Programming Languages and Compilers (CS 421)

Sasa Misailovic
4110 SC, UIUC

https://courses.engr.illinois.edu/cs421/fa2017/CS421A

Based in part on slides by Mattox Beckman, as updated by Vikram Adve, Gul Agha, and Elsa L Gunter
Booleans (aka Truth Values)

true
- : bool = true

false
- : bool = false

// ρ₇ = {c \to 4, test \to 3.7, a \to 1, b \to 5}
if b > a then 25 else 0
- : int = 25
Booleans and Short-Circuit Evaluation

3 > 1 && 4 > 6;;
- : bool = false

3 > 1 || 4 > 6;;
- : bool = true

(print_string "Hi\n"; 3 > 1) || 4 > 6;;
Hi
- : bool = true

3 > 1 || (print_string "Bye\n"; 4 > 6);;
- : bool = true

not (4 > 6);;
- : bool = true
Tuples as Values

// \(\rho_0 = \{ c \rightarrow 4, a \rightarrow 1, b \rightarrow 5 \} \)

let s = (5,"hi",3.2);;

val s : int * string * float = (5, "hi", 3.2)

// \(\rho = \{ s \rightarrow (5, "hi", 3.2), c \rightarrow 4, a \rightarrow 1, b \rightarrow 5 \} \)
Pattern Matching with Tuples

// ρ = {s → (5, "hi", 3.2), a → 1, b → 5, c → 4}

let (a,b,c) = s;; (* (a,b,c) is a pattern *)
val a : int = 5
val b : string = "hi"
val c : float = 3.2

let (a, _, _) = s;;
val a : int = 5

let x = 2, 9.3;; (* tuples don't require parens in Ocaml *)
val x : int * float = (2, 9.3)
Nested Tuples

(*Tuples can be nested *)
let d = ((1,4,62),("bye",15),73.95);;
val d : (int * int * int) * (string * int) * float =
 ((1, 4, 62), ("bye", 15), 73.95)

(*Patterns can be nested *)
let (p, (st,_), _) = d;;
 (* _ matches all, binds nothing *)
val p : int * int * int = (1, 4, 62)
val st : string = "bye"
Functions on tuples

```ocaml
# let plus_pair (n,m) = n + m;;
val plus_pair : int * int -> int = <fun>

# plus_pair (3,4);;
- : int = 7

# let double x = (x,x);;
val double : 'a -> 'a * 'a = <fun>

# double 3;;
- : int * int = (3, 3)

# double "hi";;
- : string * string = ("hi", "hi")
```
Save the Environment!

- A closure is a pair of an environment and an association of a sequence of variables (the input variables) with an expression (the function body), written:

 \[
 < (v_1, \ldots, v_n) \rightarrow \text{exp}, \ \rho >
 \]

- Where \(\rho \) is the environment in effect when the function is defined (for a simple function)
Closure for plus_pair

- Assume $\rho_{\text{plus_pair}}$ was the environment just before plus_pair defined and recall
 - let plus_pair (n,m) = n + m;;

- Closure for fun (n,m) -> n + m:
 $$<(\text{n,m}) \rightarrow \text{n + m}, \rho_{\text{plus_pair}}>$$

- Environment just after plus_pair defined:
 $$\{\text{plus_pair} \rightarrow <(\text{n,m}) \rightarrow \text{n + m}, \rho_{\text{plus_pair}}>\} + \rho_{\text{plus_pair}}$$
Functions with more than one argument

let add_three x y z = x + y + z;;
val add_three : int -> int -> int -> int = <fun>

let t = add_three 6 3 2;;
val t : int = 11

let add_three =
 fun x -> (fun y -> (fun z -> x + y + z));;
val add_three : int -> int -> int -> int = <fun>

Again, first syntactic sugar for second
Curried vs Uncurried

- Recall

```
# let add_three u v w = u + v + w;;
val add_three : int -> int -> int -> int = <fun>
```

- How does it differ from

```
# let add_triple (u,v,w) = u + v + w;;
val add_triple : int * int * int -> int = <fun>
```

- add_three is curried;
- add_triple is uncurried
Curried vs Uncurried

add_three 6 3 2;;
- : int = 11

add_triple (6,3,2);;
- : int = 11

add_triple 5 4;;
Characters 0-10: add_triple 5 4;;

This function is applied to too many arguments, maybe you forgot a `;`

fun x -> add_triple (5,4,x);;
: int -> int = <fun>
Partial application of functions

```
let add_three x y z = x + y + z;;

# let h = add_three 5 4;;
val h : int -> int = <fun>

# h 3;;
- : int = 12

# h 7;;
- : int = 16
```

Partial application also called *sectioning*
Recall: let plus_x = fun x => y + x

let x = 12

let plus_x = fun y => y + x

let x = 7
Closure for \textit{plus_x}

- When \textit{plus_x} was defined, had environment:
 \[
 \rho_{\text{plus_x}} = \{\ldots, x \rightarrow 12, \ldots\}
 \]

- Recall: \texttt{let plus_x y = y + x}

 is really \texttt{let plus_x = fun y -> y + x}

- Closure for \texttt{fun y -> y + x}:
 \[
 \langle y \rightarrow y + x, \rho_{\text{plus_x}} \rangle
 \]

- Environment just after \textit{plus_x} defined:
 \[
 \{\text{plus_x} \rightarrow \langle y \rightarrow y + x, \rho_{\text{plus_x}} \rangle\} + \rho_{\text{plus_x}}
 \]
Evaluation

- Running Ocaml source:
 - Parse the program to detect each expression
 - Keep an internal environment at each time step
 - For each expression, interpret the program using the internal function `Eval`
 - Nice property of Ocaml: everything is an expression!

- How does (Eval expression environment) work:
 - Evaluation uses a starting environment ρ
 - Define the rules for evaluating declarations, constants, arithmetic expressions, function applications…
Evaluating Declarations

- Evaluation uses a starting environment ρ
- To evaluate a (simple) declaration \texttt{let x = e}
 - \textbf{Evaluate} expression e in ρ to value v
 - \textbf{Update} ρ with the mapping from x to v: $\{x \rightarrow v\} + \rho$

\[\text{Definition of + on environments!}\]

- \textbf{Update}: $\rho_1 + \rho_2$ has all the bindings in ρ_1 and all those in ρ_2 that are not rebound in ρ_1

\[\{x \rightarrow 2, \ y \rightarrow 3, \ a \rightarrow \text{“hi”}\}\]
\[+\ \{y \rightarrow 100, \ b \rightarrow 6\}\]
\[= \{x \rightarrow 2, \ y \rightarrow 3, \ a \rightarrow \text{“hi”}, \ b \rightarrow 6\}\]

\[\text{It is not commutative!}\]
Evaluating Declarations

- Evaluation uses a starting environment ρ
- To evaluate a (simple) declaration `let x = e`
 - Evaluate expression e in ρ to value v
 - Update ρ with the mapping from x to v: $\{x \rightarrow v\} + \rho$

Warm-up: we evaluate this case:

$\rho = \{ x \rightarrow 2 \}$

`let y = 2*x+1;;`

$\rho' = \{ x \rightarrow 2; y \rightarrow 5 \}$
Evaluating Expressions

- Evaluation uses an environment \(\rho \)

- **A constant** evaluates to itself

- To evaluate an **variable**, look it up in \(\rho \) i.e., use \(\rho(v) \)

- To evaluate **uses of +, -, etc**., first eval the arguments, then do operation

- To evaluate a **local declaration**: let \(x = e_1 \) in \(e_2 \)
 - Evaluate \(e_1 \) to \(v \), evaluate \(e_2 \) using \(\{x \rightarrow v\} + \rho \)

- **Function application** (\(f x y \)) evaluates to its closure (see next slide)
Evaluation of Application with Closures

- Function **defined** as: \(\text{let } f \ x_1 \ldots \ x_n = \text{body} \)

- Function **application**: \(f \ e_1 \ldots \ e_n \)

- Evaluation uses the function \(\text{App} \):
 - In environment \(\rho \), evaluate left term to closure,
 \(c = \langle (x_1,\ldots,x_n) \rightarrow \text{body}, \rho \rangle \)
 - Evaluate the arguments in the application \(e_1 \ldots e_n \) to their values \(v_1,\ldots,v_n \) in the environment \(\rho \)
 - Update the environment \(\rho \) to
 \[
 \rho' = \{ x_1 \rightarrow v_1,\ldots, x_n \rightarrow v_n \} + \rho
 \]
 - **Evaluate** the function body (\(\text{body} \)) in environment \(\rho' \)
Evaluation of Application of `plus_x;;`

- Have environment:

 \[\rho = \{ \text{plus}_x \rightarrow <y \rightarrow y + x, \rho_{\text{plus}_x}>, \ldots, y \rightarrow 3, \ldots \} \]

 where \(\rho_{\text{plus}_x} = \{ x \rightarrow 12, \ldots, y \rightarrow 24, \ldots \} \)

- `Eval (plus_x y, \rho)` rewrites to
- `App (Eval(plus_x, \rho), Eval(y, \rho))` rewrites to
- `App (<y \rightarrow y + x, \rho_{\text{plus}_x}>, 3)` rewrites to
- `Eval (y + x, \{ y \rightarrow 3 \} + \rho_{\text{plus}_x})` rewrites to
- `Eval (3 + 12, \rho_{\text{plus}_x}) = 15`
Evaluation of Application of plus_pair

■ Assume environment

\[\rho = \{x \rightarrow 3, \ldots, \text{plus_pair} \rightarrow \langle(n,m) \rightarrow n + m, \rho_{\text{plus_pair}}\rangle\} + \rho_{\text{plus_pair}} \]

■ Eval (plus_pair (4,x), \rho)=

■ App (Eval (plus_pair, \rho), Eval ((4,x), \rho)) =

■ App (\langle(n,m) \rightarrow n + m, \rho_{\text{plus_pair}}\rangle, (4,3)) =

■ Eval (n + m, \{n \rightarrow 4, m \rightarrow 3\} + \rho_{\text{plus_pair}}) =

■ Eval (4 + 3, \{n \rightarrow 4, m \rightarrow 3\} + \rho_{\text{plus_pair}}) = 7
Closure question

If we start in an empty environment, and we execute:

```
let f = fun n -> n + 5;;
(* 0 *)
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (* 0 *?)?
Answer

$\rho_{\text{start}} = \{\}$

let $f = \text{fun } n \rightarrow n + 5;;$

$\rho_0 = \{f \rightarrow \langle n \rightarrow n + 5, \{\}\rangle\}$
Closure question

- If we start in an empty environment, and we execute:

```ml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
(* 1 *)
let f = pair_map f;;
let a = f (4,6);;
```

What is the environment at (*) 1 *)?
$\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \} > \}$

let pair_map $g (n,m) = (g n, g m);$;

$\rho_1 = \{$

\[f \rightarrow <n \rightarrow n + 5, \{ \} >, \]

pair_map \rightarrow

\[<g \rightarrow (\text{fun} (n,m) \rightarrow (g n, g m)), \]

\[\{ f \rightarrow <n \rightarrow n + 5, \{ \} > \} \]

\}$
If we start in an empty environment, and we execute:

```ocaml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
(* 2 *)
let a = f (4,6);;
```

What is the environment at (* 2 *?)?
Evaluate `pair_map f`

\[\rho_0 = \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \]
\[\rho_1 = \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle, \]
pair_map \mapsto
\[\langle g \mapsto (\text{fun} (n,m) \rightarrow (g \ n, g \ m)), \]
\[\{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \} \}

let f = pair_map f;;
Evaluate pair_map f

\[\rho_0 = \{ f \rightarrow (n \rightarrow n + 5, \{ \}) \} \]
\[\rho_1 = \{ f \rightarrow (n \rightarrow n + 5, \{ \}) \}, \]
\[\text{pair_map} \rightarrow \]
\[(g \rightarrow \text{fun (n,m) \rightarrow (g n, g m))}, \]
\[\{ f \rightarrow (n \rightarrow n + 5, \{ \}) \} \} \]

let f = pair_map f;;

Eval(pair_map f, \rho_1) =
Evaluate \(\text{pair_map } f \)

\[
\rho_0 = \{ f \rightarrow <n \rightarrow n + 5, \{ \}> \}
\]

\[
\rho_1 = \{ f \rightarrow <n \rightarrow n + 5, \{ \}> , \}
\]

\[
\text{pair_map } \rightarrow \quad <g \rightarrow (\text{fun } (n,m) \rightarrow (g n, g m)), \quad \{ f \rightarrow <n \rightarrow n + 5, \{ \}> \}> > \}
\]

\[
\text{let } f = \text{pair_map } f;;
\]

\[
\text{Eval}(\text{pair_map } f, \rho_1) = \quad \text{App } (<g \rightarrow \text{fun } (n,m) \rightarrow (g n, g m), \rho_0>, <n \rightarrow n + 5, \{ \}>) =
\]
Evaluate `pair_map f`

\[\rho_0 = \{ f \mapsto <n \mapsto n + 5, \{ \} > \} \]
\[\rho_1 = \{ f \mapsto <n \mapsto n + 5, \{ \} >, \]
\[pair_map \mapsto \]
\[<g \mapsto (\text{fun} (n,m) \mapsto (g \ n, \ g \ m)), \]
\[\{ f \mapsto <n \mapsto n + 5, \{ \} >\} > \} \]
\]

let f = pair_map f;;

Eval(pair_map f, \rho_1) =
App (<g\mapsto\text{fun} (n,m) \mapsto (g \ n, \ g \ m), \rho_0>, <n \mapsto n + 5, \{ \} >) =

Eval(fun (n,m)\mapsto(g \ n, \ g \ m), \{g\mapsto<n\mapsto n + 5, \{ \} >\} + \rho_0) =
\langle(n,m) \mapsto (g \ n, \ g \ m), \{g\mapsto<n\mapsto n + 5, \{ \} >\} + \rho_0 \rangle =
\langle(n,m) \mapsto (g \ n, \ g \ m), \{g\mapsto<n\mapsto n + 5, \{ \} >, f\mapsto<n\mapsto n + 5, \{ \} >\} \rangle
\[\rho_0 = \{ f \mapsto <n \mapsto n + 5, \{ \}>, \} \]

\[\rho_1 = \{ f \mapsto <n \mapsto n + 5, \{ \}>, \} \]

\[\text{pair_map} \mapsto \]

\[<g \mapsto (\text{fun} (n,m) \mapsto (g\ n, g\ m)), \]

\[\{ f \mapsto <n \mapsto n + 5, \{ \}>, \} > \}

let \ f = \text{pair_map\ f};;

\[\rho_2 = \{ f \mapsto <(n,m) \mapsto (g\ n, g\ m), \}

\[\{ g \mapsto <n \mapsto n + 5, \{ \}>, \}

\[f \mapsto <n \mapsto n + 5, \{ \}>, \} > \}

\[\text{pair_map} \mapsto <g \mapsto \text{fun} (n,m) \mapsto (g\ n, g\ m), \]

\[\{ f \mapsto <n \mapsto n + 5, \{ \}>, \} > \]

\]
Closure question

If we start in an empty environment, and we execute:

```ml
let f = fun => n + 5;;
let pair_map g (n,m) = (g n, g m);;
let f = pair_map f;;
let a = f (4,6);;
(* 3 *)
```

What is the environment at (* 3 *),?
\[\rho_2 = \{ f \mapsto (n, m) \mapsto (g \ n, g \ m), \]
\[\quad \{ g \mapsto \langle n \mapsto n + 5, \{ \} \rangle \}, \]
\[\quad f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \}}, \]
\[\text{pair_map} \mapsto \langle g \mapsto \text{fun}(n, m) \mapsto (g \ n, g \ m), \]
\[\quad \{ f \mapsto \langle n \mapsto n + 5, \{ \} \rangle \} \rangle \}
\]

let a = f (4,6);;
Evaluate $f(4,6)$;

\[\rho_2 = \{ f \mapsto <(n,m) \mapsto (g\ n, g\ m), \]
\[\{ g \mapsto <n \mapsto n + 5, \{ \}\}, \]
\[f \mapsto <n \mapsto n + 5, \{ \}\} \}\}, \]
\[\text{pair_map} \mapsto <g \mapsto \text{fun}\ (n,m) \mapsto (g\ n, g\ m), \]
\[\{ f \mapsto <n \mapsto n + 5, \{ \}\} \}\} \]
\]
\}
\]

let a = f (4,6);;

Eval(f (4,6), \rho_2) =
Evaluate \(f(4,6) \);

\[
\rho_2 = \{ \begin{align*}
f & \mapsto <(n,m) \to (g \ n, g \ m)>, \\
& \quad \{ g \mapsto <n \to n + 5, \{} \}, \\
& \quad f \mapsto <n \to n + 5, \{} \} > >, \\
npair_map & \mapsto <g \mapsto \text{fun}(n,m) \to (g \ n, g \ m), \\
& \quad \{ f \mapsto <n \to n + 5, \{} \} > > > \\
& > \\
\} \\
\}
\]

let a = f(4,6);;

Eval(f(4,6), \rho_2) =

App(<(n,m) \to (g \ n, g \ m), \{ g \mapsto <n \to n + 5, \{} \}, \\
& \quad f \mapsto <n \to n + 5, \{} \} > > > , \\
(4,6)) =
Evaluate \(f(4,6) \);

\[
\text{App}(<(n,m) \rightarrow (g\ n,\ g\ m),\ \{g \rightarrow <n \rightarrow n + 5,\ \{\}\>, \ f \rightarrow <n \rightarrow n + 5,\ \{\}\}>>,
\]

\[
(4,6)) =
\]

\[
\text{Eval}((g\ n,\ g\ m),\ \{n \rightarrow 4,\ m \rightarrow 6\} + \{g \rightarrow <n \rightarrow n + 5,\ \{\}\>, \ f \rightarrow <n \rightarrow n + 5,\ \{\}\}>}) =
\]

\[
(\text{App}(<n \rightarrow n + 5,\ \{\}\>,\ 4),\ \text{App}(<n \rightarrow n + 5,\ \{\}\>,\ 6)) =
\]
Evaluate $f(4, 6)$;

\[
\text{App}(\langle n \rightarrow n + 5, \{ \} \rangle, 4),
\text{App}(\langle n \rightarrow n + 5, \{ \} \rangle, 6)) = \\
\text{Eval}(n + 5, \{n \rightarrow 4\} + \{\}),
\text{Eval}(n + 5, \{n \rightarrow 6\} + \{\})) = \\
\text{Eval}(4 + 5, \{n \rightarrow 4\} + \{\}),
\text{Eval}(6 + 5, \{n \rightarrow 6\} + \{\})) = (9, 11)
\]
Functions as arguments

let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>

let g = thrice plus_two;; (* plus_two x is x+2 *)
val g : int -> int = <fun>

g 4;;
- : int = 10

thrice (fun s -> "Hi! " ^ s) "Good-bye!";;
- : string = "Hi! Hi! Hi! Good-bye!"
Higher Order Functions

- A function is *higher-order* if it takes a function as an argument or returns one as a result

- Example:
  ```ml
  # let compose f g = fun x -> f (g x);;
  val compose : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b = <fun>
  ```

- The type ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b is a higher order type because of ('a -> 'b) and ('c -> 'a) and -> 'c -> 'b
Recall:

```ocaml
# let thrice f x = f (f (f x));;
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```

How do you write thrice with compose?

```ocaml
# let thrice f = compose f (compose f f f);
val thrice : ('a -> 'a) -> 'a -> 'a = <fun>
```
Lambda Lifting

- You must remember the rules for evaluation when you use partial application

```ocaml
# let add_two = (+) (print_string "test\n"; 2);;
```
```
test

val add_two : int -> int = <fun>
```

```ocaml
# let add2 = (* lambda lifted *)
    fun x -> (+) (print_string "test\n"; 2) x;;
```
```
val add2 : int -> int = <fun>
```
Lambda Lifting

thrice add_two 5;;
- : int = 11

thrice add2 5;;
test
test
test
- : int = 11

- Lambda lifting delayed the evaluation of the argument to (+) until the second argument was supplied
Match Expressions

let triple_to_pair triple =

match triple
with (0, x, y) -> (x, y)
| (x, 0, y) -> (x, y)
| (x, y, _) -> (x, y);;

• Each clause: pattern on left, expression on right
• Each x, y has scope of only its clause
• Use first matching clause

val triple_to_pair : int * int * int -> int * int = <fun>
Recursive Functions

let rec factorial n =
 if n = 0 then 1
 else n * factorial (n - 1);;
val factorial : int -> int = <fun>

factorial 5;;
- : int = 120

(* rec is needed for recursive function declarations *)
Recursion Example

Compute \(n^2 \) recursively using:
\[
 n^2 = (2 \times n - 1) + (n - 1)^2
\]

```ml
# let rec nthsq n =      (* rec for recursion *)
    match n      (* pattern matching for cases *)
      with 0 -> 0     (* base case *)
    | n -> (2 * n -1) (* recursive case *)
        + nthsq (n -1);; (* recursive call *)

val nthsq : int -> int = <fun>

# nthsq 3;;
- : int = 9
```

Structure of recursion similar to inductive proof
Recursion and Induction

```ocaml
# let rec nthsq n = 
    match n with
    | 0 -> 0 (*Base case!*)
    | n -> (2 * n - 1) + nthsq (n - 1) ;;
```

- Base case is the last case; it stops the computation
- Recursive call must be to arguments that are somehow smaller - must progress to base case
- **if or match must contain base case (!!!)**
 - Failure of selecting base case **will** cause non-termination
 - But the program will crash because it exhausts the stack!
Lists

- First example of a recursive datatype (aka algebraic datatype)

- Unlike tuples, lists are homogeneous in type (all elements same type)
Lists

- List can take one of two forms:
 - **Empty list**, written \([\]\)
 - **Non-empty list**, written \(x :: xs\)
 - \(x\) is head element,
 - \(xs\) is tail list, \(::\) called “cons”

- How we typically write them (syntactic sugar):
 - \([x]\) == \(x :: []\)
 - \([x1; x2; ...; xn]\) == \(x1 :: x2 :: ... :: xn :: []\)
let fib5 = [8;5;3;2;1;1];;
val fib5 : int list = [8; 5; 3; 2; 1; 1]

let fib6 = 13 :: fib5;;
val fib6 : int list = [13; 8; 5; 3; 2; 1; 1]

(8::5::3::2::1::1::[]); = fib5;;
- : bool = true

fib5 @ fib6;;
- : int list =
 [8; 5; 3; 2; 1; 1; 13; 8; 5; 3; 2; 1; 1]
Lists are Homogeneous

```ocaml
# let bad_list = [1; 3.2; 7];;

Characters 19-22:
   let bad_list = [1; 3.2; 7];;
       ^^^

This expression has type float but is here used with type int
```
Question

Which one of these lists is invalid?

1. [2; 3; 4; 6]

2. [2,3; 4,5; 6,7]

3. [(2.3,4); (3.2,5); (6,7.2)]

 3 is invalid because of last pair

4. [[“hi”; “there”]; [“wahcha”]; []; [“doin”]]
let rec double_up list =
 match list
 with [] -> [] (* pattern before ->, expression after *)
 | (x :: xs) -> (x :: x :: double_up xs);
val double_up : 'a list -> 'a list = <fun>

let fib5_2 = double_up fib5;;
val fib5_2 : int list = [8; 8; 5; 5; 3; 3; 2; 2; 1; 1; 1; 1]
Functions Over Lists

let silly = double_up ["hi"; "there"];;
val silly : string list = ["hi"; "hi"; "there"; "there"]

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>

poor_rev silly;;
- : string list = ["there"; "there"; "hi"; "hi"]
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

```ml
let length l =
```
Question: Length of list

- Problem: write code for the length of the list
 - How to start?

```ml
let rec length l =
  match l with
```

9/5/2017
Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```plaintext
let rec length l =
  match l with
```
Question: Length of list

- Problem: write code for the length of the list
 - What patterns should we match against?

```ml
let rec length l =
  match l with [] ->
  | (a :: bs) ->
```

9/5/2017
Question: Length of list

Problem: write code for the length of the list

What result do we give when \(l \) is empty?

```ml
let rec length l =
  match l with
  | [] -> 0
  | (a :: bs) ->
```
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when \(l \) is not empty?

```ocaml
let rec length l =
  match l with [] -> 0
  | (a :: bs) ->
```
Question: Length of list

- Problem: write code for the length of the list
 - What result do we give when `l` is not empty?

```ocaml
let rec length l =

  match l with
  | [] -> 0
  | (a :: bs) -> 1 + length bs
```
Same Length

- How can we efficiently answer if two lists have the same length?
How can we efficiently answer if two lists have the same length?

```ml
let rec same_length list1 list2 =
  match list1 with
  | [] -> (match list2 with [] -> true | (y::ys) -> false)
  | (x::xs) -> (match list2 with [] -> false | (y::ys) -> same_length xs ys)
```
Functions Over Lists

let rec map f list =
 match list
 with [] -> []
 | (h::t) -> (f h) :: (map f t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map plus_two fib5;;
- : int list = [10; 7; 5; 4; 3; 3]

map (fun x -> x - 1) fib6;;
: int list = [12; 7; 4; 2; 1; 0; 0]
Iterating over lists

```ocaml
# let rec fold_left f a list =
  match list
  with [] -> a
  | (x :: xs) -> fold_left f (f a x) xs;;
val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

# fold_left
  (fun () -> print_string)
  ()
  ["hi"; "there"];;
hithere- : unit = ()
```
Iterating over lists

```ocaml
# let rec fold_right f list b =
    match list
    with [] -> b
    | (x :: xs) -> f x (fold_right f xs b);;
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b = <fun>

# fold_right
    (fun s -> fun () -> print_string s)
    ["hi"; "there"]
    ();;
therehi- : unit = ()
```
Structural Recursion

- Functions on recursive datatypes (e.g., lists) tend to be recursive
- Recursion over recursive datatypes generally by structural recursion
 - Recursive calls made to components of structure of the same recursive type
 - Base cases of recursive types stop the recursion of the function
Structural Recursion: List Example

```ml
# let rec length list =
  match list with
  | [] -> 0  (* Nil case *)
  | x :: xs -> 1 + length xs;;  (* Cons case *)
val length : 'a list -> int = <fun>
```

```ml
# length [5; 4; 3; 2];;
- : int = 4
```

- Nil case [] is base case
- Cons case recurses on component list xs
Forward Recursion

- In **Structural Recursion**, split input into components and (eventually) recurse

- **Forward Recursion** is a form of Structural Recursion

- In forward recursion, first call the function recursively on all recursive components, and then build final result from partial results

- Wait until whole structure has been traversed to start building answer
Forward Recursion: Examples

let rec double_up list =
 match list
 with [] -> []
 | (x :: xs) -> (x :: x :: double_up xs);
val double_up : 'a list -> 'a list = <fun>

let rec poor_rev list =
 match list
 with [] -> []
 | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
Encoding Recursion with Fold

let rec append list1 list2 = match list1 with
 [] -> list2 | x::xs -> x :: append xs list2;;
val append : 'a list -> 'a list -> 'a list = <fun>

append [1;2;3] [4;5;6];;
 - : int list = [1; 2; 3; 4; 5; 6]

let append_alt list1 list2 =
 fold_right (fun x y -> x :: y) list1 list2;;
val append_alt : 'a list -> 'a list -> 'a list = <fun>
Mapping Recursion

- One common form of structural recursion applies a function to each element in the structure

```ocaml
# let rec doubleList list = match list
  with [ ] -> [ ]
  | x::xs -> 2 * x :: doubleList xs;;
val doubleList : int list -> int list = <fun>
```

```ocaml
# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```
Mapping Recursion

- Can use the higher-order recursive map function instead of direct recursion

```plaintext
# let doubleList list =
    List.map (fun x -> 2 * x) list;;
val doubleList : int list -> int list = <fun>

# doubleList [2;3;4];;
- : int list = [4; 6; 8]
```

- Same function, but no recursion
Folding Recursion

- Another common form “folds” an operation over the elements of the structure

```ocaml
# let rec multList list = match list
  with [ ] -> 1
  | x::xs -> x * multList xs;;
val multList : int list -> int = <fun>

# multList [2;4;6];;
- : int = 48
```

- Computes \((2 \times (4 \times (6 \times 1)))\)
Folding Recursion

- multList folds to the right
- Same as:

```ocaml
# let multList list =
    List.fold_right
    (fun x -> fun p -> x * p)
    list 1;;
val multList : int list -> int = <fun>

# multList [2;4;6];;
- : int = 48
```
How long will it take?

Common big-O times:
- Constant time $O(1)$
 - input size doesn’t matter
- Linear time $O(n)$
 - $2x$ input size $\Rightarrow 2x$ time
- Quadratic time $O(n^2)$
 - $3x$ input size $\Rightarrow 9x$ time
- Exponential time $O(2^n)$
 - Input size $n+1$ $\Rightarrow 2x$ time
Linear Time

- Expect most list operations to take linear time $O(n)$
- Each step of the recursion can be done in constant time
- Each step makes only one recursive call
- List example: `multList, append`
- Integer example: `factorial`
Quadratic Time

- Each step of the recursion takes time proportional to input.
- Each step of the recursion makes only one recursive call.
- List example:

```ocaml
# let rec poor_rev list =
  match list
  with [] -> []
  | (x::xs) -> poor_rev xs @ [x];;
val poor_rev : 'a list -> 'a list = <fun>
```
Exponential running time

- Hideous running times on input of any size
- Each step of recursion takes constant time
- Each recursion makes two recursive calls
- Easy to write naïve code that is exponential for functions that can be linear
Exponential running time

let rec naiveFib n = match n
 with 0 -> 0
 | 1 -> 1
 | _ -> naiveFib (n-1) + naiveFib (n-2);
val naiveFib : int -> int = <fun>
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know where to return when the call is finished.
- What if \(f \) calls \(g \) and \(g \) calls \(h \), but calling \(h \) is the last thing \(g \) does (a tail call)?
An Important Optimization

- When a function call is made, the return address needs to be saved to the stack so we know where to return when the call is finished.
- What if f calls g and g calls h, but calling h is the last thing g does (a tail call)?
- Then h can return directly to f instead of g.
Tail Recursion

- A recursive program is tail recursive if all recursive calls are tail calls.
- Tail recursive programs may be optimized to be implemented as loops, thus removing the function call overhead for the recursive calls.
- Tail recursion generally requires extra “accumulator” arguments to pass partial results.
 - May require an auxiliary function.
Tail Recursion - Example

```ocaml
# let rec rev_aux list revlist =  
   match list with [ ] -> revlist  
| x :: xs -> rev_aux xs (x:::revlist);;
val rev_aux : 'a list -> 'a list -> 'a list = <fun>

# let rev list = rev_aux list [ ];;
val rev : 'a list -> 'a list = <fun>
```

- What is its running time?
Folding Functions over Lists

How are the following functions similar?

```ocaml
# let rec sumlist list = match list with
   [] -> 0 | x::xs -> x + sumlist xs;;
val sumlist : int list -> int = <fun>

# sumlist [2;3;4];;
- : int = 9

# let rec prodlist list = match list with
   [] -> 1 | x::xs -> x * prodlist xs;;
val prodlist : int list -> int = <fun>

# prodlist [2;3;4];;
- : int = 24
```
Folding

let rec fold_left f a list = match list
 with [] -> a | (x :: xs) -> fold_left f (f a x) xs;;

val fold_left : ('a -> 'b -> 'a) -> 'a list -> 'a
 = <fun>
fold_left f a [x₁; x₂;...;xₙ] = f(...(f (f a x₁) x₂)...xₙ)

let rec fold_right f list b = match list
 with [] -> b | (x :: xs) -> f x (fold_right f xs b);;

val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'b
 = <fun>
fold_right f [x₁; x₂;...;xₙ] b = f x₁(f x₂ (...(f xₙ b)...))
Folding - Forward Recursion

```ocaml
# let sumlist list = fold_right (+) list 0;;
val sumlist : int list -> int = <fun>

# sumlist [2;3;4];;
- : int = 9

# let prodlist list = fold_right ( * ) list 1;;
val prodlist : int list -> int = <fun>

# prodlist [2;3;4];;
- : int = 24
```
Folding - Tail Recursion

```ocaml
- # let rev list =
-    fold_left
-    (fun l -> fun x -> x :: l) //comb op
-    []                   //accumulator cell
-    list
```
Folding

- Can replace recursion by fold_right in any forward primitive recursive definition
 - Primitive recursive means it only recurses on immediate subcomponents of recursive data structure
- Can replace recursion by fold_left in any tail primitive recursive definition