Programming Languages and Compilers (CS 421)

Sasa Misailovic
4110 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, and Elsa L Gunter
BNF Grammars

- Start with a set of characters, a, b, c, \ldots
 - We call these **terminals**
- Add a set of different characters, X, Y, Z, \ldots
 - We call these **nonterminals**
- One special nonterminal S called **start symbol**
BNF Grammars

- BNF rules (aka *productions*) have form
 \[X ::= y \]
 where *X* is any nonterminal and *y* is a string of terminals and nonterminals

- BNF *grammar* is a set of BNF rules such that every nonterminal appears on the left of some rule
Sample Grammar

- Terminals: 0 1 + ()
- Nonterminals: <Sum>
- Start symbol = <Sum>

- <Sum> ::= 0
- <Sum> ::= 1
- <Sum> ::= <Sum> + <Sum>
- <Sum> ::= (<Sum>)
- Can be abbreviated as
 <Sum> ::= 0 | 1
 | <Sum> + <Sum> | ()
BNF Derivations

- Given rules
 \[X ::= yZw \text{ and } Z ::= v \]
 we may replace \(Z \) by \(v \) to say
 \[X => yZw => yvw \]
- Sequence of such replacements called \textit{derivation}
- Derivation called \textit{right-most} if always replace the right-most non-terminal
BNF Semantics

The meaning of a BNF grammar is the set of all strings consisting only of terminals that can be derived from the Start symbol.
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

- Start with the start symbol:

<Sum> =>
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

- Pick a non-terminal

<Sum> =>
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Pick a rule and substitute:

- <Sum> ::= <Sum> + <Sum>

<Sum> => <Sum> + <Sum>
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

- Pick a non-terminal:

<Sum> => <Sum> + <Sum>
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Pick a rule and substitute:

- <Sum> ::= (<Sum>)

<Sum> => <Sum> + <Sum>

=> (<Sum>) + <Sum>

=> (<Sum>) + <Sum>
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

Pick a non-terminal:

<Sum> => <Sum> + <Sum>
 => (<Sum>) + <Sum>
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

- Pick a rule and substitute:
 - <Sum> ::= <Sum> + <Sum>

 <Sum> => <Sum> + <Sum>

 => (<Sum>) + <Sum>

 => (<Sum> + <Sum>) + <Sum>
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

- Pick a non-terminal:

<Sum> => <Sum> + <Sum>

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>
BNF Derivations

\(<\text{Sum}\> ::= 0 \mid 1 \mid <\text{Sum}\> + <\text{Sum}\> \mid (<\text{Sum}\>)\)

- Pick a rule and substitute:
 - \(<\text{Sum}\> ::= 1\)

\(<\text{Sum}\> \Rightarrow <\text{Sum}\> + <\text{Sum}\> \Rightarrow (<\text{Sum}\>) + <\text{Sum}\> \Rightarrow (<\text{Sum}\> + <\text{Sum}\>) + <\text{Sum}\> \Rightarrow (<\text{Sum}\> + 1) + <\text{Sum}\>\)
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

* Pick a non-terminal:

<Sum> => <Sum> + <Sum>
=> (<Sum>) + <Sum>
=> (<Sum> + <Sum>) + <Sum>
=> (<Sum> + 1) + <Sum>
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

- Pick a rule and substitute:
 - <Sum> ::= 0

<Sum> => <Sum> + <Sum>

=> (<Sum>) + <Sum>

=> (<Sum> + <Sum>) + <Sum>

=> (<Sum> + 1) + <Sum>

=> (<Sum> + 1) + 0
BNF Derivations

\[<\text{Sum}> ::= 0 \mid 1 \mid <\text{Sum}> + <\text{Sum}> \mid (<\text{Sum}>) \]

- Pick a non-terminal:

\[<\text{Sum}> \Rightarrow <\text{Sum}> + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}>) + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}> + <\text{Sum}>) + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}> + 1) + <\text{Sum}> \]
\[\Rightarrow (<\text{Sum}> + 1) + 0 \]
BNF Derivations

<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)

- Pick a rule and substitute
 - <Sum> ::= 0

<Sum> => <Sum> + <Sum>
 => (<Sum>) + <Sum>
 => ((<Sum> + <Sum>) + <Sum>
 => (<Sum> + 1) + <Sum>
 => (<Sum> + 1) 0
 => (0 + 1) + 0
BNF Derivations

\[\texttt{<Sum> ::= 0 | 1 | <Sum> + <Sum> | (<Sum>)} \]

\[(0 + 1) + 0 \text{ is generated by grammar} \]

\[\texttt{<Sum>} \Rightarrow \texttt{<Sum> + <Sum>} \]
\[\Rightarrow (\texttt{<Sum>}) + \texttt{<Sum>} \]
\[\Rightarrow (\texttt{<Sum> + <Sum>}) + \texttt{<Sum>} \]
\[\Rightarrow (\texttt{<Sum> + 1 }) + \texttt{<Sum>} \]
\[\Rightarrow (\texttt{<Sum> + 1 }) + 0 \]
\[\Rightarrow (0 + 1) + 0 \]
Regular Grammars

- Subclass of BNF
- Only rules of form
 \[\text{nonterminal} ::= \text{terminal} \text{nonterminal} \] or
 \[\text{nonterminal} ::= \text{terminal} \] or
 \[\text{nonterminal} ::= \varepsilon \]
- Defines same class of languages as regular expressions
- Important for writing lexers (programs that convert strings of characters into strings of tokens)
Example

- Regular grammar:
 \[
 \langle \text{Balanced} \rangle ::= \varepsilon \\
 \langle \text{Balanced} \rangle ::= 0\langle \text{OneAndMore} \rangle \\
 \langle \text{Balanced} \rangle ::= 1\langle \text{ZeroAndMore} \rangle \\
 \langle \text{OneAndMore} \rangle ::= 1\langle \text{Balanced} \rangle \\
 \langle \text{ZeroAndMore} \rangle ::= 0\langle \text{Balanced} \rangle
 \]

- Generates even length strings where every initial substring of even length has same number of 0’s as 1’s
Extended BNF Grammars

- Alternatives: allow rules of from $X ::= y/z$
 - Abbreviates $X ::= y, X ::= z$

- Options: $X ::= y[v]z$
 - Abbreviates $X ::= yvz, X ::= yz$

- Repetition: $X ::= y\{v\}^*z$
 - Can be eliminated by adding new nonterminal V and rules $X ::= yz, X ::= yVz, V ::= v, V ::= vV$
Parse Trees

- Graphical representation of derivation
- Each node labeled with either non-terminal or terminal
- If node is labeled with a terminal, then it is a leaf (no sub-trees)
- If node is labeled with a non-terminal, then it has one branch for each character in the right-hand side of rule used to substitute for it
Example

- Consider grammar:

 \[\text{exp} ::= \text{factor} \]
 \[\text{factor} ::= \text{bin} | \text{factor} + \text{factor} \]
 \[\text{factor} ::= \text{bin} \]
 \[\text{bin} ::= 0 | 1 \]

- Problem: Build parse tree for \(1 * 1 + 0 \) as an \(\text{exp} \)
Example cont.

- $1 \times 1 + 0$: $\langle \text{exp} \rangle$

$\langle \text{exp} \rangle$ is the start symbol for this parse tree
Example cont.

- $1 \times 1 + 0$: \[<\text{exp}>\]
 \[<\text{factor}>\]

Use rule: $<\text{exp}> ::= <\text{factor}>$
Example cont.

- $1 \times 1 + 0$:

```
<exp>
  <factor>
    <bin> * <exp>
```

Use rule:

```
<factor> ::= <bin> * <exp>
```
Example cont.

- $1 \times 1 + 0$:

```
<exp>
  <factor>
    <bin> * <exp>
      1 <factor> + <factor>
```

Use rules:

- $<bin> ::= 1$ and
- $<exp> ::= <factor> + <factor>$
Example cont.

- \(1 \times 1 + 0: \)

```
<exp>
  <factor>
    <bin> * <exp>
      1 <factor> + <factor>
        <bin> <bin>
```

Use rule: \(<factor> ::= <bin>\)
Example cont.

1 * 1 + 0:

Use rules: \texttt{<bin>} ::= 1 | 0
Example cont.

1 * 1 + 0: <exp>

<factor>

<bin> * <exp>

1 <factor> + <factor>

<bin> <bin>

1 0

Fringe of tree is string generated by grammar
Your Turn: $1 \times 0 + 0 \times 1$

```
<exp> ::= <factor>
     | <factor> + <factor>
<factor> ::= <bin>
     | <bin> * <exp>
<bin> ::= 0 | 1
```
Parse Tree Data Structures

- Parse trees may be represented by OCaml datatypes
- One datatype for each nonterminal
- One constructor for each rule
- Defined as mutually recursive collection of datatype declarations
Example

- Recall grammar:

\[
\begin{align*}
\langle \text{exp} \rangle &::= \langle \text{factor} \rangle \mid \langle \text{factor} \rangle + \langle \text{factor} \rangle \\
\langle \text{factor} \rangle &::= \langle \text{bin} \rangle \mid \langle \text{bin} \rangle \ast \langle \text{exp} \rangle \\
\langle \text{bin} \rangle &::= 0 \mid 1
\end{align*}
\]

- type \(\text{exp} = \text{Factor2Exp} \) of \(\text{factor} \)
 \mid \text{Plus} \) of \(\text{factor} \ast \text{factor} \)
 and \(\text{factor} = \text{Bin2Factor} \) of \(\text{bin} \)
 \mid \text{Mult} \) of \(\text{bin} \ast \text{exp} \)
 and \(\text{bin} = \text{Zero} \mid \text{One} \)
Example cont.

- $1 \times 1 + 0$:

\[
\begin{array}{c}
\text{<exp>}
\end{array}
\]

\[
\begin{array}{c}
\text{<factor>}
\end{array}
\]

\[
\begin{array}{c}
\text{<bin>}
\end{array} \times
\begin{array}{c}
\text{<exp>}
\end{array}
\]

\[
\begin{array}{c}
\text{<factor>}
\end{array} +
\begin{array}{c}
\text{<factor>}
\end{array}
\]

\[
\begin{array}{c}
\text{<bin>}
\end{array}
\]

\[
\begin{array}{c}
1
\end{array}
\]

\[
\begin{array}{c}
\text{<bin>}
\end{array}
\]

\[
\begin{array}{c}
1
\end{array}
\]

\[
\begin{array}{c}
\text{<bin>}
\end{array}
\]

\[
\begin{array}{c}
0
\end{array}
\]

- type exp = Factor2Exp of factor
 | Plus of factor * factor
 and factor = Bin2Factor of bin
 | Mult of bin * exp
 and bin = Zero | One
Example cont.

- Can be represented as

\[
\text{Factor2Exp}
\text{ (Mult(One,}
\quad \text{Plus(Bin2Factor One,}
\quad \quad \text{Bin2Factor Zero))))
\]
Ambiguous Grammars and Languages

- A BNF grammar is *ambiguous* if its language contains strings for which there is more than one parse tree.

- If all BNF’s for a language are ambiguous then the language is *inherently ambiguous*.
Example: Ambiguous Grammar

$0 + 1 + 0$

[Diagram of ambiguous grammar trees]
Example

What is the result for:

\[3 + 4 \times 5 + 6 \]
Example

What is the result for:

$$3 + 4 \times 5 + 6$$

Possible answers:

- $41 = ((3 + 4) \times 5) + 6$
- $47 = 3 + (4 \times (5 + 6))$
- $29 = (3 + (4 \times 5)) + 6 = 3 + ((4 \times 5) + 6)$
- $77 = (3 + 4) \times (5 + 6)$
Example

What is the value of:

$7 - 5 - 2$
Example

- What is the value of:

 \[7 - 5 - 2 \]

- Possible answers:

 - In Pascal, C++, SML assoc. left

 \[7 - 5 - 2 = (7 - 5) - 2 = 0 \]

 - In APL, associate to right

 \[7 - 5 - 2 = 7 - (5 - 2) = 4 \]
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity

- Not the only sources of ambiguity
Disambiguating a Grammar

- Given ambiguous grammar G, with start symbol S, find a grammar G' with same start symbol, such that
 \[
 \text{language of } G = \text{language of } G'
 \]

- Not always possible

- No algorithm in general
Disambiguating a Grammar

- Idea: Each non-terminal represents all strings having some property
- Identify these properties (often in terms of things that can’t happen)
- Use these properties to inductively guarantee every string in language has a unique parse
Steps to Grammar Disambiguation

- Identify the rules and a smallest use that display ambiguity
- Decide which parse to keep; why should others be thrown out?
- What syntactic restrictions on subexpressions are needed to throw out the bad (while keeping the good)?
- Add a new non-terminal and rules to describe this set of restricted subexpressions (called stratifying, or refactoring)
- Replace old rules to use new non-terminals
- Rinse and repeat
Example

- Ambiguous grammar:
 \[
 \text{<exp>} ::= 0 \mid 1 \mid \text{<exp>} + \text{<exp>}
 \mid \text{<exp>} \ast \text{<exp>}
 \]

- String with more then one parse:
 \[
 0 + 1 + 0
 1 \ast 1 + 1
 \]

- Source of ambiguity: associativity and precedence
Two Major Sources of Ambiguity

- Lack of determination of operator precedence
- Lack of determination of operator associativity
- Not the only sources of ambiguity
How to Enforce Associativity

- Have at most one recursive call per production

- When two or more recursive calls would be natural leave right-most one for right associativity, left-most one for left associativity
Example

- \(<\text{Sum}> ::= 0 \mid 1 \mid <\text{Sum}> + <\text{Sum}> \mid (<\text{Sum}>)

- Becomes
 - \(<\text{Sum}> ::= <\text{Num}> \mid <\text{Num}> + <\text{Sum}>\)
 - \(<\text{Num}> ::= 0 \mid 1 \mid (<\text{Sum}>)\)
Operator Precedence

- Operators of highest precedence evaluated first (bind more tightly).

- Precedence for infix binary operators given in following table

- Needs to be reflected in grammar
Precedence Table - Sample

<table>
<thead>
<tr>
<th></th>
<th>Fortan</th>
<th>Pascal</th>
<th>C/C++</th>
<th>Ada</th>
<th>SML</th>
</tr>
</thead>
<tbody>
<tr>
<td>highest</td>
<td>**</td>
<td>* , / ,</td>
<td>++ , --</td>
<td>**</td>
<td>div ,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>div ,</td>
<td></td>
<td></td>
<td>mod ,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mod</td>
<td></td>
<td></td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ , -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ , -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ , -</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>::</td>
</tr>
</tbody>
</table>
First Example Again

- In any above language, $3 + 4 \times 5 + 6 = 29$
- In APL, all infix operators have same precedence
 - Thus we still don’t know what the value is (handled by associativity)
- How do we handle precedence in grammar?
Predence in Grammar

- Higher precedence translates to longer derivation chain
- Example:
 \[<exp> ::= 0 \mid 1 \mid <exp> + <exp> \]
 \[\quad \mid <exp> * <exp> \]
- Becomes
 \[<exp> ::= <mult_exp> \]
 \[\quad \mid <exp> + <mult_exp> \]
 \[<mult_exp> ::= <id> \mid <mult_exp> * <id> \]
 \[<id> ::= 0 \mid 1 \]
Parser Code

- `<grammar>.ml` defines one parsing function per entry point
- Parsing function takes a lexing function (lexer buffer to token) and a lexer buffer as arguments
- Returns semantic attribute of corresponding entry point
Ocamlyacc Input

- File format:

```ocaml

{%{
  <header>
%
%
   <declarations>
%
%
   <rules>
%
%
   <trailer>
```
Ocamlyacc <header>

- Contains arbitrary Ocaml code
- Typically used to give types and functions needed for the semantic actions of rules and to give specialized error recovery
- May be omitted
- <footer> similar. Possibly used to call parser
Ocamlyacc <declarations>

- %token symbol ... symbol
 - Declare given symbols as tokens
- %token <type> symbol ... symbol
 - Declare given symbols as token constructors, taking an argument of type <type>
- %start symbol ... symbol
 - Declare given symbols as entry points; functions of same names in <grammar>.ml
Ocamlyacc <declarations>

- %type <type> symbol ... symbol
 Specify type of attributes for given symbols. Mandatory for start symbols
- %left symbol ... symbol
- %right symbol ... symbol
- %nonassoc symbol ... symbol
 Associate precedence and associativity to given symbols. Same line, same precedence; earlier line, lower precedence (broadest scope)
Ocamlyacc <rules>

- **nonterminal**:

 \[
 \text{symbol} \ldots \text{symbol} \{ \text{semantic_action} \} \\
 | \ldots \\
 | \text{symbol} \ldots \text{symbol} \{ \text{semantic_action} \}
 \]

;

- Semantic actions are arbitrary Ocaml expressions
- Must be of same type as declared (or inferred) for **nonterminal**
- Access semantic attributes (values) of symbols by position: 1 for first symbol, 2 to second ...
Example - Base types

(* File: expr.ml *)
type expr =
 Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)
and term =
 Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)
and factor =
 Id_as_Factor of string
 | Parenthesized_Derived_Expr_as_Factor of expr
Example - Lexer (exprlex.mll)

{ (*open Exprparser*) }
let numeric = ['0' - '9']
let letter = ['a' - 'z' 'A' - 'Z']
rule token = parse
 | "+" {Plus_token}
 | "-" {Minus_token}
 | "*" {Times_token}
 | "/" {Divide_token}
 | "(" {Left_parenthesis}
 | ")" {Right_parenthesis}
 | letter (letter|numeric|"_")* as id {Id_token id}
 | [' ' '	' '\n'] {token lexbuf}
 | eof {EOL}
Example - Parser (exprparse.mly)

{% open Expr
%
%}
%token <string> Id_token
%token Left_parenthesis Right_parenthesis
%token Times_token Divide_token
%token Plus_token token Minus_token
%token EOL
%start main
%type <expr> main
%%
Example - Parser (exprparse.mly)

eexpr:

 term
 { Term_as_Expr $1 }

 | term Plus_token expr
 { Plus_Expr ($1, $3) }

 | term Minus_token expr
 { Minus_Expr ($1, $3) }

Example - Base types

(* File: expr.ml *)
type expr =
 Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)
Example - Parser (exprparse.mly)

term:
 factor
 { Factor_as_Term $1 }
 | factor Times_token term
 { Mult_Term ($1, $3) }
 | factor Divide_token term
 { Div_Term ($1, $3) }

Example - Base types

(* File: expr.ml *)
type expr =
 Term_as.Expr of term
 | Plus.Expr of (term * expr)
 | Minus.Expr of (term * expr)
 and term =
 Factor_as.Term of factor
 | Mult.Term of (factor * term)
 | Div.Term of (factor * term)
 | ...
Example - Parser (exprparse.mly)

factor:
 Id_token
 { Id_as_Factor $1 }
 | Left_parenthesis expr Right_parenthesis
 { Parenthesized_Expr_as_Factor $2 }

main:
 | expr EOL
 { $1 }
Example - Using Parser

```ml
# #use "expr.ml";;
...
# #use "exprparse.ml";;
...
# #use "exprlex.ml";;
...
# let test s =
    let lexbuf = Lexing.from_string (s^"\n") in
    main token lexbuf;;
```
Example - Using Parser

test "a + b";;
- : expr =
 Plus_Expr
 (Factor_as_Term (Id_as_Factor "a"),
 Term_as_Expr
 (Factor_as_Term (Id_as_Factor "b")))

Example - Base types

(* File: expr.ml *)
type expr =
 Term_as_Expr of term
 | Plus_Expr of (term * expr)
 | Minus_Expr of (term * expr)
and term =
 Factor_as_Term of factor
 | Mult_Term of (factor * term)
 | Div_Term of (factor * term)
and factor =
 Id_as_Factor of string
 | Parenthesized_Expr_as_Factor of expr
LR Parsing

- Read tokens left to right (L)
- Create a rightmost derivation (R)
- How is this possible?
- Start at the bottom (left) and work your way up
- Last step has only one non-terminal to be replaced so is right-most
- Working backwards, replace mixed strings by non-terminals
- Always proceed so that there are no non-terminals to the right of the string to be replaced
Example

\[(0 + 1) + 0\]
Example

\[(0 + 1) + 0\]
Example

(0 + 1) + 0
Example

\[\langle \text{Sum} \rangle \]

\[(0 + 1) + 0 \]
Example

\[
\langle \text{Sum} \rangle \\
\begin{array}{c}
0 \\
\end{array}
\]

(0 + 1) + 0
Example

$$\langle \text{Sum} \rangle \begin{bmatrix} 0 & + & 1 \end{bmatrix} + 0$$
Example

\[
(\langle\text{Sum}\rangle \ 0 + \langle\text{Sum}\rangle \ 1) + 0
\]
Example

\[
\langle \text{Sum} \rangle (0 + \langle \text{Sum} \rangle 1) + 0
\]
Example

\[(0 + 1 + 0)\]
Example

\[(0 + 1) + 0\]
Example
Example

$\langle \text{Sum} \rangle + (0 + 1) + 0$
Example

\[
\langle \text{Sum} \rangle \left(0 + 1 \right) + 0
\]
Example

\[(0 + 1) + 0\]
LR Parsing Tables

- Build a pair of tables, Action and Goto, from the grammar
 - This is the hardest part, we omit here
 - Rows labeled by states
 - For Action, columns labeled by terminals and “end-of-tokens” marker
 - (more generally strings of terminals of fixed length)
 - For Goto, columns labeled by non-terminals
Action and Goto Tables

- Given a state and the next input, Action table says either
 - **shift** and go to state \(n \), or
 - **reduce** by production \(k \) (explained in a bit)
 - **accept** or error

- Given a state and a non-terminal, Goto table says
 - go to state \(m \)
Example: \(<\text{Sum}> = 0 \mid 1 \mid (\langle\text{Sum}\rangle)\)
| \langle\text{Sum}\rangle + \langle\text{Sum}\rangle |

\langle\text{Sum}\rangle \Rightarrow

= \; \bullet (0 + 1) + 0 \quad \text{shift}
Example: $\langle \text{Sum} \rangle = 0 \mid 1 \mid (\langle \text{Sum} \rangle)$

$\langle \text{Sum} \rangle$ $=>$

$= (0 + 1) + 0$ \text{shift}

$= (0 + 1) + 0$ \text{shift}$\langle \text{Sum} \rangle + \langle \text{Sum} \rangle$
Example: \(<\text{Sum}\> = 0 \mid 1 \mid (\langle\text{Sum}\rangle) \mid \langle\text{Sum}\rangle + \langle\text{Sum}\rangle\)

\[\langle\text{Sum}\rangle \Rightarrow\]

\[\Rightarrow (0 \cdot + 1) + 0 \quad \text{reduce}\]
\[= (0 + 1) + 0 \quad \text{shift}\]
\[= (0 + 1) + 0 \quad \text{shift}\]
Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>) \mid <\text{Sum}> + <\text{Sum}>\)

\(<\text{Sum}> \Rightarrow \)

\[
\begin{align*}
\text{shift} & \quad (\text{<Sum>} \bullet + 1) + 0 \\
\text{reduce} & \quad (0 \bullet + 1) + 0 \\
\text{shift} & \quad (\bullet 0 + 1) + 0 \\
\text{shift} & \quad \bullet (0 + 1) + 0
\end{align*}
\]
Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)) \mid <\text{Sum}> + <\text{Sum}>\)
Example: \(<\text{Sum}> = 0 \mid 1 \mid (\langle \text{Sum} \rangle) \mid <\text{Sum}> + <\text{Sum}>\)

\(<\text{Sum}> \implies \)

\[\implies (\langle \text{Sum} \rangle + 1 \bigcirc) + 0 \quad \text{reduce} \]
\[= (\langle \text{Sum} \rangle + \bigcirc 1) + 0 \quad \text{shift} \]
\[= (\langle \text{Sum} \rangle \bigcirc + 1) + 0 \quad \text{shift} \]
\[\implies (0 \bigcirc + 1) + 0 \quad \text{reduce} \]
\[= (\bigcirc 0 + 1) + 0 \quad \text{shift} \]
\[= \bigcirc (0 + 1) + 0 \quad \text{shift} \]
Example: $<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>) \mid <\text{Sum}> + <\text{Sum}>$

$<\text{Sum}> \Rightarrow$

=> $(<\text{Sum}> + <\text{Sum}> \bullet) + 0 \quad \text{reduce}$

=> $(<\text{Sum}> + 1 \bullet) + 0 \quad \text{reduce}$

= $(<\text{Sum}> + \bullet 1) + 0 \quad \text{shift}$

= $(<\text{Sum}> \bullet + 1) + 0 \quad \text{shift}$

=> $(0 \bullet + 1) + 0 \quad \text{reduce}$

= $(\bullet 0 + 1) + 0 \quad \text{shift}$

= $\bullet (0 + 1) + 0 \quad \text{shift}$
Example: \(<\text{Sum}> = 0 \mid 1 \mid (\langle\text{Sum}\rangle)\) \mid \langle\text{Sum}\rangle + \langle\text{Sum}\rangle\)

\(<\text{Sum}> \Rightarrow \)

\[
\begin{align*}
&= (\langle\text{Sum}\rangle \bullet) + 0 &\text{shift} \\
&\Rightarrow (\langle\text{Sum}\rangle + \langle\text{Sum}\rangle \bullet) + 0 &\text{reduce} \\
&\Rightarrow (\langle\text{Sum}\rangle + 1 \bullet) + 0 &\text{reduce} \\
&= (\langle\text{Sum}\rangle + \bullet 1) + 0 &\text{shift} \\
&= (\langle\text{Sum}\rangle \bullet + 1) + 0 &\text{shift} \\
&\Rightarrow (0 \bullet + 1) + 0 &\text{reduce} \\
&= (\bullet 0 + 1) + 0 &\text{shift} \\
&= \bullet (0 + 1) + 0 &\text{shift}
\end{align*}
\]
Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid <\text{Sum}> + <\text{Sum}>\)

\(<\text{Sum}> \Rightarrow

\Rightarrow (\ <\text{Sum}> \) \cdot + 0 \quad \text{reduce}
= (\ <\text{Sum}> \cdot) + 0 \quad \text{shift}
\Rightarrow (\ <\text{Sum}> + <\text{Sum}> \cdot) + 0 \quad \text{reduce}
\Rightarrow (\ <\text{Sum}> + 1 \cdot) + 0 \quad \text{reduce}
= (\ <\text{Sum}> + \cdot 1) + 0 \quad \text{shift}
= (\ <\text{Sum}> \cdot + 1) + 0 \quad \text{shift}
\Rightarrow (0 \cdot + 1) + 0 \quad \text{reduce}
= (\cdot 0 + 1) + 0 \quad \text{shift}
= \cdot (0 + 1) + 0 \quad \text{shift}
Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid \text{<Sum>} + \text{<Sum>}
\>

\text{<Sum>} \Rightarrow

= \text{<Sum>} \cdot + 0 \quad \text{shift}

\Rightarrow (\text{<Sum>}) \cdot + 0 \quad \text{reduce}

= (\text{<Sum>} \cdot) + 0 \quad \text{shift}

\Rightarrow (\text{<Sum>} + \text{<Sum>} \cdot) + 0 \quad \text{reduce}

\Rightarrow (\text{<Sum>} + 1 \cdot) + 0 \quad \text{reduce}

= (\text{<Sum>} + \cdot 1) + 0 \quad \text{shift}

= (\text{<Sum>} \cdot + 1) + 0 \quad \text{shift}

\Rightarrow (0 \cdot + 1) + 0 \quad \text{reduce}

= (\cdot 0 + 1) + 0 \quad \text{shift}

= \cdot (0 + 1) + 0 \quad \text{shift}
Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>)
\mid <\text{Sum}> + <\text{Sum}>\)

\(<\text{Sum}> \quad \Rightarrow \quad
\begin{align*}
\Rightarrow & \quad <\text{Sum}> + \bullet 0 \quad \text{shift} \\
\Rightarrow & \quad <\text{Sum}> \bullet + 0 \quad \text{shift} \\
\Rightarrow & \quad (<\text{Sum}> \bullet) + 0 \quad \text{shift} \\
\Rightarrow & \quad (<\text{Sum}> + <\text{Sum}> \bullet) + 0 \quad \text{reduce} \\
\Rightarrow & \quad (<\text{Sum}> + 1 \bullet) + 0 \quad \text{reduce} \\
\Rightarrow & \quad (<\text{Sum} + \bullet 1) + 0 \quad \text{shift} \\
\Rightarrow & \quad (<\text{Sum} + \bullet + 1) + 0 \quad \text{shift} \\
\Rightarrow & \quad (0 \bullet + 1) + 0 \quad \text{reduce} \\
\Rightarrow & \quad (\bullet 0 + 1) + 0 \quad \text{shift} \\
\Rightarrow & \quad (\bullet (0 + 1) + 0 \quad \text{shift}
\end{align*}
Example: \(<\text{Sum}\> = 0 | 1 | (\langle \text{Sum} \rangle) | \langle \text{Sum} \rangle + \langle \text{Sum} \rangle\)

\[\begin{align*}
\langle \text{Sum} \rangle & \Rightarrow \\
& \Rightarrow \langle \text{Sum} \rangle + 0 \quad \text{reduce} \\
& = \langle \text{Sum} \rangle + 0 \quad \text{shift} \\
& = \langle \text{Sum} \rangle \cdot + 0 \quad \text{shift} \\
& \Rightarrow (\langle \text{Sum} \rangle) \cdot + 0 \quad \text{reduce} \\
& = (\langle \text{Sum} \rangle \cdot) + 0 \quad \text{shift} \\
& \Rightarrow (\langle \text{Sum} \rangle + \langle \text{Sum} \rangle \cdot) + 0 \quad \text{reduce} \\
& \Rightarrow (\langle \text{Sum} \rangle + 1 \cdot) + 0 \quad \text{reduce} \\
& = (\langle \text{Sum} \rangle + 1 \cdot) + 0 \quad \text{shift} \\
& = (\langle \text{Sum} \rangle \cdot + 1 \cdot) + 0 \quad \text{shift} \\
& \Rightarrow (0 \cdot + 1 \cdot) + 0 \quad \text{reduce} \\
& = (0 \cdot + 1 \cdot) + 0 \quad \text{shift} \\
& = (0 \cdot + 1 \cdot) + 0 \quad \text{shift} \\
\end{align*}\]
Example: \(<\text{Sum}> = 0 \mid 1 \mid (<\text{Sum}>) \mid <\text{Sum}> + <\text{Sum}> \)

\[
<\text{Sum}> \quad \Rightarrow \quad <\text{Sum}> + <\text{Sum}> \quad \bullet \quad \text{reduce} \\
\Rightarrow \quad <\text{Sum}> + 0 \quad \bullet \quad \text{reduce} \\
= \quad <\text{Sum}> + \bullet 0 \quad \text{shift} \\
= \quad <\text{Sum}> \bullet + 0 \quad \text{shift} \\
\Rightarrow \quad (<\text{Sum}>) \bullet + 0 \quad \text{reduce} \\
= \quad (<\text{Sum}> \bullet) + 0 \quad \text{shift} \\
\Rightarrow \quad (<\text{Sum}> + <\text{Sum}> \bullet) + 0 \quad \text{reduce} \\
\Rightarrow \quad (<\text{Sum}> + 1 \bullet) + 0 \quad \text{reduce} \\
= \quad (<\text{Sum}> + \bullet 1) + 0 \quad \text{shift} \\
= \quad (<\text{Sum}> \bullet + 1) + 0 \quad \text{shift} \\
\Rightarrow \quad (0 \bullet + 1) + 0 \quad \text{reduce} \\
= \quad (\bullet 0 + 1) + 0 \quad \text{shift} \\
= \quad \bullet (0 + 1) + 0 \quad \text{shift}
\]
Example: \(<\text{Sum}> = 0 | 1 | (<\text{Sum}>) | <\text{Sum}> + <\text{Sum}>\)

\(<\text{Sum}> \bullet \Rightarrow <\text{Sum}> + <\text{Sum}> \bullet \quad \text{reduce} \\
\Rightarrow <\text{Sum}> + 0 \bullet \quad \text{reduce} \\
= <\text{Sum}> + \bullet 0 \quad \text{shift} \\
= <\text{Sum}> \bullet + 0 \quad \text{shift} \\
\Rightarrow (<\text{Sum}>) \bullet + 0 \quad \text{reduce} \\
= (<\text{Sum}> \bullet) + 0 \quad \text{shift} \\
\Rightarrow (<\text{Sum}> + <\text{Sum}> \bullet) + 0 \quad \text{reduce} \\
\Rightarrow (<\text{Sum}> + 1 \bullet) + 0 \quad \text{reduce} \\
= (<\text{Sum}> + \bullet 1) + 0 \quad \text{shift} \\
= (<\text{Sum}> \bullet + 1) + 0 \quad \text{shift} \\
\Rightarrow (0 \bullet + 1) + 0 \quad \text{reduce} \\
= (\bullet 0 + 1) + 0 \quad \text{shift} \\
= \bullet (0 + 1) + 0 \quad \text{shift}
LR(i) Parsing Algorithm

- Based on push-down automata
- Uses states and transitions (as recorded in Action and Goto tables)
- Uses a stack containing states, terminals and non-terminals
LR(i) Parsing Algorithm

0. Insure token stream ends in special “end-of-tokens” symbol

1. Start in state 1 with an empty stack

2. Push state(1) onto stack

3. Look at next i tokens from token stream ($toks$) (don’t remove yet)

4. If top symbol on stack is state(n), look up action in Action table at $(n, toks)$
LR(i) Parsing Algorithm

5. If action = **shift** m,
 a) Remove the top token from token stream and push it onto the stack
 b) Push **state**(m) onto stack
 c) Go to step 3
LR(i) Parsing Algorithm

6. If action = \textbf{reduce} \(k \) where production \(k \) is \(E ::= u \)

 a) Remove \(2 \times \text{length}(u) \) symbols from stack (\(u \) and all the interleaved states)

 b) If new top symbol on stack is \textit{state}(m), look up new state \(p \) in \textit{Goto}(m,E)

 c) Push \(E \) onto the stack, then push \textit{state}(p) onto the stack

 d) Go to step 3
LR(i) Parsing Algorithm

7. If action = accept
 ■ Stop parsing, return success

8. If action = error,
 ■ Stop parsing, return failure
Adding Synthesized Attributes

- Add to each **reduce** a rule for calculating the new synthesized attribute from the component attributes.
- Add to each non-terminal pushed onto the stack, the attribute calculated for it.
- When performing a **reduce**, gather the recorded attributes from each non-terminal popped from stack.
- Compute new attribute for non-terminal pushed onto stack.
Shift-Reduce Conflicts

- **Problem**: can’t decide whether the action for a state and input character should be **shift** or **reduce**
- Caused by ambiguity in grammar
- Usually caused by lack of associativity or precedence information in grammar
Example: \(<\text{Sum}\> = 0 \mid 1 \mid (<\text{Sum}\>)\)
\mid \text{<Sum>} + \text{<Sum>}

\[\begin{align*}
\bullet 0 + 1 + 0 & \quad \text{shift} \\
\rightarrow 0 \bullet + 1 + 0 & \quad \text{reduce} \\
\rightarrow \text{<Sum>} \bullet + 1 + 0 & \quad \text{shift} \\
\rightarrow \text{<Sum>} + \bullet 1 + 0 & \quad \text{shift} \\
\rightarrow \text{<Sum>} + 1 \bullet + 0 & \quad \text{reduce} \\
\rightarrow \text{<Sum>} + \text{<Sum>} \bullet + 0
\end{align*}\]
Example - cont

- **Problem:** shift or reduce?

- You can shift-shift-reduce-reduce or reduce-shift-shift-reduce

- Shift first - right associative
- Reduce first - left associative
Reduce - Reduce Conflicts

- **Problem:** can’t decide between two different rules to reduce by
- Again caused by ambiguity in grammar
- **Symptom:** RHS of one production suffix of another
- Requires examining grammar and rewriting it
- Harder to solve than shift-reduce errors
Example

- $S ::= A \mid aB$
- $A ::= abc$
- $B ::= bc$

- abc shift
- a bc shift
- ab c shift
- abc

Problem: reduce by $B ::= bc$ then by $S ::= aB$, or by $A ::= abc$ then $S ::= A$?