Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421D

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Booleans (aka Truth Values)

true;;
- : bool = true

false;;
- : bool = false

// ρ₇ = {c → 4, test → 3.7, a → 1, b → 5}
if b > a then 25 else 0;;
- : int = 25
Booleans and Short-Circuit Evaluation

```ocaml
# 3 > 1 && 4 > 6;;
- : bool = false
# 3 > 1 || 4 > 6;;
- : bool = true
# (print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi
- : bool = true
# 3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true
# not (4 > 6);;
- : bool = true
```
Tuples as Values

// \(\rho_7 = \{ c \rightarrow 4, \text{test} \rightarrow 3.7, \ a \rightarrow 1, b \rightarrow 5 \} \)

let s = (5,"hi",3.2);;
val s : int * string * float = (5, "hi", 3.2)

// \(\rho_8 = \{ s \rightarrow (5, "hi", 3.2), \ c \rightarrow 4, \text{test} \rightarrow 3.7, \ a \rightarrow 1, b \rightarrow 5 \} \)
Pattern Matching with Tuples

/ \(\rho_8 = \{ s \rightarrow (5, "hi", 3.2), \)
\(c \rightarrow 4, \text{test} \rightarrow 3.7, \)
\(a \rightarrow 1, b \rightarrow 5 \} \)

let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2

let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)
val x : int * float = (2, 9.3)
Nested Tuples

(* Tuples can be nested *)

let d = ((1,4,62),("bye",15),73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)

(* Patterns can be nested *)

let (p,(st,_),_) = d;; (* _ matches all, binds nothing *)
val p : int * int * int = (1, 4, 62)
val st : string = "bye"
Functions on tuples

```ocaml
# let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
#
# plus_pair (3,4);;
- : int = 7
#
# let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
#
# double 3;;
- : int * int = (3, 3)
#
# double "hi";;
- : string * string = ("hi", "hi")
```
Functions on tuples

let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>
plus_pair (3,4);;
- : int = 7
let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>
double 3;;
- : int * int = (3, 3)
double "hi";;
- : string * string = ("hi", "hi")
Save the Environment!

- A **closure** is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

 \[
 < (v_1, ..., v_n) \rightarrow \text{exp}, \rho >
 \]

- Where \(\rho\) is the environment in effect when the function is defined (for a simple function)
Closure for plus_pair

- Assume ρ_{plus_pair} was the environment just before plus_pair defined

- Closure for fun (n,m) -> n + m:

 $\langle (n,m) \rightarrow n + m, \rho_{plus_pair} \rangle$

- Environment just after plus_pair defined:

 \{plus_pair \rightarrow \langle (n,m) \rightarrow n + m, \rho_{plus_pair} \rangle \}

 $+ \rho_{plus_pair}$
Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>
let t = add_three 6 3 2;;
val t : int = 11
let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second
Curried vs Uncurried

- Recall
val add_three : int -> int -> int -> int = <fun>
- How does it differ from
let add_triple (u,v,w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>

- add_three is **curried**;
- add_triple is **uncurried**
Curried vs Uncurried

```ml
# add_triple (6,3,2);;
- : int = 11
# add_triple 5 4;;
```

Characters 0-10:
```
add_triple 5 4;;
^^^^^^^^^^^^^^
```

This function is applied to too many arguments, maybe you forgot a `;`

```ml
# fun x -> add_triple (5,4,x);;
: int -> int = <fun>
```
Partial application of functions

```
let add_three x y z = x + y + z;;

# let h = add_three 5 4;;
val h : int -> int = <fun>
# h 3;;
- : int = 12
# h 7;;
- : int = 16
```

- Partial application also called *sectioning*
Recall: let plus_x = fun x => y + x

let x = 12

let plus_x = fun y => y + x

let x = 7
Closure for plus_x

- When plus_x was defined, had environment:

\[\rho_{\text{plus}_x} = \{\ldots, \, x \rightarrow 12, \, \ldots\} \]

- Recall: let plus_x y = y + x

 is really let plus_x = fun y -> y + x

- Closure for fun y -> y + x:

 \[<y \rightarrow y + x, \, \rho_{\text{plus}_x} > \]

- Environment just after plus_x defined:

 \[\{\text{plus}_x \rightarrow <y \rightarrow y + x, \, \rho_{\text{plus}_x} >\} + \rho_{\text{plus}_x} \]
Evaluating declarations

- Evaluation uses an environment \(\rho \).

- To evaluate a (simple) declaration \(\text{let } x = e \):
 - Evaluate expression \(e \) in \(\rho \) to value \(v \).
 - Update \(\rho \) with \(x \to v \): \(\{x \to v\} + \rho \).

- Update: \(\rho_1 + \rho_2 \) has all the bindings in \(\rho_1 \) and all those in \(\rho_2 \) that are not rebound in \(\rho_1 \).

\[
\{x \to 2, y \to 3, a \to \text{“hi”}\} + \{y \to 100, b \to 6\} = \{x \to 2, y \to 3, a \to \text{“hi”}, b \to 6\}
\]
Evaluating expressions

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate an variable, look it up in $\rho(\nu)$
- To evaluate uses of +, -, etc, eval args, then do operation
- Function expression evaluates to its closure
- To evaluate a local dec: \texttt{let x = e1 in e2}
 - Eval \texttt{e1} to ν, eval \texttt{e2} using $\{x \rightarrow \nu\} + \rho$
Evaluation of Application with Closures

- Given application expression \(f(e_1, \ldots, e_n) \)
- In environment \(\rho \), evaluate left term to closure, \(c = <(x_1, \ldots, x_n) \rightarrow b, \rho> \)
- \((x_1, \ldots, x_n)\) variables in (first) argument
- Evaluate \((e_1, \ldots, e_n)\) to value \((v_1, \ldots, v_n)\)
- Update the environment \(\rho \) to
 \[\rho' = \{x_1 \rightarrow v_1, \ldots, x_n \rightarrow v_n\} + \rho \]
- Evaluate body \(b \) in environment \(\rho' \)
Evaluation of Application of plus_x;;

- Have environment:
 \[\rho = \{ \text{plus}_x \to <y \to y + x, \rho_{\text{plus}_x} >, \ldots, y \to 3, \ldots \} \]

where \(\rho_{\text{plus}_x} = \{ x \to 12, \ldots, y \to 24, \ldots \} \)

- Eval (\text{plus}_x y, \rho) rewrites to
- App (Eval(\text{plus}_x, \rho), Eval(y, \rho)) rewrites to
- App (<y \to y + x, \rho_{\text{plus}_x} >, 3) rewrites to
- Eval (y + x, \{ y \to 3 \} + \rho_{\text{plus}_x}) rewrites to
- Eval (3 + 12 , \rho_{\text{plus}_x}) = 15
Evaluation of Application of plus_pair

- Assume environment

\[\rho = \{x \rightarrow 3..., \]

\[\text{plus_pair } \rightarrow \langle (n,m) \rightarrow n + m, \rho_{\text{plus_pair}} \rangle \} + \rho_{\text{plus_pair}} \]

- Eval (plus_pair (4,x), \rho) =

- App (Eval (plus_pair, \rho), Eval ((4,x), \rho)) =

- App (\langle (n,m) \rightarrow n + m, \rho_{\text{plus_pair}} \rangle, (4,3)) =

- Eval (n + m, \{n \rightarrow 4, m \rightarrow 3\} + \rho_{\text{plus_pair}}) =

- Eval (4 + 3, \{n \rightarrow 4, m \rightarrow 3\} + \rho_{\text{plus_pair}}) = 7
Closure question

- If we start in an empty environment, and we execute:

```ocaml
let f = fun n -> n + 5;;
(* 0 *)
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (* 0 *)?
Answer

\[
\text{let } f = \text{fun } n \to n + 5; \\
\rho_0 = \{ f \to <n \to n + 5, \{ \} > \}
\]
 Closure question

If we start in an empty environment, and we execute:

```ml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
(* 1 *)
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (* 1 *?)?
\(\rho_0 = \{ f \to <n \to n + 5, \{ \} > \} \)

let pair_map \(g \) \((n,m)\) = \((g n, g m)\);

\(\rho_1 = \{ \text{pair_map} \to \)

\(<g \to \text{fun} \ (n,m) \to (g n, g m), \{ f \to <n \to n + 5, \{ \} > \} > \} , \)

\(f \to <n \to n + 5, \{ \} > \} \)
Closure question

- If we start in an empty environment, and we execute:

```
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
(* 2 *)
let a = f (4,6);;
```

What is the environment at (* 2 *)?
Evaluate \texttt{pair_map f}

\[
\rho_0 = \{f \rightarrow <n \rightarrow n + 5, \{ \} \} > \}
\]
\[
\rho_1 = \{\text{pair_map} \rightarrow <g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \rho_0 > , \\
 f \rightarrow <n \rightarrow n + 5, \{ \} > \}
\]

\texttt{let f = pair_map f;;}
Evaluate pair_map f

\[\rho_0 = \{f \rightarrow <n \rightarrow n + 5, \{ \} >\}\]
\[\rho_1 = \{\text{pair_map} \rightarrow <g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \rho_0 >, f \rightarrow <n \rightarrow n + 5, \{ \} >\}\]

\[\text{Eval} (\text{pair_map} f, \rho_1) =\]
Evaluate `pair_map f`

\[\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \} \]
\[\rho_1 = \{ \text{pair_map} \rightarrow <g \rightarrow \text{fun (n,m) -> (g n, g m)}, \rho_0 >, \]
\[f \rightarrow <n \rightarrow n + 5, \{ \} > \} \]
\[\text{Eval}(\text{pair_map f, } \rho_1) = \]
\[\text{App} (<g \rightarrow \text{fun (n,m) -> (g n, g m)}, \rho_0 >, \]
\[<n \rightarrow n + 5, \{ \} >) = \]
Evaluate \(\text{pair_map\ f}\)

\[
\rho_0 = \{f \rightarrow <n \rightarrow n + 5, \{\}>\}
\]

\[
\rho_1 = \{\text{pair_map} \rightarrow <g\rightarrow\text{fun} (n,m) -\rightarrow (g\ n,\ g\ m), \rho_0>, \ f\rightarrow <n \rightarrow n + 5, \{\}>\}
\]

\[
\text{Eval}(\text{pair_map\ f}, \rho_1) =
\]

\[
\text{App} (<g\rightarrow\text{fun} (n,m) -\rightarrow (g\ n,\ g\ m), \rho_0>, <n \rightarrow n + 5, \{\}>) =
\]

\[
\text{Eval}((n,m)\rightarrow(g\ n,\ g\ m), \{g\rightarrow<n\rightarrow n + 5, \{\}>\} + \rho_0) =\]

\[
<(n,m) \rightarrow(g\ n,\ g\ m), \{g\rightarrow<n\rightarrow n + 5, \{\}>\} + \rho_0> =\]

\[
<(n,m) \rightarrow(g\ n,\ g\ m), \{g\rightarrow<n\rightarrow n + 5, \{\}> \ f\rightarrow<n\rightarrow n + 5, \{\}>>
\]
Answer

\[\rho_1 = \{ \text{pair}_\text{map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g \ n, g \ m), \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \rangle \}, \]

\[f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \rangle \}

let f = \text{pair}_\text{map} \ f;;

\[\rho_2 = \{ f \rightarrow \langle (n,m) \rightarrow (g \ n, g \ m), \]

\[\{ g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \rangle, \]

\[f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \rangle \}, \]

\text{pair}_\text{map} \rightarrow \langle g \rightarrow \text{fun} (n,m) \rightarrow (g \ n, g \ m), \]

\[\{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \rangle \} \} \} \} \]
If we start in an empty environment, and we execute:

```ocaml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
```

(* 3 *)

What is the environment at (* 3 *)?
Final Evaluation?

$\rho_2 = \{ f \rightarrow (n,m) \rightarrow (g\ n, g\ m),
\quad \{ g \rightarrow n \rightarrow n + 5, \{ \} \},
\quad f \rightarrow n \rightarrow n + 5, \{ \},
\quad \text{pair_map} \rightarrow g \rightarrow \text{fun}\ (n,m)\rightarrow (g\ n, g\ m),
\quad \{ f \rightarrow n \rightarrow n + 5, \{ \} \}\}\}\}$

let a = f (4,6);;
Evaluate $f(4,6);;$

\[\rho_2 = \{ f \mapsto \langle n, m \rangle \mapsto (g\ n, g\ m), \]

\[\{ g \mapsto \langle n \mapsto n + 5, \{ \} \rangle, \]

\[f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \} >, \]

\[\text{pair}_\text{map} \mapsto \langle g \mapsto \text{fun} (n, m) \rightarrow (g\ n, g\ m), \]

\[\{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \} > \} \}

\text{Eval}(f(4,6), \rho_2) = \]
Evaluate $f(4,6);$

$$\rho_2 = \{f \mapsto \langle (n,m) \mapsto (g \, n, \, g \, m),
\{g \mapsto \langle n \mapsto n + 5, \{ \}\rangle, \n\{f \mapsto \langle n \mapsto n + 5, \{ \}\rangle\}\rangle, \n\langle \text{pair_map} \mapsto \langle g \mapsto \text{fun} \, (n,m) \mapsto (g \, n, \, g \, m), \n\{f \mapsto \langle n \mapsto n + 5, \{ \}\rangle\rangle, \\{g \mapsto \langle n \mapsto n + 5, \{ \}\rangle\rangle\rangle, \rangle, \rangle \rangle \}.$$

$$\text{Eval}(f(4,6), \rho_2) = \text{App}(\langle (n,m) \mapsto (g \, n, \, g \, m), \{g \mapsto \langle n \mapsto n + 5, \{ \}\rangle, \n\{f \mapsto \langle n \mapsto n + 5, \{ \}\rangle\\rangle, \rangle, \rangle (4,6)) =$$
Evaluate $f(4,6)$;

$\text{App}(<(n,m) \rightarrow (g\ n,\ g\ m),\ \{g \rightarrow <n \rightarrow n + 5,\ \{\}\>,\ f \rightarrow <n \rightarrow n + 5,\ \{\}\}>,\ (4,6)) =$

$\text{Eval}((g\ n,\ g\ m),\ \{n \rightarrow 4,\ m \rightarrow 6\} +\ \{g \rightarrow <n \rightarrow n + 5,\ \{\}\>,\ f \rightarrow <n \rightarrow n + 5,\ \{\}\}>) =$

$(\text{App}(<n \rightarrow n + 5,\ \{\}\>,\ 4),\ \text{App}\ (<n \rightarrow n + 5,\ \{\}\>,\ 6)) =$
Evaluate $f(4, 6)$;

$$(\text{App}(<\text{n} \rightarrow \text{n} + 5, \{ \}>, 4),$$
$$\text{App}(<\text{n} \rightarrow \text{n} + 5, \{ \}>, 6)) =$$
$$(\text{Eval}(<\text{n} \rightarrow \text{n} + 5, \{ \text{n} \rightarrow 4 \} + \{ \}>,$$
$$\text{Eval}(<\text{n} \rightarrow \text{n} + 5, \{ \text{n} \rightarrow 6 \} + \{ \}>) =$$
$$(\text{Eval}(4 + 5, \{ \text{n} \rightarrow 4 \} + \{ \}),$$
$$\text{Eval}(6 + 5, \{ \text{n} \rightarrow 6 \} + \{ \})) = (9, 11)$$
Functions as arguments

```
# let thonce f x = f (f (f x));;
val thonce : ('a -> 'a) -> 'a -> 'a = <fun>
# let g = thonce plus_two;;
val g : int -> int = <fun>
# g 4;;
- : int = 10
# thonce (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"
```
Higher Order Functions

- A function is *higher-order* if it takes a function as an argument or returns one as a result.

Example:

```ocaml
# let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
```

- The type `(a -> 'b) -> (c -> 'a) -> c -> 'b` is a higher order type because of `(a -> 'b)` and `(c -> 'a)` and `-> c -> 'b`
Recall:

```ocaml
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

How do you write `thrice` with `compose`?
Thrice

- Recall:

```ocaml
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

- How do you write thrice with compose?

```ocaml
# let thrice f = compose f (compose f f);
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

- Is this the only way?

9/5/17

41
You must remember the rules for evaluation when you use partial application.

```plaintext
# let add_two = (+) (print_string "test\n"; 2);;
test
val add_two : int -> int = <fun>
# let add2 = (* lambda lifted *)
    fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>
```
Lambda Lifting

thrice add_two 5;;
- : int = 11
thrice add2 5;;
test
test
test
- : int = 11

- Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied
Partial Application and “Unknown Types”

- Recall `compose plus_two`:

```
# let f1 = compose plus_two;;
val f1 : ('_a -> int) -> '_a -> int = <fun>
```

- Compare to lambda lifted version:

```
# let f2 = fun g -> compose plus_two g;;
val f2 : ('a -> int) -> 'a -> int = <fun>
```

- What is the difference?
Partial Application and “Unknown Types”

- `_' can only be instantiated once for an expression

  ```ocaml
  # f1 plus_two;;
  - : int -> int = <fun>
  # f1 List.length;;
  Characters 3-14:
  f1 List.length;;
  ^^^^^^^^^^^^^^^^  
  This expression has type 'a list -> int but is here used with type int -> int
  ```
Partial Application and “Unknown Types”

- ‘a can be repeatedly instantiated

```ocaml
# f2 plus_two;;
- : int -> int = <fun>
# f2 List.length;;
- : '_a list -> int = <fun>
```
let triple_to_pair triple =

match triple
with (0, x, y) -> (x, y)
| (x, 0, y) -> (x, y)
| (x, y, _) -> (x, y);

val triple_to_pair : int * int * int -> int * int = <fun>

- Each clause: pattern on left, expression on right
- Each x, y has scope of only its clause
- Use first matching clause
Recursive Functions

```ocaml
# let rec factorial n =
  if n = 0 then 1 else n * factorial (n - 1);;
val factorial : int -> int = <fun>

# factorial 5;;
- : int = 120

# (* rec is needed for recursive function declarations *)
```
Recursion Example

Compute \(n^2 \) recursively using:
\[
 n^2 = (2 \times n - 1) + (n - 1)^2
\]

```ml
# let rec nthsq n =         (* rec for recursion *)
  match n              (* pattern matching for cases *)
  with 0 -> 0                  (* base case *)
  | n -> (2 * n -1)           (* recursive case *)
    + nthsq (n -1);;   (* recursive call *)
val nthsq : int -> int = <fun>
# nthsq 3;;
- : int = 9
```

Structure of recursion similar to inductive proof
Recursion and Induction

```plaintext
# let rec nthsq n = match n with 0 -> 0
   | n -> (2 * n - 1) + nthsq (n - 1) ;;
```

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- **if** or **match** must contain base case
- Failure of these may cause failure of termination
Lists

- First example of a recursive datatype (aka algebraic datatype)

- Unlike tuples, lists are homogeneous in type (all elements same type)
Lists

- List can take one of two forms:
 - Empty list, written []
 - Non-empty list, written \(x :: xs \)
 - \(x \) is head element, \(xs \) is tail list, \(:: \) called “cons”
 - Syntactic sugar: \([x] == x :: []\)
 - \([x1; x2; ...; xn] == x1 :: x2 :: ... :: xn :: []\)
Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]
let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]
(8::5::3::2::1::1::[]) = fib5;;
- : bool = true
fib5 @ fib6;;
- : int list = [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
Lists are Homogeneous

let bad_list = [1; 3.2; 7];;

Characters 19-22:

let bad_list = [1; 3.2; 7];;;

^^^^

This expression has type float but is here used with type int
Question

Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2.3,4); (3.2,5); (6,7.2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]
Which one of these lists is invalid?

1. [2; 3; 4; 6]
2. [2,3; 4,5; 6,7]
3. [(2,3,4); (3,2,5); (6,7,2)]
4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

3 is invalid because of last pair.
Functions Over Lists

let rec double_up list =
 match list
 with [] -> [] (* pattern before ->, expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1]
Functions Over Lists

```ocaml
# let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]
# let rec poor_rev list =
  match list
  with [] -> []
  | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
# poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]
```
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

let length l =
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

```ml
let rec length l =
    match l with
```
Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```plaintext
let rec length l =
    match l with
```
Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```ml
let rec length l =
  match l with [] ->
  | (a :: bs) ->
```

9/5/17
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when `l` is empty?

```ocaml
let rec length l =
  match l with [] -> 0
  | (a :: bs) ->
```

9/5/17
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when \(l \) is not empty?

```ml
let rec length l =
  match l with
      [] -> 0
  | (a :: bs) ->
```

9/5/17
Question: Length of list

Problem: write code for the length of the list
 What result do we give when \(l \) is not empty?

```ocaml
let rec length l =
  match l with [] -> 0
  | (a :: bs) -> 1 + length bs
```
How can we efficiently answer if two lists have the same length?
How can we efficiently answer if two lists have the same length?

```ocaml
let rec same_length list1 list2 =
    match list1 with [] ->
        (match list2 with [] -> true
        | (y::ys) -> false)
    | (x::xs) ->
        (match list2 with [] -> false
        | (y::ys) -> same_length xs ys)
```
let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]
map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
Iterating over lists

```ocaml
# let rec fold_left f a list = 
  match list
  with [] -> a
  | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

# fold_left
  (fun () -> print_string)
  ()
  ['"hi"'; '"there"'];;
hithere- : unit = ()
```
Iterating over lists

let rec fold_right f list b =
 match list
 with [] -> b
 | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

fold_right
 (fun s -> fun () -> print_string s)
 ["hi"; "there"]
 ();;
therehi- : unit = ()
Structural Recursion

- Functions on recursive datatypes (e.g., lists) tend to be recursive.
- Recursion over recursive datatypes generally by structural recursion:
 - Recursive calls made to components of structure of the same recursive type.
 - Base cases of recursive types stop the recursion of the function.
Structural Recursion: List Example

```ocaml
# let rec length list = match list
  with [ ] -> 0 (* Nil case *)
  | x :: xs -> 1 + length xs;; (* Cons case *)
val length : 'a list -> int = <fun>
# length [5; 4; 3; 2];;
- : int = 4
```

- Nil case [] is base case
- Cons case recurses on component list xs
Forward Recursion

- In Structural Recursion, split input into components and (eventually) recurse
- Forward Recursion form of Structural Recursion
- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results
- Wait until whole structure has been traversed to start building answer
Forward Recursion: Examples

```ocaml
# let rec double_up list =
  match list
  with [ ] -> [ ]
  | (x :: xs) -> (x :: x :: double_up xs);
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =
  match list
  with [] -> []
  | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```
Encoding Recursion with Fold

```ml
# let rec append list1 list2 = match list1 with
  [ ] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

Base Case          Operation          Recursive Call

# let append list1 list2 =
  fold_right (fun x y -> x :: y) list1 list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

# append [1;2;3] [4;5;6];;
- : int list = [1; 2; 3; 4; 5; 6]
```
Mapping Recursion

- One common form of structural recursion applies a function to each element in the structure

```ocaml
# let rec doubleList list = match list
  with [ ] -> [ ]
  | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```
Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion

```ocaml
# let doubleList list =  
   List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

- Same function, but no rec
Another common form “folds” an operation over the elements of the structure

```ocaml
let rec multList list = match list
with [ ] -> 1
| x::xs -> x * multList xs;;
val multList : int list -> int = <fun>

# multList [2;4;6];;
- : int = 48
```

Computes \(2 \times (4 \times (6 \times 1))\)
Folding Recursion

- multList folds to the right
- Same as:

```ml
# let multList list =
    List.fold_right
    (fun x -> fun p -> x * p)
    list 1;;
val multList : int list -> int = <fun>
# multList [2;4;6];;
- : int = 48
```
How long will it take?

- Remember the big-O notation from CS 225 and CS 273
- Question: given input of size n, how long to generate output?
- Express output time in terms of input size, omit constants and take biggest power
How long will it take?

Common big-O times:

- **Constant time** $O(1)$
 - input size doesn’t matter
- **Linear time** $O(n)$
 - double input \Rightarrow double time
- **Quadratic time** $O(n^2)$
 - double input \Rightarrow quadruple time
- **Exponential time** $O(2^n)$
 - increment input \Rightarrow double time
Linear Time

- Expect most list operations to take linear time $O(n)$
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: multList, append
- Integer example: factorial
Quadratic Time

- Each step of the recursion takes time proportional to input.
- Each step of the recursion makes only one recursive call.
- List example:

```ocaml
# let rec poor_rev list = match list
  with [] -> []
  | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```
Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear
Exponential running time

```ocaml
# let rec naiveFib n = match n
  with 0 -> 0
   | 1 -> 1
   | _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>
```
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if f calls g and g calls h, but calling h is the last thing g does (a *tail call*)?

Normal call

```
  h
  g
  f
  ...
```
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g.
Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls.
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls.
- Tail recursion generally requires extra “accumulator” arguments to pass partial results.
 - May require an auxiliary function.
Tail Recursion - Example

```ocaml
# let rec rev_aux list revlist =
  match list with [] -> revlist
  | x :: xs -> rev_aux xs (x :: revlist);
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

# let rev list = rev_aux list [ ];
val rev : 'a list -> 'a list = <fun>
```

What is its running time?
Comparison

- poor_rev [1,2,3] =
- (poor_rev [2,3]) @ [1] =
- (((poor_rev [3]) @ [2]) @ [1] =
- ((((poor_rev [])) @ [3]) @ [2]) @ [1] =
- ((([] @ [3]) @ [2]) @ [1]) =
- ([3] @ [2]) @ [1] =
- (3::{[] @ [2]})) @ [1] =
- [3,2] @ [1] =
- 3 :: ([2] @ [1]) =
- 3 :: (2::{[] @ [1]})) = [3, 2, 1]
Comparison

- \text{rev} [1,2,3] =
- \text{rev_aux} [1,2,3] [] =
- \text{rev_aux} [2,3] [1] =
- \text{rev_aux} [3] [2,1] =
- \text{rev_aux} [] [3,2,1] = [3,2,1]
Folding Functions over Lists

How are the following functions similar?

let rec sumlist list = match list with
 [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>
sumlist [2;3;4];;
- : int = 9

let rec prodlist list = match list with
 [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>
prodlist [2;3;4];;
- : int = 24
Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a =
 <fun>
fold_left f a [x₁; x₂;...;xₙ] = f(...(f (f a x₁) x₂)...xₙ)

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b =
 <fun>
fold_right f [x₁; x₂;...;xₙ] b = f x₁(f x₂(...(f xₙ b)...))
Folding - Forward Recursion

```ocaml
# let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>
# sumlist [2;3;4];;
- : int = 9
# let prodlist list = fold_right ( * ) list 1;;
val prodlist : int list -> int = <fun>
# prodlist [2;3;4];;
- : int = 24
```
Folding - Tail Recursion

- # let rev list =
- fold_left
- (fun l -> fun x -> x :: l) //comb op
- [] //accumulator cell
- list
Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition