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Terminology

 Type: A type t defines a set of possible data 

values

 E.g. short in C is {x| 215 - 1  x  -215}

 A value in this set is said to have type t

 Type system: rules of a language assigning 

types to expressions



10/4/2017 3

Why Data Types?

 Data types play a key role in:

 Data abstraction in the design of programs

 Type checking in the analysis of programs

 Compile-time code generation in the 

translation and execution  of programs

 Data layout (how many words; which are data and 

which are pointers) dictated by type
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Types as Specifications

 Types describe properties

 Different type systems describe different properties:

 Data is read-write versus read-only

 Operation has authority to access data

 Data came from “right” source

 Operation might or could not raise an exception

 Common type systems focus on types describing same 

data layout and access methods
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Sound Type System

 Type: A type t defines a set of possible data values

 E.g. short in C is {x| 215 - 1  x  -215}

 A value in this set is said to have type t

 Type system: rules of a language assigning types to expressions

 If an expression is assigned type t, and it evaluates to a 

value v, then v is in the set of values defined by t

 SML, OCAML, Scheme and Ada have sound type 

systems

 Most implementations of C and C++ do not 
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Strongly Typed Language

 When no application of an operator to 

arguments can lead to a run-time type 

error, language is strongly typed

 Eg: 1 + 2.3;;

 Depends on definition of “type error”
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Strongly Typed Language

 C++ claimed to be “strongly typed”, but 
 Union types allow creating a value at one type 

and using it at another
 Type coercions may cause unexpected 

(undesirable) effects
 No array bounds check (in fact, no runtime 

checks at all)

 SML, OCAML “strongly typed” but still must do 
dynamic array bounds checks, runtime type case 
analysis, and other checks
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Static vs Dynamic Types

• Static type: type assigned to an expression at 
compile time

• Dynamic type: type assigned to a storage 
location at run time

• Statically typed language: static type assigned 
to every expression at compile time

• Dynamically typed language: type of an 
expression determined at run time
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Type Checking

 When is op(arg1,…,argn) allowed?

 Type checking assures that operations are 
applied to the right number of arguments of the 
right types

 Right type may mean same type as was 
specified, or may mean that there is a 
predefined implicit coercion that will be 
applied

 Used to resolve overloaded operations
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Type Checking

 Type checking may be done statically at 
compile time or dynamically at run time

 Dynamically typed (aka untyped) languages 
(eg LISP, Prolog, JavaScript) do only 
dynamic type checking

 Statically typed languages can do most type 
checking statically
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Dynamic Type Checking

 Performed at run-time before each 

operation is applied

 Types of variables and operations left 

unspecified until run-time

 Same variable may be used at different types
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Dynamic Type Checking

 Data object must contain type information

 Errors aren’t detected until violating 

application is executed (maybe years after 

the code was written)
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Static Type Checking

 Performed after parsing, before code 

generation

 Type of every variable and signature of 

every operator must be known at compile 

time
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Static Type Checking

 Can eliminate need to store type 
information in data object if no dynamic 
type checking is needed

 Catches many programming errors at 
earliest point

 Can’t check types that depend on 
dynamically computed values

 Eg: array bounds
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Static Type Checking

 Typically places restrictions on languages

 Garbage collection

 References instead of pointers

 All variables initialized when created

 Variable only used at one type

 Union types allow for work-arounds, but 
effectively introduce dynamic type checks
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Type Declarations

 Type declarations: explicit assignment of 

types to variables (signatures to functions) 

in the code of a program

 Must be checked in a strongly typed language

 Often not necessary for  strong typing or even 

static typing (depends on the type system)
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Type Inference

 Type inference: A program analysis to assign 

a type to an expression from the program 

context of the expression

 Fully static type inference first introduced by 

Robin Miller in ML

 Haskel, OCAML, SML all use type inference

 Records are a problem for type inference
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Format of Type Judgments

 A type judgement has the form

 |- exp : 

  is a typing environment

 Supplies the types of variables (and function names 
when function names are not variables)

  is a set of the form { x : , . . . }

 For any x at most one  such that (x :   ) 

 exp is a program expression

  is a type to be assigned to exp

 |- pronounced “turnstyle”, or “entails” (or 
“satisfies” or, informally, “shows”)
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Axioms - Constants

 |- n : int   (assuming n is an integer constant)

 |- true : bool            |- false : bool

 These rules are true with any typing environment

 , n are meta-variables
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Axioms – Variables (Monomorphic Rule)

Notation: Let (x) =  if x :   

Note: if such  exits, its unique

Variable axiom:

 |- x :  if (x) = 
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Simple Rules - Arithmetic

Primitive operators (   { +, -, *, …}):

 |- e1:1  |- e2:2 ():1  2  3

 |- e1  e2 : 3

Relations ( ˜  { < , > , =, <=, >= }):

 |- e1 :   |- e2 : 

 |- e1 ˜ e2 :bool

For the moment, think  is int



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

{x : int} |- x + 2 : bool            {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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What do we need to show first?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

{x : int} |- x + 2 : int              {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool

10/4/2017 23

Rel

What do we need for the left side?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

{x : int} |- x + 2 : int                  {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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Rel

AO

How to finish?



Example:  {x:int} |- x + 2 = 3 :bool

{x:int} |- x:int  {x:int} |- 2:int                          

{x : int} |- x + 2 : int                 {x:int} |- 3 :int 

{x:int} |- x + 2 = 3 : bool
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Rel

AO
Const

ConstVar

Complete Proof  (type derivation)
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Simple Rules - Booleans

Connectives 

 |- e1 : bool      |- e2 : bool

 |- e1 && e2 : bool

 |- e1 : bool      |- e2 : bool

 |- e1 || e2 : bool
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Type Variables in Rules

 If_then_else rule:

 |- e1 : bool    |- e2  :   |- e3  : 

 |- (if e1 then e2  else e3) : 

  is a type variable (meta-variable)

 Can take any type at all

 All instances in a rule application must get same 
type

 Then branch, else branch and if_then_else must 
all have same type
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Function Application

 Application rule:

 |- e1 : 1  2  |- e2  : 1

 |- (e1 e2) : 2

 If you have a function expression e1 of type  

1  2 applied to an argument e2 of type 

1, the resulting expression e1e2 has type 2
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Fun Rule

 Rules describe types, but also how the 

environment  may change

 Can only do what rule allows!

 fun rule:

{x : 1 } +  |- e : 2

 |- fun x -> e : 1  2
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Fun Examples

{y : int } +  |- y + 3 : int

 |- fun y -> y + 3 : int  int 

{f : int  bool} +  |- f 2 :: [true] : bool list

 |- (fun f -> f 2 :: [true])

: (int  bool)  bool list 
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(Monomorphic) Let and Let Rec

 let rule:

 |- e1 : 1       {x : 1} +  |- e2  : 2

 |- (let x = e1 in e2 ) : 2

 let rec rule:

{x: 1} +  |- e1:1              {x: 1} +  |- e2:2

 |- (let rec x = e1 in e2 ) : 2
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Example

 Which rule do we apply?

?

|- (let rec one = 1 :: one in 

let x = 2 in

fun y -> (x :: y :: one) ) : int  int list
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Example

 Let rec rule:      2   {one : int list} |-

1                                (let x = 2 in

{one : int list} |- fun y -> (x :: y :: one))

(1 :: one) : int list     : int  int list

|- (let rec one = 1 :: one in 

let x = 2 in

fun y -> (x :: y :: one) ) : int  int list
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Proof of 1

 Which rule?

{one : int list} |- (1 :: one) : int list
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Proof of 1

 Application

3                                           4

{one : int list} |- {one : int list} |-

((::) 1): int list int list one : int list

{one : int list} |- (1 :: one) : int list
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Proof of 3

Constants Rule               Constants Rule

{one : int list} |- {one : int list} |-

(::) : int  int list int list 1 : int

{one : int list} |- ((::) 1) : int list  int list
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Proof of 4

 Rule for variables

{one : int list} |- one : int list
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Proof of 2

5    {x:int; one : int list} |-

 Constant                    fun y ->

(x :: y :: one))

{one : int list} |- 2 : int : int  int list

{one : int list} |- (let x = 2 in

fun y -> (x :: y :: one)) : int  int list
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Proof of 5

?

{x:int; one : int list} |- fun y -> (x :: y :: one))

: int  int list
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Proof of 5

?

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))

: int  int list
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Proof of 5

6                                        7          

{y:int; x:int; one:int list}     {y:int; x:int; one:int list}

|- ((::) x):int list int list |- (y :: one) : int list

{y:int; x:int; one : int list} |- (x :: y :: one) : int list

{x:int; one : int list} |- fun y -> (x :: y :: one))

: int  int list
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Proof of 6

Constant                            Variable

{…} |- (::)

: int int list int list {…; x:int;…} |- x:int

{y:int; x:int; one : int list} |- ((::) x)

: int list int list
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Proof of 7

Like Pf of 6 [replace x w/ y] Variable

{y:int; …} |- ((::) y)              {…; one: int list} |-

:int list int list          one: int list

{y:int; x:int; one : int list} |- (y :: one) : int list
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Curry - Howard Isomorphism

 Type Systems are logics; logics are type systems

 Types are propositions; propositions are types

 Terms are proofs; proofs are terms

 Function space arrow corresponds to 
implication; application corresponds to modus 
ponens 
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Curry - Howard Isomorphism

 Modus Ponens

A  B   A

B

• Application

 |- e1 :     |- e2  : 

 |- (e1 e2) : 
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Mea Culpa

 The above system can’t handle polymorphism as in 
OCAML

 No type variables in type language (only meta-variable 
in the logic)

 Would need: 

 Object level type variables and some kind of type 
quantification

 let and let rec rules to introduce polymorphism

 Explicit rule to eliminate (instantiate) polymorphism



Support for Polymorphic Types

 Monomorpic Types ():

 Basic Types: int, bool, float, string, unit, …

 Type Variables: , , g, d, e

 Compound Types:   , int * string, bool list, …

 Polymorphic Types:

 Monomorphic types 

 Universally quantified monomorphic types

1, … , n . 

 Can think of  as same as    . 
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A

A



Support for Polymorphic Types

 Typing Environment  supplies polymorphic types 

(which will often just be monomorphic) for variables

 Free variables of monomorphic type just type variables 

that occur in it

 Write FreeVars()

 Free variables of polymorphic type removes variables 

that are universally quantified

 FreeVars(  1, … , n . ) = FreeVars() – {1, … , n }

 FreeVars() = all FreeVars of types in range of 
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A



Monomorphic to Polymorphic

 Given:

 type environment 

 monomorphic type 

  shares type variables with 

 Want most polymorphic type for  that doesn’t 
break sharing type variables with 

 Gen(, ) =  1, … , n .  where 

{1, … , n} = freeVars() – freeVars()
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Polymorphic Typing Rules

 A type judgement has the form

 |- exp : 

  uses polymorphic types

  still monomorphic

 Most rules stay same (except use more general typing 

environments). Rules that change:

 Variables

 Let and Let Rec

 Allow polymorphic constants

 Worth noting functions again
50
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Polymorphic Let and Let Rec

 let rule:

 |- e1 : 1   {x : Gen(1,)} +  |- e2  : 2

 |- (let x = e1 in e2 ) : 2

 let rec rule:

{x : 1} +  |- e1:1  {x:Gen(1,)} +  |- e2:2

 |- (let rec x = e1 in e2 ) : 2



Polymorphic Variables (Identifiers)

Variable axiom:

 |- x : j()     if (x) =   1, … , n . 

 Where j replaces all occurrences of 

1, … , n by monotypes 1, … , n

 Note: Monomorphic rule special case:

 |- x :  if (x) = 

 Constants treated same way
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A
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Fun Rule Stays the Same

 fun rule:

{x : 1} +  |- e : 2

 |- fun x -> e : 1  2

 Types 1, 2 monomorphic 

 Function argument must always be used at 

same type in function body



Polymorphic Example

 Assume additional constants:

 hd :   .  list -> 

 tl:   .  list ->  list

 is_empty :   .  list -> bool

 :: :   .  ->  list ->  list

 [] :   .  list
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Polymorphic Example

 Show:

?

{} |- let rec length =

fun l -> if is_empty l then 0

else 1 + length (tl l) 

in 

length ((::) 2 []) + length((::) true []) : int
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Polymorphic Example: Let Rec Rule (Repeat)

 Show:   (1)                (2)

{length: list -> int}  {length:  .  list -> int}         

|- fun lst -> …              |- length ((::) 2 []) +  

:  list -> int length((::) true []) : int

{} |- let rec length =

fun lst -> if is_empty lst then 0

else 1 + length (tl lst) 

in 

length ((::) 2 []) + length((::) true []) : int
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Polymorphic Example (1)

 Show:

?      

{length: list -> int} |-

fun lst -> if is_empty lst then 0

else 1 + length (tl lst) 

:  list -> int
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Polymorphic Example (1): Fun Rule

 Show:        (3)

{length: list -> int,  lst:  list } |-

if is_empty lst then 0

else length (hd l) + length (tl lst)  : int

{length: list -> int} |-

fun lst -> if is_empty lst then 0

else 1 + length (tl lst) 

:  list -> int
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Polymorphic Example (3)

 Let  ={length: list -> int,  lst:  list } 

 Show

?

|- if is_empty l then 0

else 1 + length (tl lst)  : int
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Polymorphic Example (3):IfThenElse 

 Let  ={length: list -> int,  lst:  list } 

 Show

(4)                (5)   (6)

|- is_empty lst |- 0:int |- 1 + length (tl lst) 

: bool               : int

|- if is_empty l then 0

else 1 + length (tl lst)  : int
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Polymorphic Example (4)

 Let  ={length: list -> int,  lst:  list } 

 Show

?

|- is_empty lst : bool
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Polymorphic Example (4):Application

 Let  ={length: list -> int,  lst:  list } 

 Show

?                              ?

|- is_empty :  list -> bool       |- lst :  list 

|- is_empty lst : bool
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Polymorphic Example (4)

 Let  ={length: list -> int,  lst:  list } 

 Show

By Const since  list -> bool is

instance of   .  list -> bool             ?

|- is_empty :  list -> bool |- lst :  list 

|- is_empty lst : bool
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A



Polymorphic Example (4)

 Let  ={length: list -> int,  l:  list } 

 Show

By Const since  list -> bool is    By Variable

instance of   .  list -> bool      (lst) =  list 

|- is_empty :  list -> bool       |- lst :  list 

|- is_empty lst : bool

 This finishes (4)
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A



Polymorphic Example (3):IfThenElse (Repeat)

 Let  ={length: list -> int,  lst:  list } 

 Show

(4)  (5)   (6)

|- is_empty lst |- 0:int |- 1 + length (tl lst) 

: bool               : int

|- if is_empty l then 0

else 1 + length (tl lst)  : int
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Polymorphic Example (5):Const

 Let  ={length: list -> int,  lst:  list } 

 Show

By Const Rule

|- 0:int
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Polymorphic Example (6):Arith Op 

 Let  ={length: list -> int,  lst:  list } 

 Show

By Variable               (7)

|- length |- (tl lst) 

By Const :  list -> int :  list

|- l : int  |- length (tl lst) : int

|- 1 + length (tl lst) : int
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Polymorphic Example (7):App Rule

 Let  ={length: list -> int,  lst:  list } 

 Show

By Const By Variable

|- (tl lst) :  list ->  list              |- lst :  list

|- (tl lst) :  list

By Const since  list ->  list is instance of 

.  list ->  list
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A



Polymorphic Example: Let Rec Rule (Repeat)

 Show:   (1)  (2)

{length: list -> int}  {length:  .  list -> int}         

|- fun l -> …              |- length ((::) 2 []) +  

:  list -> int length((::) true []) : int

{} |- let rec length =

fun l -> if is_empty l then 0

else 1 + length (tl l) 

in 

length ((::) 2 []) + length((::) true []) : int
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Polymorphic Example: (2) by ArithOp

 Let ’ = {length:  .  list -> int}         

 Show:

(8)                             (9)

’ |- ’ |-

length ((::) 2 []) :int length((::) true []) : int

{length:  .  list -> int}         

|- length ((::) 2 []) + length((::) true []) : int
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A



Polymorphic Example: (8)AppRule

 Let ’ = {length:  .  list -> int}         

 Show:

’ |- length : int list ->int ’ |- ((::)2 []) : int list

’ |- length ((::) 2 []) : int
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A



Polymorphic Example: (8)AppRule

 Let ’ = {length:  .  list -> int}         

 Show:

By Var since int list -> int is instance of 

.  list -> int

(10)

’ |- length : int list ->int ’ |- ((::)2 []):int list

’ |- length ((::) 2 []) : int
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A

A



Polymorphic Example: (10)AppRule

 Let ’ = {length:  .  list -> int}         

 Show:

 By Const since  list  is instance of 

.  list

(11)

’|-((::) 2) : int list -> int list ’ |- [] : int list

’ |- ((::) 2 []) : int list
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A

A



Polymorphic Example: (11)AppRule

 Let ’ = {length:  .  list -> int}         

 Show:

 By Const since  list

is instance of 

.  list                                     By Const

’ |- (::) : int -> int list -> int list    ’ |- 2 : int

’ |- ((::) 2) : int list -> int list
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A
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Polymorphic Example: (9)AppRule

 Let ’ = {length:  .  list -> int}         

 Show:

’ |- ’ |-

length:bool list ->int ((::) true []):bool list

’ |- length ((::) true []) :int
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A



Polymorphic Example: (9)AppRule

 Let ’ = {length:  .  list -> int}         

 Show:

By Var since bool list -> int is instance of 

.  list -> int

(12)

’ |- ’ |-

length : bool list ->int ((::) true []) :bool list

’ |- length ((::) true []) :int
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A
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Polymorphic Example: (12)AppRule

 Let ’ = {length:  .  list -> int}         

 Show:

 By Const since  list  is instance of 

.  list

(13)

’|-((::)true):bool list ->bool list    ’|- []:bool list

’ |- ((::) true []) :bool list
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A
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Polymorphic Example: (13)AppRule

 Let ’ = {length:  .  list -> int}         

 Show:

By Const since bool list

is instance of   .  list                By Const

’ |- ’ |-

(::):bool ->bool list ->bool list     true : bool

’ |- ((::) true) : bool list -> bool list

10/4/2017 78

A

A


