Programming Languages and Compilers (CS 421)

Elsa L Gunter
2112 SC, UIUC

http://courses.engr.illinois.edu/cs421

Based in part on slides by Mattox Beckman, as updated by Vikram Adve and Gul Agha
Axiomatic Semantics

- Also called Floyd-Hoare Logic
- Based on formal logic (first order predicate calculus)
- Axiomatic Semantics is a logical system built from axioms and inference rules
- Mainly suited to simple imperative programming languages
Axiomatic Semantics

- Used to formally prove a property (post-condition) of the state (the values of the program variables) after the execution of program, assuming another property (pre-condition) of the state holds before execution.
Axiomatic Semantics

- Goal: Derive statements of form \(\{P\} \ C \ \{Q\} \)
 - \(P \), \(Q \) logical statements about state, \(P \) precondition, \(Q \) postcondition, \(C \) program

- Example: \(\{x = 1\} \ x := x + 1 \ \{x = 2\} \)
Axiomatic Semantics

- **Approach:** For each type of language statement, give an axiom or inference rule stating how to derive assertions of form \(\{P\} C \{Q\} \) where \(C \) is a statement of that type

- Compose axioms and inference rules to build proofs for complex programs
Axiomatic Semantics

An expression \(\{P\} \text{C} \{Q\}\) is a *partial correctness* statement.

For *total correctness* must also prove that \(C\) terminates (i.e. doesn’t run forever).

- Written: \([P] \text{C} [Q]\)

Will only consider partial correctness here.
Language

- We will give rules for simple imperative language

<command>
 ::= <variable> := <term>
 | <command>; ... ;<command>
 | if <statement> then <command> else <command>
 | while <statement> do <command>

- Could add more features, like for-loops
Substitution

- Notation: $P[e/v]$ (sometimes $P[v <- e]$)
- Meaning: Replace every v in P by e
- Example:

 $$(x + 2) [y-1/x] = ((y – 1) + 2)$$
The Assignment Rule

\[\{P \ [e/x]\} \ x := e \ \{P\} \]

Example:

\[\{ \ ? \} \ x := y \ \{x = 2\} \]
The Assignment Rule

\[\{ P \ [e/x] \} \ x := e \ \{ P \} \]

Example:

\[\{ _ = 2 \} \ x := y \ \{ x = 2 \} \]
The Assignment Rule

\[\{ P [e/x] \} \ x := e \ { P } \]

Example:

\[\{ y = 2 \} \ x := y \ { x = 2 } \]
The Assignment Rule

\[
\{P[e/x]\} \ x := e \ {P}
\]

Examples:

\[
\{y = 2\} \ x := y \ {x = 2}
\]

\[
\{y = 2\} \ x := 2 \ {y = x}
\]

\[
\{x + 1 = n + 1\} \ x := x + 1 \ {x = n + 1}
\]

\[
\{2 = 2\} \ x := 2 \ {x = 2}
\]
What is the weakest precondition of

\[x := x + y \{ x + y = w - x \} \]?

\[
\{ \quad ? \quad \}
\]

\[x := x + y \]

\[\{ x + y = w - x \} \]
What is the weakest precondition of

\[x := x + y \{x + y = w - x}\]?

\[\{(x + y) + y = w - (x + y)\}\]

\[x := x + y\]

\[\{x + y = w - x\}\]
Precondition Strengthening

\[P \Rightarrow P' \quad \{P'\} \subset C \{Q\} \]
\[\{P\} \subset C \{Q\} \]

- Meaning: If we can show that \(P \) implies \(P' \) (\(P \Rightarrow P' \)) and we can show that \(\{P'\} \subset C \{Q\} \), then we know that \(\{P\} \subset C \{Q\} \).
- \(P \) is **stronger** than \(P' \) means \(P \Rightarrow P' \).
Precondition Strengthening

Examples:

\[x = 3 \implies x < 7 \quad \{ x < 7 \} \ x := x + 3 \quad \{ x < 10 \} \]
\[\{ x = 3 \} \ x := x + 3 \quad \{ x < 10 \} \]

\[\text{True} \implies 2 = 2 \quad \{ 2 = 2 \} \ x := 2 \quad \{ x = 2 \} \]
\[\{ \text{True} \} \ x := 2 \quad \{ x = 2 \} \]

\[x = n \implies x + 1 = n + 1 \quad \{ x + 1 = n + 1 \} \ x := x + 1 \quad \{ x = n + 1 \} \]
\[\{ x = n \} \ x := x + 1 \quad \{ x = n + 1 \} \]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\} \\
\{x = 3\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x = 3\} & \quad x := x \times x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]

\[
\begin{align*}
\{x \times x < 25\} & \quad x := x \times x \quad \{x < 25\} \\
\{x > 0 \land x < 5\} & \quad x := x \times x \quad \{x < 25\}
\end{align*}
\]
Which Inferences Are Correct?

\[
\begin{align*}
\{x > 0 \land x < 5\} x := x \cdot x \{x < 25\} & \checkmark \\
\{x = 3\} x := x \cdot x \{x < 25\} & \\
\{x = 3\} x := x \cdot x \{x < 25\} & \cancel{\text{x}} \\
\{x > 0 \land x < 5\} x := x \cdot x \{x < 25\} & \cancel{\text{x}} \\
\{x \cdot x < 25\} x := x \cdot x \{x < 25\} & \checkmark \\
\{x > 0 \land x < 5\} x := x \cdot x \{x < 25\} &
\end{align*}
\]
Sequencing

\[
\begin{align*}
\{P\} \ C_1 \ \{Q\} \ & \ \{Q\} \ C_2 \ \{R\} \\
\{P\} \ C_1; \ C_2 \ \{R\}
\end{align*}
\]

- Example:

\[
\begin{align*}
\{z = z \land z = z\} \ x := z & \{x = z \land z = z\} \\
\{x = z \land z = z\} \ y := z & \{x = z \land y = z\} \\
\{z = z \land z = z\} \ x := z; \ y := z & \{x = z \land y = z\}
\end{align*}
\]
Sequencing

\[
\{P\} \quad C_1 \quad \{Q\} \quad C_2 \quad \{R\} \\
\{P\} \quad C_1 ; \quad C_2 \quad \{R\}
\]

Example:

\[
\{z = z \land z = z\} \quad x := z \quad \{x = z \land z = z\}
\]

\[
\{x = z \land z = z\} \quad y := z \quad \{x = z \land y = z\}
\]

\[
\{z = z \land z = z\} \quad x := z ; \quad y := z \quad \{x = z \land y = z\}
\]
Postcondition Weakening

\[\{ P \} \ C \ { Q' } \ \Rightarrow \ Q' \ \Rightarrow \ Q \]

\[\{ P \} \ C \ { Q } \]

Example:
\[\{ z = z \land z = z \} \ x := z; \ y := z \ \{ x = z \land y = z \} \]
\[(x = z \land y = z) \ \Rightarrow \ (x = y) \]
\[\{ z = z \land z = z \} \ x := z; \ y := z \ \{ x = y \} \]
Rule of Consequence

\[
P \implies P' \quad \{P'\} \quad C \quad \{Q'\} \quad Q' \implies Q
\]

- Logically equivalent to the combination of Precondition Strengthening and Postcondition Weakening
- Uses \(P \implies P \) and \(Q \implies Q \)
If Then Else

\[\{P \text{ and } B\} \quad C_1 \quad \{Q\} \quad \{P \text{ and } \neg B\} \quad C_2 \quad \{Q\} \]

\[\{P\} \quad \text{if } B \text{ then } C_1 \quad \text{else } C_2 \quad \{Q\} \]

Example: Want

\[\{y=a\} \]

if \(x < 0 \) then \(y := y - x \) else \(y := y + x \)

\[\{y=a+|x|\} \]

Suffices to show:

(1) \(\{y=a \& x<0\} \quad y := y - x \quad \{y=a+|x|\} \) and

(4) \(\{y=a \& \neg(x<0)\} \quad y := y + x \quad \{y=a+|x|\} \)
\{y=a \& x<0\} \ y:=y-x \ \{y=a+|x|\}

(3) $\ (y=a \& x<0) \Rightarrow y-x=a+|x|$
(2) $\ \{y-x=a+|x|\} \ y:=y-x \ \{y=a+|x|\}$
(1) $\ \{y=a \& x<0\} \ y:=y-x \ \{y=a+|x|\}$

(1) Reduces to (2) and (3) by Precondition Strengthening
(2) Follows from assignment axiom
(3) Because $x<0 \Rightarrow |x| = -x$
\{y=a\&\text{not}(x<0)\} \ y:=y+x \ \{y=a+|x|\}

(6) \ (y=a\&\text{not}(x<0)) \Rightarrow (y+x=a+|x|)
(5) \ \{y+x=a+|x|\} \ y:=y+x \ \{y=a+|x|\}
(4) \ \{y=a\&\text{not}(x<0)\} \ y:=y+x \ \{y=a+|x|\}

(4) Reduces to (5) and (6) by Precondition Strengthening
(5) Follows from assignment axiom
(6) Because not(x<0) \Rightarrow |x| = x
If then else

(1) \{y=a \& x<0\} y:=y-x \{y=a+|x|\}
(4) \{y=a \& \neg(x<0)\} y:=y+x \{y=a+|x|\}

\[\begin{array}{c}
\{y=a\} \\
\text{if } x < 0 \text{ then } y:= y-x \text{ else } y:= y+x \\
\{y=a+|x|\}
\end{array}\]

By the if_then_else rule
While

- We need a rule to be able to make assertions about **while** loops.
 - Inference rule because we can only draw conclusions if we know something about the body
- Let’s start with:
 $$\{ \ ? \ \} \ \ C \ \ \{ \ ? \ \}$$
 $$\{ \ ? \ \} \ \ \text{while} \ \ B \ \ \text{do} \ \ C \ \ \{ \ P \ \}$$
The loop may never be executed, so if we want \(P \) to hold after, it had better hold before, so let’s try:

\[
\begin{array}{c}
\{ \ \ ? \ \ } & C & \{ \ \ ? \ \ }
\hline
\{ P \} & \textbf{while} & B & \textbf{do} & C & \{ \ P \}
\end{array}
\]
While

- If all we know is \(P \) when we enter the \textbf{while} loop, then we all we know when we enter the body is \((P \text{ and } B) \).

- If we need to know \(P \) when we finish the \textbf{while} loop, we had better know it when we finish the loop body:

\[
\{ P \text{ and } B \} \ C \ \{ P \}
\]

\[
\{ P \} \ \textbf{while} \ B \ \textbf{do} \ C \ \{ P \}
\]
While

- We can strengthen the previous rule because we also know that when the loop is finished, not B also holds.

- Final while rule:

 \[
 \{ P \text{ and } B \} \quad C \quad \{ P \} \\
 \{ P \} \quad \textbf{while} \quad B \quad \textbf{do} \quad C \quad \{ P \text{ and not } B \}
 \]
While

\[
\{ P \text{ and } B \} \ C \ \{ P \} \\
\{ P \} \ \text{while} \ B \ \text{do} \ C \ \{ P \text{ and not } B \}
\]

- \(P \) satisfying this rule is called a *loop invariant* because it must hold before and after each iteration of the loop.
While

- **While** rule generally needs to be used together with precondition strengthening and postcondition weakening.

- There is NO algorithm for computing the correct P; it requires intuition and an understanding of why the program works.
Example

Let us prove

$\{x \geq 0 \text{ and } x = a\}$

fact := 1;
while x > 0 do (fact := fact * x; x := x – 1)
{fact = a!}
Example

- We need to find a condition P that is true both before and after the loop is executed, and such that

$$(P \text{ and not } x > 0) \implies (\text{fact} = a!)$$
Example

- First attempt:
 \[a! = \text{fact} \times (x!) \]

- Motivation:

- What we want to compute: \(a! \)
- What we have computed: \(\text{fact} \)
 which is the sequential product of \(a \) down through \((x + 1) \)
- What we still need to compute: \(x! \)
Example

By post-condition weakening suffices to show
1. \(\{ x \geq 0 \text{ and } x = a \} \)
 \[
 \text{fact} := 1; \\
 \text{while } x > 0 \text{ do } (\text{fact} := \text{fact} \times x; \ x := x - 1) \\
 \{ a! = \text{fact} \times (x!) \text{ and not } (x > 0) \}
 \]

and
2. \(\{ a! = \text{fact} \times (x!) \text{ and not } (x > 0) \} \Rightarrow \{ \text{fact} = a! \} \)
Problem

2. \{a! = \text{fact} \times (x!) \text{ and not } (x > 0)\} \Rightarrow \{\text{fact} = a!\}

- Don’t know this if \(x < 0 \)
- Need to know that \(x = 0 \) when loop terminates
- Need a new loop invariant
- Try adding \(x \geq 0 \)
- Then will have \(x = 0 \) when loop is done
Second try, combine the two:

\[P = \{a! = fact \times (x!) \text{ and } x \geq 0\} \]

Again, suffices to show

1. \(\{x \geq 0 \text{ and } x = a\} \)

 \[
 \begin{align*}
 \text{fact} & := 1; \\
 \text{while } x > 0 \text{ do (fact} & := \text{fact} \times x; x := x - 1) \\
 \{P \text{ and not } x > 0\}
 \end{align*}
 \]

 and

2. \(\{P \text{ and not } x > 0\} \Rightarrow \{\text{fact} = a!\} \)
Example

For 2, we need

\{a! = \text{fact} \ast (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \rightarrow \{\text{fact} = a!\}

But \{x \geq 0 \text{ and not } (x > 0)\} \rightarrow \{x = 0\} \text{ so }

\text{fact} \ast (x!) = \text{fact} \ast (0!) = \text{fact}

Therefore

\{a! = \text{fact} \ast (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \rightarrow \{\text{fact} = a!\}
Example

- For 1, by the sequencing rule it suffices to show

 3. \(\{x \geq 0 \text{ and } x = a\} \)

 \[
 \text{fact} := 1 \\
 \{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}
 \]

 And

 4. \(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}\)

 while \(x > 0\) do

 \[
 \text{fact} := \text{fact} \times x; \quad x := x - 1
 \]

 \(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0 \text{ and not } (x > 0)\} \)
Example

- Suffices to show that
 \[\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\} \]
 holds before the while loop is entered and
 that if
 \[\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\} \]
 holds before we execute the body of the loop, then
 \[\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0\} \]
 holds after we execute the body
Example

By the assignment rule, we have
\{a! = 1 \times (x!) \text{ and } x \geq 0\}

\text{fact} := 1

\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}

Therefore, to show (3), by
precondition strengthening, it suffices to show

\((x \geq 0 \text{ and } x = a) \implies (a! = 1 \times (x!) \text{ and } x \geq 0) \)
Example

\[(x \geq 0 \text{ and } x = a) \implies (a! = 1 \times (x!) \text{ and } x \geq 0)\]

holds because \(x = a \implies x! = a!\)

Have that \(\{a! = \text{fact} \times (x!) \text{ and } x \geq 0\}\)

holds at the start of the while loop
Example

To show (4):

\{a! = fact * (x!) and x >=0\}
while x > 0 do
(fact := fact * x; x := x –1)
\{a! = fact * (x!) and x >=0 and not (x > 0)\}

we need to show that

\{(a! = fact * (x!)) and x >= 0\}

is a loop invariant
Example

We need to show:

\{(a! = fact * (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}

\begin{align*}
(& \text{ fact = fact * x; x := x – 1 }) \\
(& \text{ (a! = fact * (x!)) and } x \geq 0)
\end{align*}

We will use assignment rule, sequencing rule and precondition strengthening
Example

By the assignment rule, we have
\[
\{ (a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0 \} \\
\text{x := x - 1} \\
\{ (a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \}
\]

By the sequencing rule, it suffices to show
\[
\{ (a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0 \} \\
\text{fact = fact} \times x \\
\{ (a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0 \}
\]
Example

By the assignment rule, we have that
\{(a! = (fact * x) * ((x-1)!)) \text{ and } x - 1 \geq 0\} \text{ and } x - 1 \geq 0
\text{ fact = fact * x }
\{(a! = fact * ((x-1)!)) \text{ and } x - 1 \geq 0\}

By Precondition strengthening, it suffices to show that
\{(a! = fact * ((x-1)!)) \text{ and } x - 1 \geq 0\} \Rightarrow
\{(a! = (fact * x) * ((x-1)!)) \text{ and } x - 1 \geq 0\}
Example

However

\[\text{fact} \times x \times (x - 1)! = \text{fact} \times x \]

and \((x > 0) \Rightarrow x - 1 \geq 0 \)

since \(x \) is an integer, so

\[
\{ (a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0 \} \Rightarrow
\]

\[
\{ (a! = (\text{fact} \times x) \times ((x-1)!)) \text{ and } x - 1 \geq 0 \}
\]
Example

Therefore, by precondition strengthening

\{(a! = \text{fact} \times (x!)) \text{ and } x \geq 0 \text{ and } x > 0\}

\text{fact} = \text{fact} \times x

\{(a! = \text{fact} \times ((x-1)!)) \text{ and } x - 1 \geq 0\}

This finishes the proof