Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages

Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state holds before execution

Axiomatic Semantics

- Goal: Derive statements of form \{P\} C \{Q\}
 - P, Q logical statements about state,
 - P precondition,
 - Q postcondition,
 - C program

- Example: \{x = 1\} x := x + 1 \{x = 2\}

Axiomatic Semantics

- Approach: For each kind of language statement, give an axiom or inference rule stating how to derive assertions of form \{P\} C \{Q\}
 - where C is a statement of that kind
- Compose axioms and inference rules to build proofs for complex programs

Axiomatic Semantics

- An expression \{P\} C \{Q\} is a partial correctness statement
- For total correctness must also prove that C terminates (i.e. doesn’t run forever)
 - Written: [P] C [Q]
- Will only consider partial correctness here
Language

- We will give rules for simple imperative language

```
<command>
::= <variable> := <term>
| <command>; ... ;<command>
| if <statement> then <command> else <command> fi
| while <statement> do <command> od
```

- Could add more features, like for-loops

Substitution

- Notation: \(P[e/v] \) (sometimes \(P[v \leftarrow e] \))
- Meaning: Replace every \(v \) in \(P \) by \(e \)
- Example:
 \[
 (x + 2)[y-1/x] = ((y - 1) + 2)
 \]

The Assignment Rule

\[
\{P [e/x]\} x := e \{P\}
\]

Example:

\[
\{ \ ? \ } x := y \{ x = 2\}
\]

The Assignment Rule

\[
\{P [e/x]\} x := e \{P\}
\]

Example:

\[
\{ x = 2 \} x := y \{ x = 2 \}
\]

The Assignment Rule

\[
\{P [e/x]\} x := e \{P\}
\]

Example:

\[
\{ y = 2 \} x := y \{ x = 2 \}
\]

Examples:

\[
\{ y = 2 \} x := 2 \{ y = x \}
\]

\[
\{ x + 1 = n + 1 \} x := x + 1 \{ x = n + 1 \}
\]

\[
\{ 2 = 2 \} x := 2 \{ x = 2 \}
\]
The Assignment Rule – Your Turn

What is the weakest precondition of
\(x := x + y \ {x + y = w - x} \)?

\[
\{ x := x + y \} \quad {x + y = w - x}
\]

Precondition Strengthening

\[
P \Rightarrow P' \quad \{P'\} \subset C \{Q\}
\]

Meaning: If we can show that \(P \) implies \(P' \) (\(P \Rightarrow P' \)) and we can show that \(\{P'\} \subset C \{Q\} \), then we know that \(\{P\} \subset C \{Q\} \)

\(P \) is **stronger** than \(P' \) means \(P \Rightarrow P' \)

Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \& x < 5\} \ x := x * x \ {x < 25} & \quad (x = 3) \ x := x * x \ {x < 25} \\
\{x = 3\} \ x := x * x \ {x < 25} & \quad \frac{x > 0 \& x < 5}{x := x * x \ {x < 25}} \\
\{x = 3\} \ x := x * x \ {x < 25} & \quad \frac{x > 0 \& x < 5}{x := x * x \ {x < 25}} \\
\{x * x < 25\} \ x := x * x \ {x < 25} & \quad \frac{x > 0 \& x < 5}{x := x * x \ {x < 25}}
\end{align*}
\]

Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \& x < 5\} \ x := x * x \ {x < 25} & \quad (x = 3) \ x := x * x \ {x < 25} \\
\{x = 3\} \ x := x * x \ {x < 25} & \quad \frac{x > 0 \& x < 5}{x := x * x \ {x < 25}} \\
\{x = 3\} \ x := x * x \ {x < 25} & \quad \frac{x > 0 \& x < 5}{x := x * x \ {x < 25}} \\
\{x * x < 25\} \ x := x * x \ {x < 25} & \quad \frac{x > 0 \& x < 5}{x := x * x \ {x < 25}}
\end{align*}
\]
Sequencing

\[\{P\} C_1 \{Q\} \quad \{Q\} C_2 \{R\} \]
\[\{P\} C_1; C_2 \{R\} \]

- Example:
 \[\{z = z & z = z\} x := z \{x = z & z = z\} \]
 \[\{x = z & z = z\} y := z \{x = z & y = z\} \]
 \[\{z = z & z = z\} x := z; y := z \{x = z & y = z\} \]

Postcondition Weakening

\[\{P\} C \{Q'\} \quad Q' \Rightarrow Q \]
\[\{P\} C \{Q\} \]

Example:
\[\{z = z & z = z\} x := z; y := z \{x = z & y = z\} \]
\[\{x = z & y = z\} \Rightarrow (x = y) \]
\[\{z = z & z = z\} x := z; y := z \{x = y\} \]

Rule of Consequence

\[P \Rightarrow P' \quad \{P'\} C \{Q'\} \quad Q' \Rightarrow Q \]
\[\{P\} C \{Q\} \]

- Logically equivalent to the combination of
 - Precondition Strengthening and
 - Postcondition Weakening
- Uses \(P \Rightarrow P' \) and \(Q' \Rightarrow Q \)

If Then Else

\[\{P \text{ and } B\} C_1 \{Q\} \quad \{P \text{ and } \neg B\} C_2 \{Q\} \quad \{P\} \text{ if } B \text{ then } C_1 \text{ else } C_2 \text{ fi } \{Q\} \]

- Example: Want \(\{y=a\} \)
 - if \(x < 0 \) then \(y := y-x \) else \(y := y+x \) fi
 \[\{y = a+|x|\} \]

Suffices to show:
(1) \(\{y=a \& x<0\} \ y := y-x \{y=a+|x|\} \)
(2) \(\{y-x=a+|x|\} \ y := y-x \{y=a+|x|\} \)
(3) \(\{y=a+x<0\} \ y := y-x \{y=a+|x|\} \)

- (3) \(\{y=a+x<0\} \ y := y-x \{y=a+|x|\} \)
- (2) Follows from assignment axiom
- (3) Because \(x<0 \Rightarrow |x| = -x \)

12/5/2017 19
12/5/2017 20
12/5/2017 21
12/5/2017 22
12/5/2017 23
12/5/2017 24
\{ y = a \land \neg (x < 0) \} \quad y := y + x \quad \{ y = a + |x| \}

(6) \quad (y = a \land \neg (x < 0)) \implies (y + x = a + |x|)
(5) \quad \{ y + x = a + |x| \} \quad y := y + x \quad \{ y = a + |x| \}
(4) \quad \{ y = a \land \neg (x < 0) \} \quad y := y + x \quad \{ y = a + |x| \}

(4) Reduces to (5) and (6) by Precondition Strengthening
(5) Follows from assignment axiom
(6) Because \(\neg (x < 0) \implies |x| = x \)

If then else

(1) \quad \{ y = a \land x < 0 \} \quad y := y - x \quad \{ y = a + |x| \}
(4) \quad \{ y = a \land \neg (x < 0) \} \quad y := y + x \quad \{ y = a + |x| \}

\text{if } x < 0 \text{ then } y := y - x \text{ else } y := y + x
\quad \{ y = a + |x| \}

By the if_then_else rule

\begin{itemize}
 \item While
 \begin{itemize}
 \item We need a rule to be able to make assertions about while loops.
 \item Inference rule because we can only draw conclusions if we know something about the body
 \item Let’s start with:
 \[
 \{ ? \} \quad C \quad \{ ? \} \\
 \{ ? \} \quad \text{while } B \quad \text{do } C \quad \text{od} \quad \{ P \}
 \]
 \end{itemize}
 \begin{itemize}
 \item The loop may never be executed, so if we want \(P \) to hold after, it had better hold before, so let’s try:
 \[
 \{ \quad ? \quad \} \quad C \quad \{ \quad ? \quad \} \\
 \{ \quad P \quad \} \quad \text{while } B \quad \text{do } C \quad \text{od} \quad \{ \quad P \quad \}
 \]
 \end{itemize}

 \begin{itemize}
 \item If all we know is \(P \) when we enter the while loop, then we all we know when we enter the body is \((P \land B) \)
 \item If we need to know \(P \) when we finish the while loop, we had better know it when we finish the loop body:
 \[
 \{ P \land B \} \quad C \quad \{ P \} \\
 \{ P \} \quad \text{while } B \quad \text{do } C \quad \text{od} \quad \{ P \}
 \]
 \end{itemize}

 \begin{itemize}
 \item We can strengthen the previous rule because we also know that when the loop is finished, \(\neg B \) also holds
 \item Final while rule:
 \[
 \{ P \land B \} \quad C \quad \{ P \} \\
 \{ P \} \quad \text{while } B \quad \text{do } C \quad \text{od} \quad \{ P \land \neg B \}
 \]
 \end{itemize}
\end{itemize}
While

\{ \text{P and B} \} \text{C} \{ \text{P} \}
\{ \text{P} \} \text{while} \ B \text{ do} \ C \text{ od} \{ \text{P and not B} \}

- \text{P} satisfying this rule is called a loop invariant because it must hold before and after each iteration of the loop

- \text{While} rule generally needs to be used together with precondition strengthening and postcondition weakening

- There is \textbf{NO} algorithm for computing the correct \text{P}; it requires intuition and an understanding of why the program works

Example

- Let us prove \{x \geq 0 \text{ and } x = a\}
 \text{fact} := 1;
 \text{while } x > 0 \text{ do} (\text{fact} := \text{fact} * x; x := x - 1) \text{ od}
 \{\text{fact} = a!\}

Example

- We need to find a condition \text{P} that is true both before and after the loop is executed, and such that

 \((\text{P and not } x > 0) \Rightarrow (\text{fact} = a!) \)

Example

- First attempt:
 \{a! = \text{fact} * (x!)}\}

- \text{Motivation:}
- What we want to compute: \text{a!}
- What we have computed: \text{fact}
 which is the sequential product of \text{a} down through \((x + 1) \)
- What we still need to compute: \text{x!}

Example

By post-condition weakening suffices to show
1. \{x \geq 0 \text{ and } x = a\}
 \text{fact} := 1;
 \text{while } x > 0 \text{ do} (\text{fact} := \text{fact} * x; x := x - 1) \text{ od}
 \{a! = \text{fact} * (x!) \text{ and not } (x > 0)\}
 and
2. \{a! = \text{fact} * (x!) \text{ and not } (x > 0) \} \Rightarrow \{\text{fact} = a!\}
Problem

2. \{a! = fact \times (x!) \text{ and not } (x > 0) \} \Rightarrow \{\text{fact} = a!\}
 - Don’t know this if \(x < 0 \)
 - Need to know that \(x = 0 \) when loop terminates
 - Need a new loop invariant
 - Try adding \(x \geq 0 \)
 - Then will have \(x = 0 \) when loop is done

Example

Second try, combine the two:
\[P = \{a! = fact \times (x!) \text{ and } x \geq 0\} \]
Again, suffices to show
1. \{x\geq 0 \text{ and } x = a\}
 \text{fact} := 1;
 \text{while } x > 0 \text{ do (fact := fact \times x; x := x - 1) od}
 \{P \text{ and not } x > 0\}
 and
2. \{P \text{ and not } x > 0\} \Rightarrow \{\text{fact} = a!\}

Example

For 2, we need
\{a! = fact \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}
But \{x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{x = 0\} so
\text{fact} \times (x!) = \text{fact} \times (0!) = \text{fact}
Therefore
\{a! = fact \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}

Example

For 1, by the sequencing rule it suffices to show
3. \{x\geq 0 \text{ and } x = a\}
 \text{fact} := 1
 \text{while } x > 0 \text{ do (fact := fact \times x; x := x - 1) od}
 \{P \text{ and not } x > 0\}
 and
4. \{a! = fact \times (x!) \text{ and } x \geq 0\}
 \text{while } x > 0 \text{ do (fact := fact \times x; x := x - 1) od}
 \{a! = fact \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\}

Example

Suffices to show that
\{a! = fact \times (x!) \text{ and } x \geq 0\}
holds before the while loop is entered and that if
\{(a! = fact \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}
holds before we execute the body of the loop, then
\{(a! = fact \times (x!)) \text{ and } x \geq 0\}
holds after we execute the body

Example

By the assignment rule, we have
\{a! = 1 \times (x!) \text{ and } x \geq 0\}
\text{fact} := 1
\{a! = fact \times (x!) \text{ and } x \geq 0\}
Therefore, to show (3), by precondition strengthening, it suffices to show
\{(x\geq 0 \text{ and } x = a) \Rightarrow (a! = 1 \times (x!) \text{ and } x \geq 0)\}
Example

\[(x \geq 0 \text{ and } x = a) \Rightarrow (a! = 1 \times (x!) \text{ and } x \geq 0)\]

holds because \(x = a \Rightarrow x! = a!\)

Have that \(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}\)
holds at the start of the while loop.

Example

To show (4):

\(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}\)

while \(x > 0\) do

\(\text{fact} := \text{fact} \times x; x := x - 1\)

od

\(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\}\)

we need to show that \(\{a! = \text{fact} \times (x!)\}\) and \(x \geq 0\)
is a loop invariant.

Example

We need to show:

\(\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}\)

(\(\text{fact} = \text{fact} \times x; x := x - 1\))

\(\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\}\)

We will use assignment rule,

sequencing rule and precondition strengthening.

Example

By the assignment rule, we have

\(\{(a! = \text{fact} \times ((x - 1)!)) \text{ and } x - 1 \geq 0\}\)

\((\text{fact} = \text{fact} \times x)\)

\(\{(a! = \text{fact} \times (x - 1)!)) \text{ and } x - 1 \geq 0\}\)

By Precondition strengthening, it suffices to show

\(\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}\)

\(\{(a! = \text{fact} \times ((x - 1)!)) \text{ and } x - 1 \geq 0\}\)

Example

However

\(\text{fact} \times x \times (x - 1)! = \text{fact} \times x\)

and

\((x > 0) \Rightarrow x - 1 \geq 0\)

since \(x\) is an integer, so

\(\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\} \Rightarrow\)

\(\{(a! = (\text{fact} \times x) \times ((x - 1)!)) \text{ and } x - 1 \geq 0\}\)
Example

Therefore, by precondition strengthening

\{a! = \text{fact} \ast (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}
\text{fact} = \text{fact} \ast x
\{(a! = \text{fact} \ast ((x - 1)!)) \text{ and } x - 1 \geq 0\}

This finishes the proof