Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC
http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha

Programming Languages & Compilers

Three Main Topics of the Course

I
New Programming Paradigm

II
Language Translation

III
Language Semantics

Major Phases of a Compiler

Source Program
Lex
Tokens
Parse
Abstract Syntax
Semantic Analysis
Symbol Table
Translate
Intermediate Representation
Optimize
Optimized IR
Instruction Selection
Unoptimized Machine-Specific Assembly Language
Optimize
Optimized Machine-Specific Assembly Language
Emit code
Assembly Language
Assembler
Relocatable Object Code
Machine Code

Meta-discourse

- Language Syntax and Semantics
- Syntax
 - Regular Expressions, DFSAs and NDFSAs
 - Grammars
- Semantics
 - Natural Semantics
 - Transition Semantics

Where We Are Going Next?

- We want to turn strings (code) into computer instructions
- Done in phases
- Turn strings into abstract syntax trees (parse)
- Translate abstract syntax trees into executable instructions (interpret or compile)
Language Syntax

- Syntax is the description of which strings of symbols are meaningful expressions in a language.
- It takes more than syntax to understand a language; need meaning (semantics) too.
- Syntax is the entry point.

Syntax of English Language

- Pattern 1
 - Subject | Verb
 - David | sings
 - The dog | barked
 - Susan | yawned

- Pattern 2
 - Subject | Verb | Direct Object
 - David | sings | ballads
 - The professor | wants | to retire
 - The jury | found | the defendant guilty

Elements of Syntax

- Character set – previously always ASCII, now often 64 character sets
- Keywords – usually reserved
- Special constants – cannot be assigned to
- Identifiers – can be assigned to
- Operator symbols
- Delimiters (parenthesis, braces, brackets)
- Blanks (aka white space)

Expressions

- if ... then begin ... ; ... end else begin ... ; ... end

Type expressions

- typexpr₁ → typexpr₂

Declarations (in functional languages)

- let pattern = expr

Statements (in imperative languages)

- a = b + c

Subprograms

- let pattern₁ = expr₁ in expr

Elements of Syntax

- Modules
- Interfaces
- Classes (for object-oriented languages)

Lexing and Parsing

- Converting strings to abstract syntax trees done in two phases

 - **Lexing**: Converting string (or streams of characters) into lists (or streams) of tokens (the “words” of the language)
 - Specification Technique: Regular Expressions

 - **Parsing**: Convert a list of tokens into an abstract syntax tree
 - Specification Technique: BNF Grammars
Formal Language Descriptions

- Regular expressions, regular grammars, finite state automata
- Context-free grammars, BNF grammars, syntax diagrams
- Whole family more of grammars and automata – covered in automata theory

Grammars

- Grammars are formal descriptions of which strings over a given character set are in a particular language
- Language designers write grammar
- Language implementers use grammar to know what programs to accept
- Language users use grammar to know how to write legitimate programs

Regular Expressions - Review

- Start with a given character set – a, b, c...
- Each character is a regular expression
 - It represents the set of one string containing just that character
 - \(L(a) = \{ a \} \)

Regular Expressions

- If \(x \) and \(y \) are regular expressions, then \(xy \) is a regular expression
 - It represents the set of all strings made from first a string described by \(x \) then a string described by \(y \)
 - If \(L(x) = \{ a, ab \} \) and \(L(y) = \{ c, d \} \)
 then \(L(xy) = \{ ac, ad, abc, abd \} \)

- If \(x \) and \(y \) are regular expressions, then \(x \lor y \) is a regular expression
 - It represents the set of strings described by either \(x \) or \(y \)
 - \(L(x \lor y) = \{ a, ab, c, d \} \)

- If \(x \) is a regular expression, then \(x^* \) is a regular expression
 - It represents strings made from concatenating zero or more strings from \(x \)
 - If \(L(x) = \{ a, ab \} \) then \(L(x^*) = \{ \epsilon, a, ab, aa, aab, abab, \ldots \} \)
 - \(\epsilon \)
 - It represents \(\{ \epsilon \} \), set containing the empty string
 - \(\emptyset \)
 - It represents \(\{ \} \), the empty set
Example Regular Expressions

- $(0 ∨ 1)^* 1$
 - The set of all strings of 0’s and 1’s ending in 1, \{1, 01, 11, ...\}
- $a^* b(a^*)$
 - The set of all strings of a’s and b’s with exactly one b
- $((01) ∨ (10))^*$
 - You tell me

Regular expressions (equivalently, regular grammars) important for lexing, breaking strings into recognized words.

Regular Grammars

- Subclass of BNF (covered in detail soon)
- Only rules of form $<\text{nonterminal}> ::= <\text{terminal}> <\text{nonterminal}>$ or $<\text{nonterminal}> ::= <\text{terminal}>$ or $<\text{nonterminal}> ::= \varepsilon$
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
- Close connection to nondeterministic finite state automata – nonterminals = states; rule = edge

Example

Regular grammar:

- $<\text{Balanced}> ::= \varepsilon$
- $<\text{Balanced}> ::= 0 <\text{OneAndMore}>$
- $<\text{Balanced}> ::= 1 <\text{ZeroAndMore}>$
- $<\text{OneAndMore}> ::= 1 <\text{Balanced}>$
- $<\text{ZeroAndMore}> ::= 0 <\text{Balanced}>$

Generates even length strings where every initial substring of even length has same number of 0’s as 1’s.

Example: Lexing

Regular expressions good for describing lexemes (words) in a programming language:

- Identifier = (a ∨ b ∨ ... ∨ z ∨ A ∨ B ∨ ... ∨ Z) (a ∨ b ∨ ... ∨ z ∨ A ∨ B ∨ ... ∨ Z ∨ 0 ∨ 1 ∨ ... ∨ 9)*
- Digit = (0 ∨ 1 ∨ ... ∨ 9)
- Number = 0 ∨ (1 ∨ ... ∨ 9)(0 ∨ ... ∨ 9)* ∨ ~ (1 ∨ ... ∨ 9)(0 ∨ ... ∨ 9)*
- Keywords: if = if, while = while, ...

Implementing Regular Expressions

- Regular expressions reasonable way to generate strings in language
- Not so good for recognizing when a string is in language
- Problems with Regular Expressions
 - which option to choose,
 - how many repetitions to make
- Answer: finite state automata
- Should have seen in CS374

Lexing

- Different syntactic categories of “words”: tokens
- Example:
 - Convert sequence of characters into sequence of strings, integers, and floating point numbers.
 - "asd 123 jkl 3.14" will become: [String "asd"; Int 123; String "jkl"; Float 3.14]
Lex, ocamllex

- Could write the reg exp, then translate to DFA by hand
- A lot of work
- Better: Write program to take reg exp as input and automatically generates automata
- Lex is such a program
- ocamllex version for ocaml

How to do it

- To use regular expressions to parse our input we need:
 - Some way to identify the input string — call it a lexing buffer
 - Set of regular expressions,
 - Corresponding set of actions to take when they are matched.

How to do it

- The lexer will take the regular expressions and generate a state machine.
- The state machine will take our lexing buffer and apply the transitions...
- If we reach an accepting state from which we can go no further, the machine will perform the appropriate action.

Mechanics

- Put table of reg exp and corresponding actions (written in ocaml) into a file <filename>.mll
- Call ocamllex <filename>.mll
- Produces Ocaml code for a lexical analyzer in file <filename>.ml

Sample Input

```ocaml
rule main = parse
    ['0'-'9']+ { print_string "Int\n"}
| ['0'-'9']+'.'['0'-'9']+ { print_string "Float\n"}
| ['a'-'z']+ { print_string "String\n"}
| _ { main lexbuf }
{
    let newlexbuf = (Lexing.from_channel stdin) in
    print_string "Ready to lex.\n"
    main newlexbuf
}
```

General Input

```ocaml
{ header }
let ident = regexp ...
rule entrypoint [arg1... argn] = parse
   regexp { action }
| ...
   regexp { action }
and entrypoint [arg1... argn] = parse ...and ...
   { trailer }
```
Ocamllex Input

- header and trailer contain arbitrary ocaml code put at top and bottom of <filename>.ml

- let ident = regexp ... Introduces ident for use in later regular expressions

Ocamllex Regular Expression

- Single quoted characters for letters: 'a'
- _: (underscore) matches any letter
- Eof: special “end_of_file” marker
- Concatenation same as usual
- “string”: concatenation of sequence of characters
- e1 / e2: choice - what was e1 ∨ e2

Ocamllex Regular Expression

- [c1 - c2]: choice of any character between first and second inclusive, as determined by character codes
- [^c1 - c2]: choice of any character NOT in set
- e*: same as before
- e+: same as e e*
- e?: option - was e1 ∨ ε

Ocamllex Manual

- More details can be found at http://caml.inria.fr/pub/docs/manual-ocaml/lexyacc.html

Ocamllex Input

- <filename>.ml contains one lexing function per entrypoint
- Name of function is name given for entrypoint
- Each entry point becomes an Ocaml function that takes n+1 arguments, the extra implicit last argument being of type Lexing.lexbuf
- arg1... argn are for use in action
Example: test.mll

```ocaml
{ type result = Int of int | Float of float | String of string }
let digit = ['0'-'9']
let digits = digit +
let lower_case = ['a'-'z']
let upper_case = ['A'-'Z']
let letter = upper_case | lower_case
let letters = letter +
```

Example: test.mll

```ocaml
rule main = parse
   (digits)'.'digits as f  { Float (float_of_string f) }
| digits as n              { Int (int_of_string n) }
| letters as s             { String s}
| _ { main lexbuf }
{ let newlexbuf = (Lexing.from_channel stdin) in
  print_string "Ready to lex.";
  print_newline ();
  main newlexbuf }
```

Example

```ocaml
# #use "test.ml";;
...
val main : Lexing.lexbuf -> result = <fun>
val __ocaml_lex_main_rec : Lexing.lexbuf -> int -> result = <fun>
Ready to lex.
hi there 234 5.2
- : result = String "hi"
What happened to the rest?!?
```

Example

```ocaml
# let b = Lexing.from_channel stdin;;
# main b;;
hi 673 there
- : result = Int 673
# main b;;
- : result = String "there"
```

Your Turn

- Work on MP4
 - Add a few keywords
 - Implement booleans and unit
 - Implement Ints and Floats
 - Implement identifiers

Problem

- How to get lexer to look at more than the first token at one time?
 - Answer: action has to tell it to -- recursive calls
 - Side Benefit: can add “state” into lexing
 - Note: already used this with the _ case
Example

```ocaml
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n    { Int (int_of_string n) :: main lexbuf } 
| letters as s   { String s :: main lexbuf} 
| eof             { [] } 
| _               { main lexbuf }
```

Example Results

Ready to lex.
hi there 234 5.2
- : result list = [String "hi"; String "there"; Int 234; Float 5.2]
#

Used Ctrl-d to send the end-of-file signal

Dealing with comments

First Attempt

```ocaml
let open_comment = "(*" 
let close_comment = ")*
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf}
| digits as n    { Int (int_of_string n) :: main lexbuf } 
| letters as s   { String s :: main lexbuf} 
| open_comment   { comment  lexbuf} 
| eof             { [] } 
| _               { main lexbuf } 
and comment = parse
  close_comment   { main lexbuf } 
| _               { comment lexbuf }
```

Dealing with nested comments

```ocaml
rule main = parse ...
| open_comment   { comment 1 lexbuf} 
| eof             { [] } 
| _               { main lexbuf } 
and comment depth = parse
  open_comment   { comment (depth+1) lexbuf } 
| close_comment   { if depth = 1 then main lexbuf else comment (depth - 1) lexbuf } 
| _               { comment depth lexbuf } 
```

Dealing with nested comments

```ocaml
rule main = parse
  (digits) '.' digits as f { Float (float_of_string f) :: main lexbuf} 
| digits as n    { Int (int_of_string n) :: main lexbuf } 
| letters as s   { String s :: main lexbuf} 
| open_comment   { (comment 1 lexbuf} 
| eof             { [] } 
| _               { main lexbuf } 
```
Dealing with nested comments

and comment depth = parse

open_comment { comment (depth+1) lexbuf }
| close_comment { if depth = 1
 then main lexbuf
 else comment (depth - 1) lexbuf }
| _ { comment depth lexbuf }

Types of Formal Language Descriptions

- Regular expressions, regular grammars
- Context-free grammars, BNF grammars, syntax diagrams
- Finite state automata
- Whole family more of grammars and automata – covered in automata theory

Sample Grammar

- Language: Parenthesized sums of 0’s and 1’s
- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
 <Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

BNF Grammars

- Start with a set of characters, a,b,c,...
 - We call these terminals
- Add a set of different characters, X,Y,Z,...
 - We call these nonterminals
- One special nonterminal S called start symbol

BNF Grammars

- BNF rules (aka productions) have form
 \[X ::= y \]
 where \(X \) is any nonterminal and \(y \) is a string of terminals and nonterminals
- BNF grammar is a set of BNF rules such that every nonterminal appears on the left of some rule

Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>
- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | (<Sum>)
Given rules

\[X ::= yZw \] and \[Z ::= v \]
we may replace \(Z \) by \(v \) to say
\[X \Rightarrow yZw \Rightarrow yvw \]

Sequence of such replacements called **derivation**

Derivation called **right-most** if always replace the right-most non-terminal

Start with the start symbol:

\[<Sum> \Rightarrow \]

Pick a non-terminal

\[<Sum> \Rightarrow \]

Pick a rule and substitute:

\[<Sum> ::= <Sum> + <Sum> \]

\[<Sum> \Rightarrow <Sum> + <Sum> \]

Pick a non-terminal:

\[<Sum> \Rightarrow <Sum> + <Sum> \]

Pick a rule and substitute:

\[<Sum> ::= (<Sum>) \]

\[<Sum> \Rightarrow <Sum> + <Sum> \]

\[\Rightarrow (<Sum>) + <Sum> \]
BNF Derivations

- Pick a non-terminal:

 \[\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>}\,) + \text{<Sum>} \]

BNF Derivations

- Pick a rule and substitute:
 - \[\text{<Sum>} ::= \text{<Sum>} + \text{<Sum>} \]
 - \[\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>}) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + \text{<Sum}>\,) + \text{<Sum>} \]

BNF Derivations

- Pick a non-terminal:

 \[\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>}\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + \text{<Sum>}\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + 1\,) + \text{<Sum>} \]

BNF Derivations

- Pick a rule and substitute:
 - \[\text{<Sum>} ::= 1 \]
 - \[\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>}\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + \text{<Sum>}\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + 1\,) + \text{<Sum>} \]

BNF Derivations

- Pick a non-terminal:

 \[\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>}\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + \text{<Sum>}\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + 1\,) + \text{<Sum>} \]

BNF Derivations

- Pick a rule and substitute:
 - \[\text{<Sum>} ::= 0 \]
 - \[\text{<Sum>} \Rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>}\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + \text{<Sum>}\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + 1\,) + \text{<Sum>} \]
 \[\Rightarrow (\, \text{<Sum>} + 1\,) + 0 \]
BNF Derivations

- Pick a non-terminal:

 \[\text{<Sum>} \rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>}) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + \text{<Sum>}) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + 1) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + 1) + 0 \]

BNF Derivations

- Pick a rule and substitute

 - \text{<Sum>} ::\= 0

 \[\text{<Sum>} \rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>}) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + \text{<Sum>}) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + 1) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + 1) + 0 \]
 \[\rightarrow (0 + 1) + 0 \]

BNF Derivations

- (0 + 1) + 0 is generated by grammar

 \[\text{<Sum>} \rightarrow \text{<Sum>} + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>}) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + \text{<Sum>}) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + 1) + \text{<Sum>} \]
 \[\rightarrow (\text{<Sum>} + 1) + 0 \]
 \[\rightarrow (0 + 1) + 0 \]

BNF Derivations

- \text{<Sum>} ::\= 0 | 1 | <Sum> + <Sum> | (<Sum>)