Programming Languages and Compilers (CS 421)

Sasa Misailovic
4110 SC, UIUC

https://courses. engr. illinois. edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, and Elsa L Gunter
Booleans (aka Truth Values)

true;;
- : bool = true

false;;
- : bool = false

// ρ₇ = {c → 4, test → 3.7, a → 1, b → 5}
if b > a then 25 else 0;;
- : int = 25
Booleans and Short-Circuit Evaluation

3 > 1 && 4 > 6;;
- : bool = false

3 > 1 || 4 > 6;;
- : bool = true

not (4 > 6);
- : bool = true

(print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi
- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);
- : bool = true
Tuples as Values

// \(\rho_0 = \{c \to 4, \ a \to 1, \ b \to 5\} \)

let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

// \(\rho = \{s \to (5, \ "hi", \ 3.2), \ c \to 4, \ a \to 1, \ b \to 5\} \)
Pattern Matching with Tuples

// ρ = {s → (5, "hi", 3.2), a → 1, b → 5, c → 4}

let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2

let (a, _, _) = s;;
val a : int = 5

let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)
val x : int * float = (2, 9.3)
Nested Tuples

(*Tuples can be nested *)
let d = ((1,4,62),("bye",15),73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)
let (p, (st,_), _) = d;;
 (* _ matches all, binds nothing *)
val p : int * int * int = (1, 4, 62)
val st : string = "bye"
Functions on tuples

```ocaml
# let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>

# plus_pair (3,4);;
- : int = 7

# let twice x = (x,x);;
val twice : 'a -> 'a * 'a = <fun>

# twice 3;;
- : int * int = (3, 3)

# twice "hi";;
- : string * string = ("hi", "hi")
```
Save the Environment!

- A **closure** is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

 \[
 \langle (v_1, \ldots, v_n) \rightarrow \text{exp}, \rho \rangle
 \]

- Where \(\rho \) is the environment in effect when the function is defined (for a simple function)
Closure for `plus_pair`

- Assume ρ_{plus_pair} was the environment just before `plus_pair` defined and recall

 - let `plus_pair (n,m) = n + m;;`

- Closure for `fun (n,m) -> n + m:`

 \[
 \langle (n,m) \rightarrow n + m, \rho_{plus_pair} \rangle
 \]

- Environment just after `plus_pair` defined:

 \[
 \{plus_pair \rightarrow \langle (n,m) \rightarrow n + m, \rho_{plus_pair} \rangle\} + \rho_{plus_pair}
 \]
Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>

let t = add_three 6 3 2;;
val t : int = 11

let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int -> int = <fun>

Again, first syntactic sugar for second
Curried vs Uncurried

- **Recall**

  ```ocaml
  # let add_three u v w = u + v + w;;
  val add_three : int -> int -> int -> int = <fun>
  ```

- **How does it differ from**

  ```ocaml
  # let add_triple (u,v,w) = u + v + w;;
  val add_triple : int * int * int -> int = <fun>
  ```

- **add_three is** **curried**;
- **add_triple is** **uncurried**
Curried vs Uncurried

add_three 6 3 2;;
- : int = 11

add_triple (6,3,2);;
- : int = 11

add_triple 5 4;;
Characters 0-10: add_triple 5 4;;
 ^^^^^^^^^^^^^

This function is applied to too many arguments, maybe you forgot a `;`

fun x -> add_triple (5,4,x);;
: int -> int = <fun>
Partial application of functions

let add_three x y z = x + y + z;;

let h = add_three 5 4;;
val h : int -> int = <fun>

h 3;;
- : int = 12

h 7;;
- : int = 16

Partial application also called sectioning
Recall: let plus_x = fun x => y + x

let x = 12

let plus_x = fun y => y + x

let x = 7
Closure for plus_x

- When plus_x was defined, had environment:
 \[\rho_{\text{plus}_x} = \{\ldots, x \to 12, \ldots\} \]

- Recall: \texttt{let plus}_x y = y + x
 is really \texttt{let plus}_x = \texttt{fun} y \to y + x

- Closure for \texttt{fun} y \to y + x:
 \[<y \to y + x, \rho_{\text{plus}_x}> \]

- Environment just after plus_x defined:
 \[\{\text{plus}_x \to <y \to y + x, \rho_{\text{plus}_x}>\} + \rho_{\text{plus}_x} \]
Evaluation

Running Ocaml source:
- Parse the program to detect each expression
- Keep an internal environment at each time step
- For each expression, interpret the program using the function Eval
- Nice property of Ocaml: everything is a declaration or an expression!

How does Eval (expression, environment) work:
- Evaluation uses a starting environment ρ
- Define the rules for evaluating declarations, constants, arithmetic expressions, function applications…
Evaluating Declarations

- Evaluation uses a starting environment ρ
- To evaluate a (simple) declaration $\text{let } x = e$
 - **Evaluate** expression e in ρ to value v
 - **Update** ρ with the mapping from x to v: $\{x \rightarrow v\} + \rho$

Definition of $+$ on environments!

- **Update**: $\rho_1 + \rho_2$ has all the bindings in ρ_1 and all those in ρ_2 that are not rebound in ρ_1

$\{x \rightarrow 2, \ y \rightarrow 3, \ a \rightarrow "hi"\} + \{y \rightarrow 100, \ b \rightarrow 6\} = \{x \rightarrow 2, \ y \rightarrow 3, \ a \rightarrow "hi", \ b \rightarrow 6\}$

9/10/2017
Evaluating Declarations

- Evaluation uses a starting environment ρ.
- To evaluate a (simple) declaration $\text{let } x = e$
 - **Evaluate** expression e in ρ to value v
 - **Update** ρ with the mapping from x to v: $\{x \rightarrow v\} + \rho$

Warm-up: we evaluate this case:

\[\rho = \{ x \rightarrow 2 \}\]

\[
\text{let } y = 2*x+1;;
\]

\[\rho' = \{ x \rightarrow 2; \ y \rightarrow 5 \}\]
Evaluating Expressions

- Evaluation uses an environment ρ
- A constant evaluates to itself
- To evaluate an variable, look it up in ρ i.e., use $\rho(v)$
- To evaluate uses of $+$, $-$, etc, first eval the arguments, then do operation
- To evaluate a local declaration: $\text{let } x = e_1 \text{ in } e_2$
 - Evaluate e_1 to v, evaluate e_2 using $\{x \rightarrow v\} + \rho$
- Function application $(f \, x)$ -- see next slide
Evaluation of Application with Closures

- **Function** defined as: \(\text{let } f(x_1, \ldots, x_n) = \text{body} \)

- **Function application**: \(f(e_1, \ldots, e_n) \)

- Evaluation uses the function \(\text{App(Closure, Value)} \):
 - In environment \(\rho \), evaluate the left term to closure,\n \(c = \langle(x_1, \ldots, x_n) \rightarrow \text{body}, \rho \rangle \)

 - Evaluate the arguments in the application \(e_1 \ldots e_n \) to their values \(v_1, \ldots, v_n \) in the environment \(\rho \)

 - Update the environment \(\rho \) to

 \[\rho' = \{ x_1 \rightarrow v_1, \ldots, x_n \rightarrow v_n \} + \rho \]

 - **Evaluate** the function body (\(\text{body} \)) in environment \(\rho' \)
Evaluation of Application of plus_x;;

- Have environment:

\[\rho = \{ \text{plus}_x \rightarrow \langle y \rightarrow y + x, \rho_{\text{plus}_x} \rangle, \ldots, y \rightarrow 3, \ldots \} \]

where \(\rho_{\text{plus}_x} = \{ x \rightarrow 12, \ldots, y \rightarrow 24, \ldots \} \)

- \text{Eval} (\text{plus}_x \ y, \ \rho) \text{ rewrites to}
- \text{App} (\text{Eval}(\text{plus}_x, \ \rho), \ \text{Eval}(y, \ \rho)) \text{ rewrites to}
- \text{App} (\langle y \rightarrow y + x, \ \rho_{\text{plus}_x} \rangle, \ 3) \text{ rewrites to}
- \text{Eval} (y + x, \ \{ y \rightarrow 3 \} + \rho_{\text{plus}_x}) \text{ rewrites to}
- \text{Eval} (3 + 12, \ \rho_{\text{plus}_x}) = 15
Evaluation of Application of `plus_pair`

- **Assume environment**

 $$\rho = \{ x \rightarrow 3, \ldots, \ plus_pair \rightarrow \langle (n,m) \rightarrow n + m, \\rho_{\text{plus_pair}} \rangle \} + \rho_{\text{plus_pair}}$$

- **Eval** (plus_pair (4, x), \(\rho\)) =
- **App** (Eval (plus_pair, \(\rho\)), Eval ((4, x), \(\rho\))) =
- **App** (\(\langle (n,m) \rightarrow n + m, \\rho_{\text{plus_pair}} \rangle\), (4, 3)) =
- **Eval** (n + m, \{n \rightarrow 4, m \rightarrow 3\} + \rho_{\text{plus_pair}}) =
- **Eval** (4 + 3, \{n \rightarrow 4, m \rightarrow 3\} + \rho_{\text{plus_pair}}) = 7
If we start in an empty environment, and we execute:

```ocaml
let f = fun n -> n + 5;;
(* 0 *)
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (* 0 *),?
Answer

\[\rho_{\text{start}} = \{ \} \]

let \(f = \text{fun } n \rightarrow n + 5; \);

\[\rho_0 = \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \} \]
Closure question

If we start in an empty environment, and we execute:

```ocaml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
(* 1 *)
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (* 1 *)?
Answer

\[\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \} \]

\textbf{let }\text{pair_map }g\ (n,m) = (g\ n, g\ m);;

\[\rho_1 = \{ \]

\[\text{f }\rightarrow\ <n \rightarrow n + 5, \{ \} >, \]

\[\text{pair_map }\rightarrow\]

\[<g \rightarrow (\text{fun}\ (n,m) \rightarrow (g\ n, g\ m)),\]

\[\{ f \rightarrow <n \rightarrow n + 5, \{ \} > \} > \]

\}
If we start in an empty environment, and we execute:

```ml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
(* 2 *)
let a = f (4,6);;
```

What is the environment at (* 2 *)?
Evaluate `pair_map f`

\[\rho_0 = \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \]

\[\rho_1 = \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle, \]

\[\text{pair_map} \rightarrow \]

\[\langle g \mapsto (\text{fun} (n,m) \rightarrow (g\ n, g\ m)), \]

\[\{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \} \} \}

\text{let } f = \text{pair_map} f;; \]
Evaluate `pair_map f`

\[\rho_0 = \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \]
\[\rho_1 = \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle, \]
\[\text{pair}_\text{map} \mapsto \]
\[\langle g \mapsto (\text{fun}(n,m) \mapsto (g\ n, g\ m)), \]
\[\{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \} \} \}

let f = pair_map f;;

Eval(pair_map f, \rho_1) =
Evaluate \text{pair_map} \ f

\rho_0 = \{ f \mapsto <n \mapsto n + 5, \{ \}>\}
\rho_1 = \{ f \mapsto <n \mapsto n + 5, \{ \}>\},
\text{pair_map} \rightarrow
\quad <g \mapsto (\text{fun} \ (n,m) \mapsto (g \ n, g \ m)),
\quad \{ f \mapsto <n \mapsto n + 5, \{ \}>\}>\}

\text{let } f = \text{pair_map} \ f;;

\text{Eval}(\text{pair_map} \ f, \rho_1) =
\text{App} \ (<g \mapsto \text{fun} \ (n,m) \mapsto (g \ n, g \ m), \rho_0>, <n \mapsto n + 5, \{ \}>) =
Evaluate `pair_map f`

\[\rho_0 = \{ f \to <n \to n + 5, \{ \} > \}\]
\[\rho_1 = \{ f \to <n \to n + 5, \{ \} > , \text{pair_map} \to <g \to (\text{fun } (n,m) \to (g \ n, g \ m)), \{f \to <n \to n + 5, \{ \} > \} > \} > \}

let f = pair_map f;;

\[\text{Eval}(\text{pair_map } f, \rho_1) = \text{App } (<g \to \text{fun } (n,m) \to (g \ n, g \ m), \rho_0 >, <n \to n + 5, \{ \} >) = \]

\[\text{Eval}(\text{fun } (n,m) \to (g \ n, g \ m), \{g \to <n \to n + 5, \{ \} > \} + \rho_0) = \]
\[<n,m) \to (g \ n, g \ m), \{g \to <n \to n + 5, \{ \} > \} + \rho_0 > = \]
\[<n,m) \to (g \ n, g \ m), \{g \to <n \to n + 5, \{ \} > , f \to <n \to n + 5, \{ \} > \} > \]
\(\rho_0 = \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \)

\(\rho_1 = \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle, \)

\(\text{pair_map} \mapsto \)

\(\langle g \mapsto (\text{fun} (n,m) \rightarrow (g n, g m)), \)

\(\{ f \rightarrow \langle n \mapsto n + 5, \{ \} \rangle \} \rangle \} \}

\text{let } f = \text{pair_map } f ;; \)

\(\rho_2 = \{ f \rightarrow \langle (n,m) \mapsto (g n, g m), \}

\{ g \rightarrow \langle n \mapsto n + 5, \{ \} \rangle, \}

f \rightarrow \langle n \mapsto n + 5, \{ \} \rangle \} \rangle \}, \)

\(\text{pair_map} \mapsto \langle g \rightarrow \text{fun} (n,m) \rightarrow (g n, g m), \)

\(\{ f \rightarrow \langle n \mapsto n + 5, \{ \} \rangle \} \rangle \rangle \}

\} \} \}

9/10/2017
Closure question

If we start in an empty environment, and we execute:

```ml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
(* 3 *)
```

What is the environment at (* 3 *)?
ρ₂ = \{ f \mapsto <(n,m) \mapsto (g \ n, \ g \ m), \\
\quad \{ g \mapsto <n \mapsto n + 5, \{ \}\}, \\
\quad f \mapsto <n \mapsto n + 5, \{ \}>, \\
\quad \text{pair_map} \mapsto <g \mapsto \text{fun} \ (n,m) \mapsto (g \ n, \ g \ m), \\
\quad \{ f \mapsto <n \mapsto n + 5, \{ \}>, \\
\quad > \\
\quad \} \\
\}

let a = f (4,6);;
Evaluate \(f(4,6) \);;

\[\rho_2 = \{ \begin{array}{l}
 f \rightarrow \langle n, m \rangle \rightarrow (g \ n, \ g \ m), \\
 \quad \{ g \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle, \\
 \quad \langle f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \rangle \}, \\
 \end{array} \]

\text{pair_map} \rightarrow \langle g \rightarrow \text{fun} \ (n, m) \rightarrow (g \ n, \ g \ m), \\
\quad \{ f \rightarrow \langle n \rightarrow n + 5, \{ \} \rangle \rangle \rangle \rangle \}

let \ a = f \ (4,6);;

\text{Eval} (f \ (4,6), \ \rho_2) =
Evaluate $f(4,6);$

\[\rho_2 = \{ f \mapsto (n,m) \mapsto (g\ n,\ g\ m), \]
\[\{ g \mapsto n \mapsto n + 5, \{ \} \}, \]
\[f \mapsto n \mapsto n + 5, \{ \} \} \}, \]
\[\text{pair_map} \mapsto \langle g \mapsto \text{fun}(n,m) \rightarrow (g\ n,\ g\ m), \]
\[\{ f \mapsto n \mapsto n + 5, \{ \} \} \rangle \}
\]

\begin{align*}
\text{let } a &= f(4,6); \\
\text{Eval}(f(4,6), \rho_2) &= \text{App}(\langle(n,m) \mapsto (g\ n,\ g\ m), \{ g \mapsto n \mapsto n + 5, \{ \} \}, \\
&\quad \quad f \mapsto n \mapsto n + 5, \{ \} \} \rangle, \]
&\quad \quad (4,6) \} = \]
\end{align*}
Evaluate $f(4,6)$;

$$\text{App}(\langle n, m \rangle \rightarrow (g \ n, \ g \ m), \ \{g \rightarrow \langle \ n \rightarrow \ n + 5, \ \{\ \}\rangle, \ f \rightarrow \langle \ n \rightarrow \ n + 5, \ \{\ \}\rangle\}, \ (4,6)) =$$

$$\text{Eval}(\langle g \ n, \ g \ m \rangle, \ \{n \rightarrow 4, \ m \rightarrow 6\} + \{g \rightarrow \langle n \rightarrow n + 5, \ \{\ \}\rangle, \ f \rightarrow \langle n \rightarrow n + 5, \ \{\ \}\rangle\}) =$$

$$(\text{App}(\langle n \rightarrow n + 5, \ \{\ \}\rangle, \ 4), \ \text{App}(\langle n \rightarrow n + 5, \ \{\ \}\rangle, \ 6)) =$$
Evaluate $f(4, 6)$;

$$(\text{App}(\langle n \mapsto n + 5, \{ \} \rangle, 4),$$

$$(\text{App}(\langle n \mapsto n + 5, \{ \} \rangle, 6)) =$$

$$(\text{Eval}(n + 5, \{n \mapsto 4\} + \{ \})),$$

$$(\text{Eval}(n + 5, \{n \mapsto 6\} + \{ \}))) =$$

$$(\text{Eval}(4 + 5, \{n \mapsto 4\} + \{ \})),$$

$$(\text{Eval}(6 + 5, \{n \mapsto 6\} + \{ \}))) = (9, 11)$$
Functions as arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

let g = thrice plus_two;; (* plus_two x is x+2 *)
val g : int -> int = <fun>

g 4;;
- : int = 10

thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"
Higher Order Functions

- A function is *higher-order* if it takes a function as an argument or returns one as a result.

Example:

```ocaml
# let compose f g = fun x -> f (g x);;
val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
```

- The type `('a -> 'b) -> ('c -> 'a) -> 'c -> 'b` is a higher order type because of `('a -> 'b)` and `('c -> 'a)` and `-> 'c -> 'b`
Thrice

- **Recall:**

  ```ocaml
  # let thrice f x = f (f (f x));;
  val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
  ```

- **How do you write thrice with compose?**

  ```ocaml
  # let thrice f = compose f (compose f f);;
  val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
  ```
Lambda Lifting

- You must remember the rules for evaluation when you use partial application

```ocaml
# let add_two = (+) (print_string "test\n"; 2);;
val add_two : int -> int = <fun>

# let add2 = (* lambda lifted *)
    fun x -> (+) (print_string "test\n"; 2) x;;
val add2 : int -> int = <fun>
```
Lambda Lifting

```plaintext
# thrice add_two 5;;
- : int = 11

# thrice add2 5;;
test
test
test
- : int = 11
```

- Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied
Match Expressions

let triple_to_pair triple =

match triple with
 (0, x, y) -> (x, y)
| (x, 0, y) -> (x, y)
| (x, y, _) -> (x, y);;

val triple_to_pair : int * int * int -> int * int
 = <fun>
Recursive Functions

```ml
# let rec factorial n =
  if n = 0 then 1
  else n * factorial (n - 1);
val factorial : int -> int = <fun>

# factorial 5;;
- : int = 120

# (* rec is needed for recursive function declarations *)
```
Recursion Example

Compute n^2 recursively using:
\[n^2 = (2 \times n - 1) + (n - 1)^2 \]

```ml
# let rec nthsq n = (* rec for recursion *)
  match n with (* pattern matching for cases *)
  | 0 -> 0 (* base case *)
  | n -> (2 \times n -1) (* recursive case *)
  + nthsq (n -1); (* recursive call *)

val nthsq : int -> int = <fun>

# nthsq 3;;
- : int = 9
```

Structure of recursion similar to inductive proof
Recursion and Induction

let rec nthsq n =
 match n with
 0 -> 0 (*Base case!*)
 | n -> (2 * n - 1) + nthsq (n - 1) ;;

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- **if or match must contain base case (!!!)**
 - Failure of selecting base case **will cause non-termination**
 - But the program will crash because it exhausts the stack!
Lists

- First example of a recursive datatype (aka algebraic datatype)

- Unlike tuples, lists are homogeneous in type (all elements same type)
Lists

List can take one of two forms:

- **Empty list**, written \([\]\)
- **Non-empty list**, written \(x :: xs\)
 - \(x\) is head element,
 - \(xs\) is tail list, \(::\) called “cons”

How we typically write them (syntactic sugar):

- \([x] == x :: []\)
- \([x_1; x_2; \ldots; x_n] == x_1 :: x_2 :: \ldots :: x_n :: []\)
Lists

let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]) = fib5;;
- : bool = true

fib5 @ fib6;;
- : int list =
 [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
Lists are Homogeneous

```ocaml
# let bad_list = [1; 3.2; 7];;
Characters 19-22:
  let bad_list = [1; 3.2; 7];;
    ^^^
```

This expression has type float but is here used with type int
Question

- Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2, 3; 4, 5; 6, 7]

3. [(2.3, 4); (3.2, 5); (6, 7.2)]

4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]

3 is invalid because of last pair.
Functions Over Lists

let rec double_up list =
 match list with
 [] -> [] (* pattern before ->, expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);
val double_up : 'a list -> 'a list = <fun>

(* fib5 = [8;5;3;2;1;1] *)
let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]
Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

```latex
let length l =
```
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

let rec length l =
match l with
Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```ml
let rec length l =
  match l with
```
Question: Length of list

Problem: write code for the length of the list

What patterns should we match against?

```ocaml
let rec length l =
    match l with
    | [] ->
    | (a :: bs) ->
```
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when l is empty?

```ocaml
let rec length l =
  match l with
  | [] -> 0
  | (a :: bs) ->
```

9/10/2017
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when l is not empty?

```ocaml
let rec length l =
    match l with
    | [] -> 0
    | (a :: bs) ->
```

9/10/2017
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when \(l \) is not empty?

```ocaml
let rec length l =
  match l with
case
  | [] -> 0
| (a :: bs) -> 1 + length bs
```
How can we efficiently answer if two lists have the same length?
How can we efficiently answer if two lists have the same length?

```ocaml
let rec same_length list1 list2 =
    match list1 with
    [] -> (match list2 with [] -> true |
        (y::ys) -> false)
    | (x::xs) -> (match list2 with [] -> false |
        (y::ys) -> same_length xs ys)
```
Functions Over Lists

let rec map f list =
 match list with
 [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
Iterating over lists

let rec fold_left f a list =
 match list with
 [] -> a
 | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

fold_left
 (fun () -> print_string)
 ()
 ["hi"; "there"];;
hithere- : unit = ()
Iterating over lists

```ocaml
# let rec fold_right f list b =
    match list with
    | []         -> b
    | (x :: xs)  -> f x (fold_right f xs b);
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

# fold_right
    (fun s -> fun () -> print_string s) [["hi"; "there"]
    ();;
therehi- : unit = ()
```
Structural Recursion

- Functions on recursive datatypes (eg lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
 - Recursive calls made to components of structure of the same recursive type
 - Base cases of recursive types stop the recursion of the function
Structural Recursion : List Example

```ocaml
# let rec length list =
  match list with
  | [] -> 0          (* Nil case *)
  | x :: xs -> 1 + length xs;;  (* Cons case *)

val length : 'a list -> int = <fun>

# length [5; 4; 3; 2];;
- : int = 4
```

- Nil case [] is base case
- Cons case recurses on component list xs
Forward Recursion

- In **Structural Recursion**, split input into components and (eventually) recurse

- **Forward Recursion** is a form of Structural Recursion

- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results

- Wait until whole structure has been traversed to start building answer
Forward Recursion: Examples

```ocaml
# let rec double_up list =  
  match list 
  with [ ] -> [ ]  
    | (x :: xs) -> (x :: x :: double_up xs);;
val double_up : 'a list -> 'a list = <fun>

# let rec poor_rev list =  
  match list  
  with [] -> []  
    | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```
let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

let append_alt list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append_alt : 'a list -> 'a list -> 'a list = <fun>
One common form of structural recursion applies a function to each element in the structure.

```ocaml
# let rec doubleList list = match list
  with [ ] -> [ ]
  | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>

# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```
Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion

```ocaml
# let doubleList list =
   List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>

# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

- Same function, but no recursion
Folding Recursion

- Another common form “folds” an operation over the elements of the structure

```ocaml
# let rec multList list = match list
  with [ ] -> 1
  | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>

# multList [2;4;6];;
- : int = 48
```

- Computes $(2 \times (4 \times (6 \times 1)))$
Folding Recursion

- multList folds to the right
- Same as:

```ocaml
# let multList list =
   List.fold_right
   (fun x -> fun p -> x * p)
   list 1;;
val multList : int list -> int = <fun>

# multList [2;4;6];;
- : int = 48
```
How long will it take?

Common big-O times:

- Constant time $O(1)$
 - input size doesn’t matter
- Linear time $O(n)$
 - 2x input size \Rightarrow 2x time
- Quadratic time $O(n^2)$
 - 3x input size \Rightarrow 9x time
- Exponential time $O(2^n)$
 - Input size $n+1$ \Rightarrow 2x time
Linear Time

- Expect most list operations to take linear time $O(n)$
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: `multList`, `append`
- Integer example: `factorial`
Quadratic Time

- Each step of the recursion takes time proportional to input
- Each step of the recursion makes only one recursive call.

List example:

```ml
# let rec poor_rev list =
  match list
  with [] -> []
  | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```
Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear
Exponential running time

let rec naiveFib n = match n
 with 0 -> 0
 | 1 -> 1
 | _ -> naiveFib (n-1) + naiveFib (n-2);;
val naiveFib : int -> int = <fun>
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.

- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know to where to return when the call is finished.
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g.
Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls.
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls.
- Tail recursion generally requires extra “accumulator” arguments to pass partial results.
 - May require an auxiliary function.
Tail Recursion - Example

```ocaml
# let rec rev_aux list revlist =  
    match list with [] -> revlist
    | x :: xs -> rev_aux xs (x :: revlist);
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

# let rev list = rev_aux list [];;
val rev : 'a list -> 'a list = <fun>
```

What is its running time?
Folding Functions over Lists

How are the following functions similar?

```ocaml
# let rec sumlist list = match list with
  | [] -> 0 | x::xs -> x + sumlist xs;
val sumlist : int list -> int = <fun>

# sumlist [2;3;4];;
- : int = 9

# let rec prodlist list = match list with
  | [] -> 1 | x::xs -> x * prodlist xs;
val prodlist : int list -> int = <fun>

# prodlist [2;3;4];;
- : int = 24
```
Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
 = <fun>
fold_left f a [x_1; x_2;...;x_n] = f(...(f (f a x_1) x_2)...x_n

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
 = <fun>
fold_right f [x_1; x_2;...;x_n] b = f x_1(f x_2 (...(f x_n b)...))
Folding - Forward Recursion

let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

sumlist [2;3;4];;
- : int = 9

let prodlist list = fold_right (*) list 1;;
val prodlist : int list -> int = <fun>

prodlist [2;3;4];;
- : int = 24
Folding - Tail Recursion

```
- # let rev list =
-   fold_left
-   (fun l -> fun x -> x :: l) //comb op [] //accumulator cell
  list
```
Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition