
10/4/2017 1

Programming Languages and Compilers

(CS 421)

Sasa Misailovic

4110 SC, UIUC
https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated

by Vikram Adve, Gul Agha, and Elsa L Gunter

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

10/4/2017 2

Terminology

 Type: A type t defines a set of possible data

values

 E.g. short in C is {x| 215 - 1 x -215}

 A value in this set is said to have type t

 Type system: rules of a language assigning

types to expressions

10/4/2017 3

Why Data Types?

 Data types play a key role in:

 Data abstraction in the design of programs

 Type checking in the analysis of programs

 Compile-time code generation in the

translation and execution of programs

 Data layout (how many words; which are data and

which are pointers) dictated by type

10/4/2017 4

Types as Specifications

 Types describe properties

 Different type systems describe different properties:

 Data is read-write versus read-only

 Operation has authority to access data

 Data came from “right” source

 Operation might or could not raise an exception

 Common type systems focus on types describing same

data layout and access methods

10/4/2017 5

Sound Type System

 Type: A type t defines a set of possible data values

 E.g. short in C is {x| 215 - 1 x -215}

 A value in this set is said to have type t

 Type system: rules of a language assigning types to expressions

 If an expression is assigned type t, and it evaluates to a

value v, then v is in the set of values defined by t

 SML, OCAML, Scheme and Ada have sound type

systems

 Most implementations of C and C++ do not

10/4/2017 6

Strongly Typed Language

 When no application of an operator to

arguments can lead to a run-time type

error, language is strongly typed

 Eg: 1 + 2.3;;

 Depends on definition of “type error”

10/4/2017 7

Strongly Typed Language

 C++ claimed to be “strongly typed”, but
 Union types allow creating a value at one type

and using it at another
 Type coercions may cause unexpected

(undesirable) effects
 No array bounds check (in fact, no runtime

checks at all)

 SML, OCAML “strongly typed” but still must do
dynamic array bounds checks, runtime type case
analysis, and other checks

10/4/2017 8

Static vs Dynamic Types

• Static type: type assigned to an expression at
compile time

• Dynamic type: type assigned to a storage
location at run time

• Statically typed language: static type assigned
to every expression at compile time

• Dynamically typed language: type of an
expression determined at run time

10/4/2017 9

Type Checking

 When is op(arg1,…,argn) allowed?

 Type checking assures that operations are
applied to the right number of arguments of the
right types

 Right type may mean same type as was
specified, or may mean that there is a
predefined implicit coercion that will be
applied

 Used to resolve overloaded operations

10/4/2017 10

Type Checking

 Type checking may be done statically at
compile time or dynamically at run time

 Dynamically typed (aka untyped) languages
(eg LISP, Prolog, JavaScript) do only
dynamic type checking

 Statically typed languages can do most type
checking statically

10/4/2017 11

Dynamic Type Checking

 Performed at run-time before each

operation is applied

 Types of variables and operations left

unspecified until run-time

 Same variable may be used at different types

10/4/2017 12

Dynamic Type Checking

 Data object must contain type information

 Errors aren’t detected until violating

application is executed (maybe years after

the code was written)

10/4/2017 13

Static Type Checking

 Performed after parsing, before code

generation

 Type of every variable and signature of

every operator must be known at compile

time

10/4/2017 14

Static Type Checking

 Can eliminate need to store type
information in data object if no dynamic
type checking is needed

 Catches many programming errors at
earliest point

 Can’t check types that depend on
dynamically computed values

 Eg: array bounds

10/4/2017 15

Static Type Checking

 Typically places restrictions on languages

 Garbage collection

 References instead of pointers

 All variables initialized when created

 Variable only used at one type

 Union types allow for work-arounds, but
effectively introduce dynamic type checks

10/4/2017 16

Type Declarations

 Type declarations: explicit assignment of

types to variables (signatures to functions)

in the code of a program

 Must be checked in a strongly typed language

 Often not necessary for strong typing or even

static typing (depends on the type system)

10/4/2017 17

Type Inference

 Type inference: A program analysis to assign

a type to an expression from the program

context of the expression

 Fully static type inference first introduced by

Robin Miller in ML

 Haskel, OCAML, SML all use type inference

 Records are a problem for type inference

10/4/2017 18

Format of Type Judgments

 A type judgement has the form

 |- exp :

 is a typing environment

 Supplies the types of variables (and function names
when function names are not variables)

 is a set of the form { x : , . . . }

 For any x at most one such that (x :)

 exp is a program expression

 is a type to be assigned to exp

 |- pronounced “turnstyle”, or “entails” (or
“satisfies” or, informally, “shows”)

10/4/2017 19

Axioms - Constants

 |- n : int (assuming n is an integer constant)

 |- true : bool |- false : bool

 These rules are true with any typing environment

 , n are meta-variables

10/4/2017 20

Axioms – Variables (Monomorphic Rule)

Notation: Let (x) = if x :

Note: if such exits, its unique

Variable axiom:

 |- x : if (x) =

10/4/2017 21

Simple Rules - Arithmetic

Primitive operators ({ +, -, *, …}):

 |- e1:1 |- e2:2 ():1 2 3

 |- e1 e2 : 3

Relations (˜ { < , > , =, <=, >= }):

 |- e1 : |- e2 :

 |- e1 ˜ e2 :bool

For the moment, think is int

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

{x : int} |- x + 2 : bool {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/4/2017 22

What do we need to show first?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

{x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/4/2017 23

Rel

What do we need for the left side?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

{x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/4/2017 24

Rel

AO

How to finish?

Example: {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int {x:int} |- 2:int

{x : int} |- x + 2 : int {x:int} |- 3 :int

{x:int} |- x + 2 = 3 : bool

10/4/2017 25

Rel

AO
Const

ConstVar

Complete Proof (type derivation)

10/4/2017 26

Simple Rules - Booleans

Connectives

 |- e1 : bool |- e2 : bool

 |- e1 && e2 : bool

 |- e1 : bool |- e2 : bool

 |- e1 || e2 : bool

10/4/2017 27

Type Variables in Rules

 If_then_else rule:

 |- e1 : bool |- e2 : |- e3 :

 |- (if e1 then e2 else e3) :

 is a type variable (meta-variable)

 Can take any type at all

 All instances in a rule application must get same
type

 Then branch, else branch and if_then_else must
all have same type

10/4/2017 28

Function Application

 Application rule:

 |- e1 : 1 2 |- e2 : 1

 |- (e1 e2) : 2

 If you have a function expression e1 of type

1 2 applied to an argument e2 of type

1, the resulting expression e1e2 has type 2

10/4/2017 29

Fun Rule

 Rules describe types, but also how the

environment may change

 Can only do what rule allows!

 fun rule:

{x : 1 } + |- e : 2

 |- fun x -> e : 1 2

10/4/2017 30

Fun Examples

{y : int } + |- y + 3 : int

 |- fun y -> y + 3 : int int

{f : int bool} + |- f 2 :: [true] : bool list

 |- (fun f -> f 2 :: [true])

: (int bool) bool list

10/4/2017 31

(Monomorphic) Let and Let Rec

 let rule:

 |- e1 : 1 {x : 1} + |- e2 : 2

 |- (let x = e1 in e2) : 2

 let rec rule:

{x: 1} + |- e1:1 {x: 1} + |- e2:2

 |- (let rec x = e1 in e2) : 2

10/4/2017 32

Example

 Which rule do we apply?

?

|- (let rec one = 1 :: one in

let x = 2 in

fun y -> (x :: y :: one)) : int int list

10/4/2017 33

Example

 Let rec rule: 2 {one : int list} |-

1 (let x = 2 in

{one : int list} |- fun y -> (x :: y :: one))

(1 :: one) : int list : int int list

|- (let rec one = 1 :: one in

let x = 2 in

fun y -> (x :: y :: one)) : int int list

10/4/2017 34

Proof of 1

 Which rule?

{one : int list} |- (1 :: one) : int list

10/4/2017 35

Proof of 1

 Application

3 4

{one : int list} |- {one : int list} |-

((::) 1): int list int list one : int list

{one : int list} |- (1 :: one) : int list

10/4/2017 36

Proof of 3

Constants Rule Constants Rule

{one : int list} |- {one : int list} |-

(::) : int int list int list 1 : int

{one : int list} |- ((::) 1) : int list int list

10/4/2017 37

Proof of 4

 Rule for variables

{one : int list} |- one : int list

10/4/2017 38

Proof of 2

5 {x:int; one : int list} |-

 Constant fun y ->

(x :: y :: one))

{one : int list} |- 2 : int : int int list

{one : int list} |- (let x = 2 in

fun y -> (x :: y :: one)) : int int list

10/4/2017 39

Proof of 5

?

{x:int; one : int list} |- fun y -> (x :: y :: one))

: int int list

10/4/2017 40

Proof of 5

?

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))

: int int list

10/4/2017 41

Proof of 5

6 7

{y:int; x:int; one:int list} {y:int; x:int; one:int list}

|- ((::) x):int list int list |- (y :: one) : int list

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))

: int int list

10/4/2017 42

Proof of 6

Constant Variable

{…} |- (::)

: int int list int list {…; x:int;…} |- x:int

{y:int; x:int; one : int list} |- ((::) x)

: int list int list

10/4/2017 43

Proof of 7

Like Pf of 6 [replace x w/ y] Variable

{y:int; …} |- ((::) y) {…; one: int list} |-

:int list int list one: int list

{y:int; x:int; one : int list} |- (y :: one) : int list

10/4/2017 44

Curry - Howard Isomorphism

 Type Systems are logics; logics are type systems

 Types are propositions; propositions are types

 Terms are proofs; proofs are terms

 Function space arrow corresponds to
implication; application corresponds to modus
ponens

10/4/2017 45

Curry - Howard Isomorphism

 Modus Ponens

A B A

B

• Application

 |- e1 : |- e2 :

 |- (e1 e2) :

10/4/2017 46

Mea Culpa

 The above system can’t handle polymorphism as in
OCAML

 No type variables in type language (only meta-variable
in the logic)

 Would need:

 Object level type variables and some kind of type
quantification

 let and let rec rules to introduce polymorphism

 Explicit rule to eliminate (instantiate) polymorphism

Support for Polymorphic Types

 Monomorpic Types ():

 Basic Types: int, bool, float, string, unit, …

 Type Variables: , , g, d, e

 Compound Types: , int * string, bool list, …

 Polymorphic Types:

 Monomorphic types

 Universally quantified monomorphic types

1, … , n .

 Can think of as same as .

10/4/2017 47

A

A

Support for Polymorphic Types

 Typing Environment supplies polymorphic types

(which will often just be monomorphic) for variables

 Free variables of monomorphic type just type variables

that occur in it

 Write FreeVars()

 Free variables of polymorphic type removes variables

that are universally quantified

 FreeVars(1, … , n .) = FreeVars() – {1, … , n }

 FreeVars() = all FreeVars of types in range of

10/4/2017 48

A

Monomorphic to Polymorphic

 Given:

 type environment

 monomorphic type

 shares type variables with

 Want most polymorphic type for that doesn’t
break sharing type variables with

 Gen(,) = 1, … , n . where

{1, … , n} = freeVars() – freeVars()

10/4/2017 49

Polymorphic Typing Rules

 A type judgement has the form

 |- exp :

 uses polymorphic types

 still monomorphic

 Most rules stay same (except use more general typing

environments). Rules that change:

 Variables

 Let and Let Rec

 Allow polymorphic constants

 Worth noting functions again
50

10/4/2017 51

Polymorphic Let and Let Rec

 let rule:

 |- e1 : 1 {x : Gen(1,)} + |- e2 : 2

 |- (let x = e1 in e2) : 2

 let rec rule:

{x : 1} + |- e1:1 {x:Gen(1,)} + |- e2:2

 |- (let rec x = e1 in e2) : 2

Polymorphic Variables (Identifiers)

Variable axiom:

 |- x : j() if (x) = 1, … , n .

 Where j replaces all occurrences of

1, … , n by monotypes 1, … , n

 Note: Monomorphic rule special case:

 |- x : if (x) =

 Constants treated same way

10/4/2017 52

A

10/4/2017 53

Fun Rule Stays the Same

 fun rule:

{x : 1} + |- e : 2

 |- fun x -> e : 1 2

 Types 1, 2 monomorphic

 Function argument must always be used at

same type in function body

Polymorphic Example

 Assume additional constants:

 hd : . list ->

 tl: . list -> list

 is_empty : . list -> bool

 :: : . -> list -> list

 [] : . list

10/4/2017 54

Polymorphic Example

 Show:

?

{} |- let rec length =

fun l -> if is_empty l then 0

else 1 + length (tl l)

in

length ((::) 2 []) + length((::) true []) : int
10/4/2017 55

Polymorphic Example: Let Rec Rule (Repeat)

 Show: (1) (2)

{length: list -> int} {length: . list -> int}

|- fun lst -> … |- length ((::) 2 []) +

: list -> int length((::) true []) : int

{} |- let rec length =

fun lst -> if is_empty lst then 0

else 1 + length (tl lst)

in

length ((::) 2 []) + length((::) true []) : int
10/4/2017 56

Polymorphic Example (1)

 Show:

?

{length: list -> int} |-

fun lst -> if is_empty lst then 0

else 1 + length (tl lst)

: list -> int

10/4/2017 57

Polymorphic Example (1): Fun Rule

 Show: (3)

{length: list -> int, lst: list } |-

if is_empty lst then 0

else length (hd l) + length (tl lst) : int

{length: list -> int} |-

fun lst -> if is_empty lst then 0

else 1 + length (tl lst)

: list -> int

10/4/2017 58

Polymorphic Example (3)

 Let ={length: list -> int, lst: list }

 Show

?

|- if is_empty l then 0

else 1 + length (tl lst) : int

10/4/2017 59

Polymorphic Example (3):IfThenElse

 Let ={length: list -> int, lst: list }

 Show

(4) (5) (6)

|- is_empty lst |- 0:int |- 1 + length (tl lst)

: bool : int

|- if is_empty l then 0

else 1 + length (tl lst) : int

10/5/2017 60

Polymorphic Example (4)

 Let ={length: list -> int, lst: list }

 Show

?

|- is_empty lst : bool

10/4/2017 61

Polymorphic Example (4):Application

 Let ={length: list -> int, lst: list }

 Show

? ?

|- is_empty : list -> bool |- lst : list

|- is_empty lst : bool

10/4/2017 62

Polymorphic Example (4)

 Let ={length: list -> int, lst: list }

 Show

By Const since list -> bool is

instance of . list -> bool ?

|- is_empty : list -> bool |- lst : list

|- is_empty lst : bool

10/4/2017 63

A

Polymorphic Example (4)

 Let ={length: list -> int, l: list }

 Show

By Const since list -> bool is By Variable

instance of . list -> bool (lst) = list

|- is_empty : list -> bool |- lst : list

|- is_empty lst : bool

 This finishes (4)

10/4/2017 64

A

Polymorphic Example (3):IfThenElse (Repeat)

 Let ={length: list -> int, lst: list }

 Show

(4) (5) (6)

|- is_empty lst |- 0:int |- 1 + length (tl lst)

: bool : int

|- if is_empty l then 0

else 1 + length (tl lst) : int

10/5/2017 65

Polymorphic Example (5):Const

 Let ={length: list -> int, lst: list }

 Show

By Const Rule

|- 0:int

10/4/2017 66

Polymorphic Example (6):Arith Op

 Let ={length: list -> int, lst: list }

 Show

By Variable (7)

|- length |- (tl lst)

By Const : list -> int : list

|- l : int |- length (tl lst) : int

|- 1 + length (tl lst) : int

10/5/2017 67

Polymorphic Example (7):App Rule

 Let ={length: list -> int, lst: list }

 Show

By Const By Variable

|- (tl lst) : list -> list |- lst : list

|- (tl lst) : list

By Const since list -> list is instance of

. list -> list

10/4/2017 68

A

Polymorphic Example: Let Rec Rule (Repeat)

 Show: (1) (2)

{length: list -> int} {length: . list -> int}

|- fun l -> … |- length ((::) 2 []) +

: list -> int length((::) true []) : int

{} |- let rec length =

fun l -> if is_empty l then 0

else 1 + length (tl l)

in

length ((::) 2 []) + length((::) true []) : int
10/5/2017 69

Polymorphic Example: (2) by ArithOp

 Let ’ = {length: . list -> int}

 Show:

(8) (9)

’ |- ’ |-

length ((::) 2 []) :int length((::) true []) : int

{length: . list -> int}

|- length ((::) 2 []) + length((::) true []) : int

10/4/2017 70

A

Polymorphic Example: (8)AppRule

 Let ’ = {length: . list -> int}

 Show:

’ |- length : int list ->int ’ |- ((::)2 []) : int list

’ |- length ((::) 2 []) : int

10/4/2017 71

A

Polymorphic Example: (8)AppRule

 Let ’ = {length: . list -> int}

 Show:

By Var since int list -> int is instance of

. list -> int

(10)

’ |- length : int list ->int ’ |- ((::)2 []):int list

’ |- length ((::) 2 []) : int

10/4/2017 72

A

A

Polymorphic Example: (10)AppRule

 Let ’ = {length: . list -> int}

 Show:

 By Const since list is instance of

. list

(11)

’|-((::) 2) : int list -> int list ’ |- [] : int list

’ |- ((::) 2 []) : int list

10/4/2017 73

A

A

Polymorphic Example: (11)AppRule

 Let ’ = {length: . list -> int}

 Show:

 By Const since list

is instance of

. list By Const

’ |- (::) : int -> int list -> int list ’ |- 2 : int

’ |- ((::) 2) : int list -> int list

10/4/2017 74

A

A

Polymorphic Example: (9)AppRule

 Let ’ = {length: . list -> int}

 Show:

’ |- ’ |-

length:bool list ->int ((::) true []):bool list

’ |- length ((::) true []) :int

10/4/2017 75

A

Polymorphic Example: (9)AppRule

 Let ’ = {length: . list -> int}

 Show:

By Var since bool list -> int is instance of

. list -> int

(12)

’ |- ’ |-

length : bool list ->int ((::) true []) :bool list

’ |- length ((::) true []) :int

10/5/2017 76

A

A

Polymorphic Example: (12)AppRule

 Let ’ = {length: . list -> int}

 Show:

 By Const since list is instance of

. list

(13)

’|-((::)true):bool list ->bool list ’|- []:bool list

’ |- ((::) true []) :bool list

10/4/2017 77

A

A

Polymorphic Example: (13)AppRule

 Let ’ = {length: . list -> int}

 Show:

By Const since bool list

is instance of . list By Const

’ |- ’ |-

(::):bool ->bool list ->bool list true : bool

’ |- ((::) true) : bool list -> bool list

10/4/2017 78

A

A

