Rule – Your Turn

What is the weakest precondition of
\(x := x + y \) \(\{ x + y = w - x \} \)?

\[
\begin{align*}
\{ & \quad ? \quad \} \\
& x := x + y \\
& \{ x + y = w - x \}
\end{align*}
\]

Precondition Strengthening

\[
P \Rightarrow P' \quad \{ P' \} \subseteq \{ Q \}
\]

- Meaning: If we can show that \(P \) implies \(P' \) \((P \Rightarrow P') \) and we can show that \(\{ P' \} \subseteq \{ Q \} \), then we know that \(\{ P \} \subseteq \{ Q \} \).
- \(P \) is stronger than \(P' \) means \(P \Rightarrow P' \).

Examples:

\[
\begin{align*}
& x = 3 \Rightarrow x < 7 \quad \{ x < 7 \} \ x := x + 3 \quad \{ x < 10 \} \\
& \{ x = 3 \} \ x := x + 3 \quad \{ x < 10 \}
\end{align*}
\]

Which Inferences Are Correct?

\[
\begin{align*}
& \{ x > 0 \land x < 5 \} \ x := x * x \quad \{ x < 25 \} \\
& \{ x = 3 \} \ x := x * x \quad \{ x < 25 \} \\
& \{ x > 0 \land x < 5 \} \ x := x * x \quad \{ x < 25 \} \\
& \{ x * x < 25 \} \ x := x * x \quad \{ x < 25 \} \\
& \{ x > 0 \land x < 5 \} \ x := x * x \quad \{ x < 25 \}
\end{align*}
\]
Sequencing

\{P\} C_1 \{Q\} \quad {Q} C_2 \{R\}
\{P\} C_1 ; C_2 \{R\}

Example:
\{z = z \land z = z\} x := z \{x = z \land z = z\}
\{x = z \land z = z\} y := z \{x = z \land y = z\}
\{z = z \land z = z\} x := z; y := z \{x = z \land y = z\}

Postcondition Weakening

\{P\} C \{Q'\} \quad Q' \Rightarrow Q
\{P\} C \{Q\}

Example:
\{z = z \land z = z\} x := z; y := z \{x = z \land y = z\}
\{x = z \land z = z\} y := z \{x = z \land y = z\}
\{z = z \land z = z\} x := z; y := z \{x = z \land y = z\}

Rule of Consequence

\{P\} \Rightarrow \{P'\} \quad \{P'\} \quad Q' \Rightarrow Q
\{P\} \quad C \quad \{Q\}

Logically equivalent to the combination of
Precondition Strengthening and
Postcondition Weakening
Uses \{P\} \Rightarrow \{P'\} and \{Q'\} \Rightarrow \{Q\}

If Then Else

\{P \land B\} C_1 \{Q\} \quad \{P \land \lnot B\} C_2 \{Q\}
\{P\} \text{ if } B \text{ then } C_1 \text{ else } C_2 \text{ fi } \{Q\}

Example: Want
\{y=a\}
if x < 0 then y:= y-x else y:= y+x fi
\{y=a+|x|\}

Suffices to show:
(1) \{y=a \land x<0\} y:= y-x \{y=a+|x|\} and
(2) \{y-x=a+|x|\} y:= y-x \{y=a+|x|\}

(1) Reduces to (2) and (3) by Precondition Strengthening
(2) Follows from assignment axiom
(3) Because x<0 \Rightarrow |x| = -x

\{y=a \land x<0\} y:= y-x \{y=a+|x|\}

(3) \{y=a \land x<0\} y:= y-x \{y=a+|x|\}
(2) \{y-x=a+|x|\} y:= y-x \{y=a+|x|\}
(1) \{y=a \land x<0\} y:= y-x \{y=a+|x|\}

(1) Reduces to (2) and (3) by Precondition Strengthening
(2) Follows from assignment axiom
(3) Because x<0 \Rightarrow |x| = -x
(6) \(y = a \land \neg (x < 0) \Rightarrow (y + x = a + |x|) \)
(5) \(\{ y + x = a + |x| \} \ y := y + x \ \{ y = a + |x| \} \)
(4) \(\{ y = a \land \neg (x < 0) \} \ y := y + x \ \{ y = a + |x| \} \)

(4) Reduces to (5) and (6) by Precondition Strengthening
(5) Follows from assignment axiom
(6) Because \(\neg (x < 0) \Rightarrow |x| = x \)

If then else

(1) \(\{ y = a \land x < 0 \} \ y := y - x \ (y = a + |x|) \)
(4) \(\{ y = a \land \neg (x < 0) \} \ y := y + x \ (y = a + |x|) \)

By the if_then_else rule

While

- We need a rule to be able to make assertions about while loops.
 - Inference rule because we can only draw conclusions if we know something about the body
 - Let’s start with:
 \(\{ \ ? \ \} \ \ C \ \ { \ ? \ \} \)
 \(\{ \ ? \ \} \ while \ B \ do \ C \ od \ { \ P \} \)

- The loop may never be executed, so if we want \(P \) to hold after, it had better hold before, so let’s try:
 \(\{ \ P \ \} \ while \ B \ do \ C \ od \ { \ P \} \)

- If all we know is \(P \) when we enter the while loop, then we all we know when we enter the body is \((P \ and \ B) \)
- If we need to know \(P \) when we finish the while loop, we had better know it when we finish the loop body:

\[
\begin{align*}
\{ P \ and \ B \} & C \ \{ P \} \\
\{ P \} & while \ B \ do \ C \ od \ { P }
\end{align*}
\]

- We can strengthen the previous rule because we also know that when the loop is finished, \(not \ B \) also holds
- Final while rule:

\(\{ P \ and \ B \} \ C \ \{ P \} \)
\(\{ P \} \ while \ B \ do \ C \ od \ { P \ and \ not \ B } \)
While

{ P and B } C { P }
{ P } while B do C od { P and not B }

P satisfying this rule is called a loop invariant because it must hold before and after the each iteration of the loop.

Example

Let us prove {x>= 0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x –1) od {fact = a!}

Example

We need to find a condition P that is true both before and after the loop is executed, and such that

(P and not x > 0) \(\Rightarrow\) (fact = a!)

Example

First attempt:

{a! = fact * (x!)}

Motivation:

What we want to compute: a!
What we have computed: fact
which is the sequential product of a down through (x + 1)
What we still need to compute: x!

Example

By post-condition weakening suffices to show
1. {x>=0 and x = a}
fact := 1;
while x > 0 do (fact := fact * x; x := x –1) od {a! = fact * (x!) and not (x > 0)}
and
2. {a! = fact * (x!) and not (x > 0) } \(\Rightarrow\) {fact = a!}
Problem

2. \{a! = fact * (x!) and not (x > 0)\} \implies \{fact = a!\}
- Don’t know this if x < 0
- Need to know that x = 0 when loop terminates
- Need a new loop invariant
- Try adding \(x \geq 0\)
- Then will have \(x = 0\) when loop is done

Example

Second try, combine the two:
\(P = \{a! = fact * (x!) and x \geq 0\}\)
Again, suffices to show
1. \(\{x \geq 0 and x = a\}\)
 \(\text{fact := 1;}
 \text{while x > 0 do (fact := fact * x; x := x - 1) od}
\(\{P \text{ and not x > 0}\}\)
and
2. \(\{P \text{ and not x > 0}\} \implies \{\text{fact = a!}\}\)

Example

For 2, we need
\(\{a! = fact * (x!) and x \geq 0 and not (x > 0)\}\) \implies \(\{\text{fact = a!}\}\)
But \(\{x \geq 0 and not (x > 0)\}\) \implies \(\{x = 0\}\) so
\(\text{fact} * (x!) = \text{fact} * (0!) = \text{fact}\)
Therefore
\(\{a! = fact * (x!) and x \geq 0 and not (x > 0)\}\) \implies \(\{\text{fact = a!}\}\)

Example

For 1, by the sequencing rule it suffices to show
3. \(\{x \geq 0 and x = a\}\)
 \(\text{fact := 1;}
 \text{while x > 0 do (fact := fact * x; x := x - 1) od}
\(\{P \text{ and not x > 0}\}\)
And
4. \(\{a! = fact * (x!) and x \geq 0\}\)
 \(\text{while x > 0 do (fact := fact * x; x := x - 1) od}
\(\{a! = fact * (x!) and x \geq 0 and not (x > 0)\}\)

Example

Suffices to show that
\(\{a! = fact * (x!) and x \geq 0\}\)
holds before the while loop is entered and that if
\(\{a! = fact * (x!)\} and x \geq 0 and x > 0\)
holds before we execute the body of the loop, then
\(\{a! = fact * (x!)\} and x \geq 0\)
holds after we execute the body

Example

By the assignment rule, we have
\(\{a! = 1 * (x!) and x \geq 0\}\)
 \(\text{fact := 1;}
\(\{a! = fact * (x!) and x \geq 0\}\)
Therefore, to show (3), by precondition strengthening, it suffices to show
\(x \geq 0 and x = a\) \implies
\(a! = 1 * (x!) and x \geq 0\)
Example

(x >= 0 and x = a) \Rightarrow
(a! = 1 \times (x!) and x >= 0)
holds because x = a \Rightarrow x! = a!

Have that \{a! = \text{fact} \times (x!) and x >= 0\}
holds at the start of the while loop.

Example

To show (4):
\{a! = \text{fact} \times (x!) and x >= 0\}
while x > 0 do
(fact := fact \times x; x := x – 1)
od
\{a! = \text{fact} \times (x!) and x >= 0 and not (x > 0)\}
we need to show that
\{(a! = \text{fact} \times (x!)) and x >= 0\}
is a loop invariant.

Example

We need to show:
\{(a! = \text{fact} \times (x!)) and x >= 0 and x > 0\}
(fact = \text{fact} \times x; x := x – 1)
\{(a! = \text{fact} \times (x!)) and x >= 0\}

We will use assignment rule,
sequencing rule and precondition
strengthening.

Example

By the assignment rule, we have
\{(a! = (\text{fact} \times x) \times (x-1)!) and x – 1 >= 0\}
\text{fact} = \text{fact} \times x
\{(a! = (\text{fact} \times (x-1)!)) and x – 1 >= 0\}

By Precondition strengthening, it suffices
to show that
((a! = \text{fact} \times (x!)) and x >= 0 and x > 0) \Rightarrow
((a! = (\text{fact} \times x) \times (x-1)!) and x – 1 >= 0)

Example

However
\text{fact} \times x \times (x – 1)! = \text{fact} \times x
and
(x > 0) \Rightarrow x – 1 >= 0
since x is an integer, so
\{(a! = \text{fact} \times (x!)) and x >= 0 and x > 0\} \Rightarrow
\{(a! = (\text{fact} \times x) \times (x-1)!) and x – 1 >= 0\}
Example

Therefore, by precondition strengthening
{(a! = fact * (x!)) and x >= 0 and x > 0}
 fact = fact * x
{(a! = fact * ((x-1)!)) and x – 1 >= 0}

This finishes the proof