Programming Languages and Compilers (CS 421)

Sasa Misailovic
4110 SC, UIUC

https://courses. engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, and Elsa L Gunter
Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from *axioms* and *inference rules*
- Mainly suited to simple imperative programming languages
Axiomatic Semantics

- Used to formally prove a property (*post-condition*) of the *state* (the values of the program variables) after the execution of program, assuming another property (*pre-condition*) of the state holds before execution.
Axiomatic Semantics

- **Goal:** Derive statements of form
 \[
 \{P\} \ C \ \{Q\}
 \]
 - \(P\), \(Q\) logical statements about state,
 - \(P\) precondition,
 - \(Q\) postcondition,
 - \(C\) program

- **Example:** \(\{x = 1\} \ x := x + 1 \ \{x = 2\}\)
Axiomatic Semantics

- **Approach**: For each kind of language statement, give an axiom or inference rule stating how to derive assertions of form \{P\} C \{Q\} where C is a statement of that kind

- Compose axioms and inference rules to build proofs for complex programs
Axiomatic Semantics

- An expression \(\{P\} C \{Q\} \) is a *partial correctness* statement
- For *total correctness* must also prove that \(C \) terminates (i.e. doesn’t run forever)
 - Written: \([P] C [Q]\)
- Will only consider partial correctness here
Language

- We will give rules for simple imperative language

<command>
::= <variable> := <term>
| <command>; ... ;<command>
| if <statement> then <command> else <command> fi
| while <statement> do <command> od

- Could add more features, like for-loops
Substitution

- Notation: \(P[e/v] \) (sometimes \(P[v <- e] \))
- Meaning: Replace every \(v \) in \(P \) by \(e \)
- Example:
 \[
 (x + 2) [y-1/x] = ((y - 1) + 2)
 \]
The Assignment Rule

\[\{ P[e/x] \} \ x := e \ \{ P \} \]

Example:

\[\{ \ ? \ \} \ x := y \ \{ x = 2 \} \]
The Assignment Rule

\[\{P [e/x]\} \ x := e \ \{P\} \]

Example:

\[\{_ = 2 \} \ x := y \ \{x = 2\} \]
The Assignment Rule

\[
\{ \mathcal{P} \ [e/x] \} \ x := e \ \{ \mathcal{P} \}
\]

Example:

\[
\{ y = 2 \} \ x := y \ \{ x = 2 \}
\]
The Assignment Rule

$$\{P [e/x]\} \ x := e \ {P}$$

Examples:

$$\{y = 2\} \ x := y \ {x = 2}$$

$$\{y = 2\} \ x := 2 \ {y = x}$$

$$\{x + 1 = n + 1\} \ x := x + 1 \ {x = n + 1}$$

$$\{2 = 2\} \ x := 2 \ {x = 2}$$
The Assignment Rule – Your Turn

What is the weakest precondition of

\[x := x + y \{ x + y = w - x \} ? \]

\[
\begin{array}{c}
\{ ? \} \\
\end{array}
\]

\[x := x + y \]

\[\{ x + y = w - x \} \]
What is the weakest precondition of
\[x := x + y \{x + y = w - x\} \]?

\[
\{(x + y) + y = w - (x + y)\}
\]

\[x := x + y \]

\[
\{x + y = w - x\}
\]
Precondition Strengthening

\[P \rightarrow P' \quad \{P'\} \subseteq \{Q\} \]

\[\{P\} \subseteq \{Q\} \]

- **Meaning:** If we can show that \(P \) implies \(P' \) (\(P \rightarrow P' \)) and we can show that \(\{P'\} \subseteq \{Q\} \), then we know that \(\{P\} \subseteq \{Q\} \).

- \(P \) is **stronger** than \(P' \) means \(P \rightarrow P' \).
Precondition Strengthening

- Examples:

$$x = 3 \implies x < 7 \quad \{x < 7\} \ x := x + 3 \quad \{x < 10\}$$

$$\{x = 3\} \ x := x + 3 \quad \{x < 10\}$$

$$\text{True} \implies 2 = 2 \quad \{2 = 2\} \ x := 2 \quad \{x = 2\}$$

$$\{\text{True}\} \ x := 2 \quad \{x = 2\}$$

$$x = n \implies x + 1 = n + 1 \quad \{x + 1 = n + 1\} \ x := x + 1 \quad \{x = n + 1\}$$

$$\{x = n\} \ x := x + 1 \quad \{x = n + 1\}$$
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \& x < 5\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x > 0 \& x < 5\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x^2 < 25\} & \quad x := x \cdot x \quad \{x < 25\} \\
\{x > 0 \& x < 5\} & \quad x := x \cdot x \quad \{x < 25\}
\end{align*}
\]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad \text{x := x * x} \quad \{x < 25\} \\
\{x = 3\} & \quad \text{x := x * x} \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad \text{x := x * x} \quad \{x < 25\}
\end{align*}
\]
Sequencing

\[
\begin{array}{c}
\{P\} \quad C_1 \quad \{Q\} \quad \{Q\} \quad C_2 \quad \{R\} \\
\{P\} \quad C_1 \quad ; \quad C_2 \quad \{R\}
\end{array}
\]

Example:

\[
\begin{align*}
\{z = z \land z = z\} \quad & x := z \quad \{x = z \land z = z\} \\
\{x = z \land z = z\} \quad & y := z \quad \{x = z \land y = z\} \\
\{z = z \land z = z\} \quad & x := z; \quad y := z \quad \{x = z \land y = z\}
\end{align*}
\]
Sequencing

\[
\begin{align*}
\{P\} & \quad C_1 \quad \{Q\} \quad \{Q\} \quad C_2 \quad \{R\} \\
\{P\} & \quad C_1; \quad C_2 \quad \{R\}
\end{align*}
\]

- Example:
 \[
 \begin{align*}
 \{z = z \land z = z\} & \quad x := z \quad \{x = z \land z = z\} \\
 \{x = z \land z = z\} & \quad y := z \quad \{x = z \land y = z\} \\
 \{z = z \land z = z\} & \quad x := z; \quad y := z \quad \{x = z \land y = z\}
 \end{align*}
 \]
Postcondition Weakening

\[\{P\} \ C \ {Q'} \quad Q' \implies Q \]

\[\{P\} \ C \ {Q} \]

Example:

\{z = z \& z = z\} \ x := z; \ y := z \ {x = z \& y = z\}

\((x = z \& y = z) \implies (x = y) \)

\{z = z \& z = z\} \ x := z; \ y := z \ {x = y\}
Rule of Consequence

\[\overline{P \implies P'} \{P'\} C \{Q'\} Q' \implies Q \]

- Logically equivalent to the combination of Precondition Strengthening and Postcondition Weakening
- Uses \(P \implies P' \) and \(Q' \implies Q \)
If Then Else

\[
\begin{align*}
\{P \text{ and } B\} \ C_1 \ & \{Q\} \quad \{P \text{ and } \neg B\} \ C_2 \ & \{Q\} \\
\{P\} \ & \text{if } B \text{ then } C_1 \ & \text{else } C_2 \ & \text{fi} \ & \{Q\}
\end{align*}
\]

Example: Want

\[
\{y=a\}
\]

if \(x < 0\) then \(y := y - x\) else \(y := y + x\) fi

\[
\{y=a+|x|\}
\]

Suffices to show:

(1) \(\{y=a \& x<0\} \ \ y:=y-x \ \ \{y=a+|x|\}\) and

(4) \(\{y=a \& \neg(x<0)\} \ \ y:=y+x \ \ \{y=a+|x|\}\)
\{y = a \& x < 0\} \ y := y - x \ \{y = a + |x|\}

(3) \quad (y = a \& x < 0) \Rightarrow y - x = a + |x|

(2) \quad \{y - x = a + |x|\} \ y := y - x \ \{y = a + |x|\}

(1) \quad \{y = a \& x < 0\} \ y := y - x \ \{y = a + |x|\}

(1) Reduces to (2) and (3) by Precondition Strengthening

(2) Follows from assignment axiom

(3) Because \(x < 0 \ \Rightarrow \ |x| = -x \)
\{y=a\&\text{not}(x<0)\} \ y:=y+x \ \{y=a+|x|\} \\

(6) \ (y=a\&\text{not}(x<0)) \rightarrow (y+x=a+|x|) \\
(5) \ \{y+x=a+|x|\} \ y:=y+x \ \{y=a+|x|\} \\
(4) \ \{y=a\&\text{not}(x<0)\} \ y:=y+x \ \{y=a+|x|\} \\

(4) \text{Reduces to (5) and (6) by Precondition Strengthening} \\
(5) \text{Follows from assignment axiom} \\
(6) \text{Because not}(x<0) \rightarrow |x| = x
If then else

(1) \{y=a\&x<0\}y:=y-x\{y=a+|x|\}

(4) \{y=a\&\text{not}(x<0)\}y:=y+x\{y=a+|x|\}

\begin{aligned}
&\{y=a\} \\
\text{if } x < 0 \text{ then } y:= y-x \text{ else } y:= y+x \\
&\{y=a+|x|\}
\end{aligned}

By the if_then_else rule
While

- We need a rule to be able to make assertions about **while** loops.
 - Inference rule because we can only draw conclusions if we know something about the body
 - Let’s start with:

\[
\{ \ ? \ \} \quad C \quad \{ \ ? \ \}
\]

\[
\{ \ ? \ \} \quad \text{while} \quad B \quad \text{do} \quad C \quad \text{od} \quad \{ \ P \ \}
\]
While

The loop may never be executed, so if we want P to hold after, it had better hold before, so let’s try:

$$\{ ? \} \ C \ \{ ? \}$$

$$\{ P \} \ while \ B \ do \ C \ od \ \{ P \}$$
While

- If all we know is \(P \) when we enter the \textbf{while} loop, then we all we know when we enter the body is \((P \text{ and } B)\).
- If we need to know \(P \) when we finish the \textbf{while} loop, we had better know it when we finish the loop body:

\[
\{ P \text{ and } B \} \ C \ { P } \\
\{ P \} \textbf{ while } B \ \textbf{ do } C \ \textbf{ od} \ { P }
\]
While

- We can strengthen the previous rule because we also know that when the loop is finished, \(\text{not } B \) also holds.

- Final **while** rule:

\[
\begin{align*}
\{P \text{ and } B\} & \quad C & \quad \{P\} \\
\{P\} & \quad \textbf{while } B \quad \textbf{do } C \quad \textbf{od} & \quad \{P \text{ and } \text{not } B\}
\end{align*}
\]
While

\[
\begin{align*}
\{ P \text{ and } B \} & \quad C \quad \{ P \} \\
\{ P \} & \text{ while } B \text{ do } C \text{ od } \quad \{ P \text{ and not } B \}
\end{align*}
\]

- P satisfying this rule is called a loop \textit{invariant} because it must hold before and after each iteration of the loop.
While

- **While** rule generally needs to be used together with precondition strengthening and postcondition weakening.

- There is NO algorithm for computing the correct P; it requires intuition and an understanding of why the program works.
Example

- Let us prove
 \{x \geq 0 \text{ and } x = a\}

 \text{fact} := 1;

 \text{while } x > 0 \text{ do (fact} := \text{fact} \times x; \text{x} := \text{x} - 1) \text{ od}

 \{\text{fact} = a!\}
Example

- We need to find a condition P that is true both before and after the loop is executed, and such that

$$(P \text{ and not } x > 0) \implies (\text{fact} = a!)$$
Example

- First attempt:
 \[a! = \text{fact} \times (x!) \]

- Motivation:

- What we want to compute: \(a!\)
- What we have computed: \(\text{fact}\)
 which is the sequential product of \(a\) down through \((x + 1)\)
- What we still need to compute: \(x!\)
Example

By post-condition weakening suffices to show
1. \{x>=0 \text{ and } x = a\}

 \text{fact} := 1;

 \text{while } x > 0 \text{ do (fact := fact } \times \text{ x; x := x } - 1) \text{ od}

 \{a! = \text{fact } \times \text{ (x!)} \text{ and not } (x > 0)\}

and

2. \{a! = \text{fact } \times \text{ (x!)} \text{ and not } (x > 0)\} \implies \{\text{fact } = \text{a!}\}
Problem

2. \{a! = fact * (x!) \text{ and not } (x > 0)\} \implies \{\text{fact} = a!\}

- Don’t know this if \(x < 0 \)
- Need to know that \(x = 0 \) when loop terminates
- Need a new loop invariant
- Try adding \(x \geq 0 \)
- Then will have \(x = 0 \) when loop is done
Example

Second try, combine the two:

\[P = \{ a! = \text{fact} \times (x!) \text{ and } x \geq 0 \} \]

Again, suffices to show
1. \(\{ x \geq 0 \text{ and } x = a \} \)

 \[
 \text{fact} := 1;
 \]

 \[
 \text{while } x > 0 \text{ do (fact := fact } \times x; x := x - 1) \text{ od}
 \]

 \(\{ P \text{ and not } x > 0 \} \)

and

2. \(\{ P \text{ and not } x > 0 \} \Rightarrow \{ \text{fact} = a! \} \)
For 2, we need

\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}

But \{x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{x = 0\} \text{ so}

\text{fact} \times (x!) = \text{fact} \times (0!) = \text{fact}

Therefore

\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}
Example

- For 1, by the sequencing rule it suffices to show

3. \(\{ x \geq 0 \text{ and } x = a \} \)

 \(\text{fact} := 1 \)

 \(\{ a! = \text{fact} \times (x!) \text{ and } x \geq 0 \} \)

And

4. \(\{ a! = \text{fact} \times (x!) \text{ and } x \geq 0 \} \)

 while \(x > 0 \) do

 \((\text{fact} := \text{fact} \times x; x := x - 1) \) od

 \(\{ a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0) \} \)
Example

- Suffices to show that
 \[\{ a! = \text{fact} \times (x!) \text{ and } x \geq 0 \} \]
 holds before the while loop is entered and that if
 \[\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\} \]
 holds before we execute the body of the loop, then
 \[\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\} \]
 holds after we execute the body
Example

By the assignment rule, we have
{a! = 1 \times (x!) \text{ and } x \geq 0}\]
\text{fact} := 1
{a! = \text{fact} \times (x!) \text{ and } x \geq 0}\]
Therefore, to show (3), by
precondition strengthening, it suffices
to show
\[(x \geq 0 \text{ and } x = a) \implies (a! = 1 \times (x!) \text{ and } x \geq 0)\]
Example

\[(x \geq 0 \text{ and } x = a) \implies (a! = 1 \times (x!) \text{ and } x \geq 0)\]

holds because \(x = a \implies x! = a!\)

Have that \(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}\)

holds at the start of the while loop
Example

To show (4):
\[\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\} \]
while \(x > 0 \) do
\[(\text{fact} := \text{fact} \times x; \ x := x - 1) \]
\[\text{od} \]
\[\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \]
we need to show that
\[\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\} \]
is a loop invariant
Example

We need to show:
\[\{(a! = \text{fact} \times (x!)) \land x \geq 0 \land x > 0\}\]
\[
(\text{fact} = \text{fact} \times x; \ x := x - 1)
\]
\[\{(a! = \text{fact} \times (x!)) \land x \geq 0\}\]

We will use assignment rule, sequencing rule and precondition strengthening
Example

By the assignment rule, we have

\{(a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0\}

\[x := x - 1 \]

\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\}

By the sequencing rule, it suffices to show

\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}

\[\text{fact} = \text{fact} \times x \]

\{(a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0\}
Example

By the assignment rule, we have that
\[\{(a! = (fact * x) * ((x-1)!)) \text{ and } x - 1 \geq 0\} \]
\[fact = fact * x \]
\[\{(a! = fact * ((x-1)!)) \text{ and } x - 1 \geq 0\} \]
By Precondition strengthening, it suffices to show that
\[((a! = fact * (x!)) \text{ and } x \geq 0 \text{ and } x > 0) \rightarrow ((a! = (fact * x) * ((x-1)!)) \text{ and } x - 1 \geq 0) \]
Example

However

\[\text{fact} \ast x \ast (x - 1)! = \text{fact} \ast x \]

and

\((x > 0) \implies x - 1 \geq 0 \)

since \(x \) is an integer, so

\[\{(a! = \text{fact} \ast (x!)) \text{ and } x \geq 0 \text{ and } x > 0\} \implies \]

\[\{(a! = (\text{fact} \ast x) \ast ((x-1)!)) \text{ and } x - 1 \geq 0\} \]
Example

Therefore, by precondition strengthening

\{(a! = fact \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}

\text{fact} = \text{fact} \times x

\{(a! = fact \times ((x-1)!)) \text{ and } x - 1 \geq 0\}

This finishes the proof